
www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 1079–1091
On past-time indexing of moving objects q

Katerina Raptopoulou a, Michael Vassilakopoulos b,*, Yannis Manolopoulos a

a Department of Informatics, Aristotle University, GR-54006 Thessaloniki, Greece
b Department of Informatics, Technological Educational Institute of Thessaloniki, P.O. Box 141, GR-57400 Thessaloniki, Greece

Received 10 August 2005; received in revised form 15 October 2005; accepted 18 October 2005
Available online 15 December 2005
Abstract

Tracking of mobile objects trajectories is one of many modern applications supported by Spatiotemporal databases. Within the con-
text of this application, queries about the present, future or past positions of the objects need to be answered. Several indexing methods
have been proposed to efficiently handle such spatiotemporal queries. In the current paper, we propose a method for indexing the historic
(past) positions of moving objects called XBR-tree, a quadtree-like technique that is able to handle both timestamp and window queries.
Moreover, we compare experimentally this with other methods proposed in the literature for the same purpose. In particular, we com-
pare XBR-trees with PMR-trees, structures also related to quadtrees and MV3R-trees, R-tree based structures.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Moving objects; Spatiotemporal queries; Spatiotemporal databases; Indexing
1. Introduction

Geographic Information Systems (GIS) are rapidly
developing, taking advantage of the advances of the World
Wide Web (WWW) and Global Positioning Systems
(GPS). Moreover, related technologies that are gradually
becoming ubiquitous have emerged. These include mobile
computing and wireless technologies, in which devices such
as mobile phones and Internet terminals are used.

Within this technological environment, vehicle position
tracking and monitoring are regarded as applications of
increasing interest. There exist numerous cases where the
positions of airplanes, fishing boats and cars need to be
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2005.10.020

q Supported by the ARCHIMEDES project 2.2.14, Management of
Moving Objects and the WWW, of the Technological Educational
Institute of Thessaloniki (EPEAEK II—funding by the Greek Ministry
of Education and Religious Affairs and the European Union) and the
Bilateral Greek–Serbian Scientific Protocol 2005–2006 (funding by the
General Secretariat of Research and Technology).

* Corresponding author. Tel./fax: +30 2310 791595.
E-mail addresses: katerina@delab.csd.auth.gr (K. Raptopoulou),

vasilako@it.teithe.gr (M. Vassilakopoulos), manolopo@delab.csd.auth.gr
(Y. Manolopoulos).
observed. For example, consider keeping track of fighter
planes in an air force combat, or soldiers in a combat field.
Other situations of high importance that take advantage of
such applications include traffic control, fleet management,
fire or hurricane monitor and weather forecast.

In all the above applications, the need to exactly or
approximately locate a ‘‘mobile object’’ arises. Namely,
the moving objects have to be effectively represented,
indexed and queried. There are several methods that have
been proposed within this view. All these methods are clas-
sified in two different ways.

• The first categorization is based on whether the move-
ments of the objects refer to the past or to the future.
Several techniques that index the past positions of the
objects have been proposed (Kumar et al., 1998; Lomet
and Salsberg, 1989; Nascimento and Silva, 1998; Pfoser
et al., 2000; Tao and Papadias, 2001a,b; Xu et al., 1990).
There are also quite as many methods that index the
future positions of the objects (Agarwal et al., 2000;
Ishikawa et al., 2002; Kalashnikov et al., 2002; Kollios
et al., 1999a,b; Lazaridis et al., 2002; Moreira et al.,
2000; Procopiuc et al., 2002; Saltenis et al., 2000).

mailto:katerina@delab.csd.auth.gr
mailto:vasilako@it.teithe.gr
mailto:manolopo@delab.csd.auth.gr

1080 K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091
• The second categorization of the indexing methods is
based on the queries that each of them can handle.
The most often referenced types of queries are the win-
dow, the nearest neighbor and the join query. In a win-
dow query, a rectangle R is given, and we determine the
objects that intersect it from time points ts to te. In a
nearest neighbor query, a moving object O is given
and we calculate its k nearest neighbors from time points
ts to te. Finally, in a join query, two datasets are given,
S1 and S2, and we specify the pairs of the objects
(s1, s2), with s1 2 S1 and s2 2 S2, such that s1 and s2 fulfill
a predicate (e.g. overlap) at some time in the interval
[ts, te].

In this paper we focus on methods that refer to the past
movement of the objects and deal with window and time-
stamp queries. Timestamp queries constitute a special case
of the window queries. In a timestamp query, just as in a
window query, a rectangle R is given. The main difference
from the window query is that we determine the objects
that intersect it only at a specific time point ts. More specif-
ically, we propose a method for indexing the historic (past)
positions of moving objects called XBR-tree. This is a
dynamic quadtree-like technique, suitable for very large
amounts of data, that is able to handle both timestamp
and window queries. Moreover, we compare experimen-
tally this with other methods proposed in the literature
for the same purpose. In particular, we compare XBR-trees
with PMR-trees (Hoel and Samet, 1991; Nelson and
Samet, 1986; Tayeb et al., 1998), structures also related
to quadtrees and MV3R-trees (Tao and Papadias, 2001b),
R-tree based structures. The comparison is based on artifi-
cial data and studies the efficiency of the structures during
query processing (it considers I/O cost, as well as, total exe-
cution time for window and timestamp queries) and the
disk space occupied by the structures. The experimental
results show the XBR-trees outperform the other tree
structures both in terms of query processing efficiency
and space utilization.

The rest of the paper is organized as follows: Related
work is presented in the subsequent section, Section 2. Sec-
tion 3 sets the framework for the monitoring of the move-
ment of the objects. Section 4 presents PMR quadtrees and
Section 5 MV3R-trees. The new method proposed, the
XBR-tree, is described in Section 6, whereas the experimen-
tation in Section 7. Finally, the conclusion and future
research appear in Section 8.

2. Related work

The topic of querying and indexing moving objects has
been addressed by several researchers. As far as the theo-
retical background is concerned, Sistla et al. (1997) pro-
posed a data model and a query language. The data
model was called Moving Objects Spatiotemporal (MOST)
model and was used for representing moving objects,
whereas the query language was called Future Temporal
Logic. Wolfson et al. (1998) addressed uncertainty issues.
In this paper, they determined the frequency with which
the database has to update the locations of the moving
objects, in order to provide an error bound.

Several papers have appeared that base the indexing of
moving objects on structures which belong to the R-tree
family (Guttman, 1984). To begin with, Saltenis et al.
(2000) proposed an R*-tree like access method (the TPR-
tree) to index the current and future locations of moving
objects. This method is also capable of handling range que-
ries. Pfoser et al. (2000) proposed the STR-tree for trajec-
tory-based queries. This structure is based on the R-tree
as well and it is suitable for storing the history of moving
objects. Furthermore, the Historical R-tree was proposed
by Nascimento and Silva (1998), as an indexing method
for spatiotemporal data and range queries. Tao and Papa-
dias (2001b) presented the MV3R-tree. This consists of a
Multiversion R-tree to process timestamp queries, and a
3D R-tree to process long interval queries. Finally, Zhu
et al. (2002) proposed the octagon trees (OT-tree, O-tree)
an extension to the R*-tree, to index moving objects and
handle range queries.

All of these methods exploit the concept of Object Space
Hierarchy (the partitioning of the regions depends on the
data), which is followed by structures of the R-tree family.
The method proposed in this paper, the XBR-tree (Vassi-
lakopoulos and Manolopoulos, 1999; Raptopoulou et al.,
2004), and a previously proposed method, the PMR-tree
(Tayeb et al., 1998), are both based on the concept of
Embedding Space Hierarchy (the partitioning of the
regions follows a regular fashion) that is obeyed by quad-
tree like structures. To the authors knowledge, the only
paper, apart from (Raptopoulou et al., 2004), which han-
dles the problem of indexing moving points by such a
method is presented in Tayeb et al. (1998).

The above structures allow processing of range queries,
which extend to three-dimensions, namely, the time (1D)
and the space (2Ds) (e.g. which objects will appear in a spe-
cific area, within a given time interval). Such a structure
can also be used, to predict the future position of an object,
or to follow the history of the movement of an object.

An alternative perspective to tackle the issue of moving
objects is the use of transformations to index their trajecto-
ries. Kollios et al. (1999b) used the dual transformation in
order to improve the performance, during range queries.
Similarly, Chon et al. (2001) proposed the SV-model as
an alternative method of using a transformation.

The evolution of spatial data also finds applications in
multimedia environments. For example, Tzouramanis
et al. (1998, 2000, 2003) presented several spatiotemporal
access methods (like the OLQ-trees, Overlapping Linear
Quadtrees and the MVLQ-trees, Multiversion Linear
Quadtrees) for storing and retrieving evolving raster
images.

Hadjieleftheriou et al. (2002) suggested the Partially Per-
sistent (PPR-tree) as a method for indexing and querying
the history of moving objects. These moving objects, in

K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091 1081
their method, were regarded as having a changing extend
(e.g. shrinking). Furthermore, the object movement was
described by polynomial and not by linear functions and
the queries handled were range ones. Finally, other
researchers proposed the use of techniques rooted in com-
putational geometry (for example, in Agarwal et al., 2000
external Range Trees are presented and used for indexing
moving points).

The indexing scheme that we propose here, the XBR-
tree, is based on the quadtree, and more specifically on
the hierarchical and regular subdivision of space. The key
ideas behind its design were originally presented in Vassi-
lakopoulos and Manolopoulos (1999), for managing spa-
tial objects, in general. The XBR-trees constitute a family
of secondary memory structures, which are suitable for
storing and indexing spatial objects for various dimensions.
In two-dimensions, the resulting structure is an XBR
Quadtree, in three-dimensions an XBR Quadtree, and in
higher dimensions an XBR Hyper Quadtree. The main
characteristic of all of these structures is that they subdi-
vide space (in an hierarchical and regular fashion) into dis-
joint regions. These spatial access methods are fully
dynamic, while insertions are not complicated to program,
as they affect a single tree path. Moreover, the XBR-trees
are variable resolution structures. That is, the number of
the space subdivisions is not predefined, making these
structures suitable for very large amounts of data. Due to
the disjointness of the resulting regions, searches and other
queries in these trees, are processed very efficiently.

In this paper, extending the work presented in Rapto-
poulou et al. (2004), we use the XBR-tree in the context
of spatiotemporal databases. More specifically, we adapt
the XBR-tree to indexing of the trajectories of the moving
objects, in order to answer spatiotemporal queries related
to them. Moreover, we experimentally compare the result-
ing method (that could be used as the physical layer of a
Moving Object Database) with the only analogous (quad-
tree like) method that is based on the PMR quadtree,
and was presented by Tayeb et al. (1998) with MV3R-trees,
which are R-tree based structures. An important difference
between the two quadtree techniques is, that the indexing
part of the PMR resides in main memory, whereas the
indexing part of the XBR-tree is a multiway, disk-stored,
tree. However, the experiments conducted in the present
paper cannot be directly compared with the ones presented
in Tayeb et al. (1998), since they are performed under com-
pletely different conditions and assumptions (in Tayeb
et al. (1998) only the present status of the moving objects
is maintained, while in this paper, the trajectory of each
object, throughout time, is kept).

3. Monitoring of moving objects

We assume that time is discrete and that the location
and the velocity vector (direction of movement and speed)
of each object is updated only at predefined time points
that divide time in a number of time intervals. For each
time interval of the past (up to the current time point), a
line segment that expresses the movement of each object
during this interval is maintained. For the interval starting
at the current time point, a line segment that expresses the
initial location and velocity vector of each object is
maintained.

All these line segments make up a polyline that expresses
the trajectory of each object from the starting time point
to the point that follows the current time point. In partic-
ular, the last line segment expresses not the actual trajec-
tory, but the expected trajectory from the current time
point to the next one.

When time advances to the next time point, each object
notifies the system of its actual location and velocity vec-
tor. With this data, the last line segment of the polyline is
updated (meaning that, in general, the last line segment
must be deleted and reinserted to reflect the actual data)
and a new segment that expresses the expected trajectory
from the new current time point to the next one is
inserted. The resulting line segments are stored in the
(XBR, or PMR or MV3R) tree leaves and the informa-
tion guiding the search to the leaves is stored in the inter-
nal nodes.

This scheme aims at efficiently supporting range queries,
regarding the history of the object movement. For exam-
ple, to answer the query ‘‘Find all the objects that were
positioned inside a particular area, during a specific time
interval’’, we traverse the tree from the root, visiting only
the nodes which may contain object trajectories satisfying
the query. This is done by comparing the area coordinates
specified by the query with the coordinates specifying each
node.

Note that in Tao and Papadias (2001b) MV3R-trees
were used for answering the same type of queries, treating
objects as discretely moving: the discrete position of an
object was stored only when it changed. This approach
makes better use of the storage space, however queries
for time intervals with a left (right) end different to the pre-
determined time points return the positions of the moving
objects for the time point that follows (precedes) this inter-
val end. In contrast, in the approach followed in this paper,
the position of a moving object is linearly interpolated for
all times. Moreover, the use of the last line segment of the
trajectory of each object that corresponds to the future,
allows to answer predictive queries about the positions of
the moving objects in the near future.

Although, it is possible to handle both the x- and the
y-coordinate of each object (along with time) at the same
structure (with tree versions that can handle three-dimen-
sional data), following the approach of Tayeb et al.
(1998), we handle x- and y-coordinates independently with
XBR-trees and PMR-trees (unlike MV3R-trees). This
means that we keep one two-dimensional tree for the x-
coordinate, along time and another two-dimensional tree
for the y-coordinate, along time. We answer a query using
each of the trees and then combine the subanswers.
Accordingly, at each time point, we update both trees.

Fig. 1. Monitoring of moving objects.

Fig. 2. The creation of a PMR quadtree by the successive insertion of line
segments.

1082 K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091
Fig. 1 presents the polylines of four moving objects. The
x(y)-coordinate of the objects appears on the left (right)
part of the figure, as a function of time, from time point
t1 to time point t4. The rectangles on the left and right parts
of this figure, represent a range query for different x and y

ranges, respectively, but for the same t range. The result of
the range query as far as the x(y)-coordinate is concerned is
{O2,O3,O4} ({O1,O2,O4}). The intersection of the two
subresults is {O2,O4} (the objects that reside within both
the x and y ranges, during the query time range).

4. The PMR-tree

The PMR-tree (Hoel and Samet, 1991; Nelson and
Samet, 1986; Tayeb et al., 1998) is an indexing scheme
based on quadtrees, capable of indexing line segments.
The internal part of the tree consists of an ordinary region
quadtree (degree four tree) residing in main memory. The
leaf nodes of this quadtree point to the bucket pages that
hold the actual line segments and reside on disk. Each line
segment is stored in every bucket whose quadrant (region)
it crosses. A line segment can cross the region of a bucket
either fully or partially.

4.1. Insertion in the PMR-tree

A line segment is inserted in a PMR-tree by being regis-
tered in the buckets that correspond to the quadrants that
it crosses. During that procedure the capacity of each
bucket that is intersected by the line segment is checked
in order to verify whether that insertion causes it to exceed
the predefined bucket capacity. If the bucket capacity is
exceeded, then the bucket is split once and only once into
four equal quadrants (if the bucket has already been split,
then a chain of overflow buckets is maintained). Therefore,
the bucket capacity is a split threshold. When a bucket is
split, four new buckets are created, each one corresponding
to a single subquadrant of the quadrant of the original
bucket. After this procedure is performed, the old parent
bucket is no longer in use. On the contrary, the quadtree
pointer (in main memory) that used to point to that bucket
now points to a new quadtree node with four pointers that
point to the four newly created buckets.

In Fig. 2 an example of the creation of PMR quadtree
by the successive insertion of line segments is presented.
The bucket capacity is two (just for demonstration pur-
poses). Initially, a structure consisting of a leaf node point-
ing to an empty bucket exists. Fig. 2a–c shows the
subdivision of space and the buckets created as line seg-
ments are inserted, while the corresponding Fig. 2d–f
shows the quadtree part of the PRM tree residing in main
memory. The leaf nodes of the quadtree contain pointers to
the corresponding buckets (note that one leaf in Fig. 2f
does not contain any pointer, since no segments fall within
its area). Overflow buckets do not result from the insertions
of Fig. 2. Note that the shape of the PRM quadtree
depends on the order of insertion of the line segments.

4.2. Deletion in the PMR-tree

A line segment is deleted from a PMR quadtree by being
removed from all the buckets that correspond to quadrants
that it crosses. During this procedure, the capacity of the
bucket and its siblings are checked in order to discover if
the deletion causes the total number of lines segments in
them to be less than a split threshold. If the split threshold
is greater than the capacity of the bucket and its siblings,
then they merge and the merge procedure is then repeated
to the parent quadtree node.

5. The multi version 3D R-tree (MV3R-tree)

An MV3R-tree (Tao and Papadias, 2001b) was designed
as an access method for retrieving the locations of

Fig. 3. An MV3R-tree consisting of an MVR-tree (above) and an
auxiliary 3D R-tree (below).

K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091 1083
discretely moving objects. It consists of two different
structures:

• an MVR-tree (Multiversion R-tree) and
• a small auxiliary 3D R-tree built on the leaves of the

MVR-tree.

The former (latter) structure aims at improved
performance during processing of timestamp, or small win-
dow queries (large window) queries. An example of an
MV3R-tree is depicted in Fig. 3.

5.1. MVR-tree

The MVR-tree makes use of the ideas used in the multi-
version B-tree (MVB-tree) (Becker et al., 1996). MVB-trees
index the history and the present status of 1-d data (inser-
tions and deletions can only happen at the current time).
They represent several B-trees, each corresponding to a dif-
ferent data version. More precisely, in this tree each entry
has the form hkey, tstart, tend, pointeri. key represents the
key value of the data item (a node separator value), in case
of leaf nodes (internal nodes). pointer points to the actual
data item record (next level node) for leaf node entries
(internal node entries), while tstart and tend denote the life-
span interval of the data item, or node related to key.

An MVB-tree consists of a number of root nodes, each
of which corresponds to one interval of versions. A query
that searches in a specific version, can be answered by fol-
lowing the tree that is rooted by the root whose lifespan
contains the version. Each version of the tree is created
by either an insertion or a deletion of any data item. For
example, the ith update (insertion or deletion) creates the
ith version. Any entry is considered to be of version i, or
alive at timestamp i, if its lifespan contains i.

In order to group entries which are alive at the same
timestamp, each node except the roots is required to con-
tain either none or more than a minimum number of alive
entries for each timestamp (version) i. This is called the
weak version condition and it may be violated (weak version

underflow) due to deletions, leading to a merge procedure.
Insertions and deletions are similar to B-trees, except the
fact that overflows and underflows are treated differently.
A node overflow leads to a version split (a split according
to the version values stored in the node that creates a
new node). The new node created is required to have a
number of entries between a minimum and a maximum.
A number of entries above the maximum (below the mini-
mum) leads to a strong version overflow (underflow). A
strong version overflow is handled by a key split (a split
according to the key values stored in the node), while a
strong version underflow is handled by a merge.

The MVR-tree extends the ideas of the MVB-tree for
spatial data by representing multiple R-trees. The entries
are of the form hS, tstart, tend, pointeri, where S is the Min-
imum Bounding Rectangle (MBR) as defined in the R-tree
literature, and tstart, tend and pointer are defined as in the
MVB-tree. The MVR-tree also uses the weak version condi-
tion that was introduced in the MVB-tree.

In the MVR-tree, the insertion in a leaf and the insertion
in an internal node are handled differently, since in the
leaves the main aim is to avoid version splits. In such a
way, the redundancy and the total space are both reduced.
On the contrary, the internal nodes are allowed to retain
redundancy. The insertion in an internal node is similar
to that of MVB-trees. However, strong version underflows
are not considered. Moreover, version splits need to take
into account the spatial extends of the nodes. During the
insertion in a leaf node a more complicated procedure is
followed. In order to avoid version splits, the following
alternatives are tried (in order):

• General Key Split.
• Insertion after reinserting one of the entries of the node.
• Insertion of the object in another node.
• In case all the above fail, a version split occurs.

On the other hand, in case of a deletion of an object,
there are two different situations. If the deletion does not
cause an underflow, the procedure is similar to the one of
R*-trees. In case of an overflow, different algorithms are
followed for internal nodes and leaves. (again, with a view
to avoid redundancy in the leaves).

More details, regarding the MVR-tree appear in Tao
and Papadias (2001b).

5.2. 3D-tree

In a 3D R-tree, a third-dimension is added in the repre-
sentation of the space, namely the time. Instead of having
static objects represented in a two-dimensional space, these
objects are considered to change their position at some
timestamps. Considering that an object is not simply a
point but has a spatial extend bounded by a 2-d MBR
and that this MBR remains static for an interval of the time
axis, a 3-d box is formed that represents the objects� posi-
tion and extend during this static period. Whenever, the
object moves to another position, a new 3-d box is created
to model its new spatial characteristics. Thus, the model-
ling of the object�s movement consists of a sequence of dis-
tinct 3-d boxes. Moreover, within such a 3-d framework,

Fig. 4. An XBR-tree with one internal node and two leaves.

Table 1
Examples of encoding

x Code c Code d

1 1 1
2 01,0 010,0
3 01,1 010,1
4 001,00 011,00
5 001,01 011,01
6 001,10 011,10
7 001,11 011,11
8 0001,000 00100,000

1084 K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091
the timestamp (window) query can be modelled as a rectan-
gle vertical to the time axis (as a 3-d box).

The auxiliary 3D R-tree of the MV3R-tree is built on the
leaves of the MVR-tree (not the actual objects), in order to
be used for the interval queries. Whenever, a leaf node of
the MVR-tree is updated, changes are propagated to its
entry in the 3D R-tree.

5.3. Query processing in MV3R-trees

The MV3R-tree presents two possibilities for processing
queries: to use the auxiliary 3D R-tree for large window
queries, or to use the MVR-tree for timestamp, or small
window queries. Querying with the auxiliary 3D R-tree
and timestamp querying with the MVR-tree is similar to
querying an R-tree. During window query processing with
the MVR-tree an algorithm to avoid duplicate visits to the
same nodes via different parents is employed.

The two structures that constitute the MV3R-tree are
R-tree versions and are both characterized by significant
space overlap between their nodes. The overlap that was
already present in the R-tree in two-dimensions, in three-
dimensions is further increased. This is not the case for
the XBR-tree, where there exists no overlap between the
nodes. This constitutes an advantage of the XBR-tree over
the MV3R-tree, as far as the spatiotemporal queries (win-
dow and timestamp) are concerned.

6. The XBR-tree

Despite the fact that the XBR-tree is an indexing
method capable of being defined for various dimensions,
for the sake of presentation, in the sequel, we assume
two-dimensions. For two-dimensions the hierarchical
decomposition of the space is the same as the one in quad-
trees. More specifically, the space is subdivided into 4 equal
subquadrants, any of which may be further recursively sub-
divided into 4 subquadrants.

There are two types of nodes in an XBR-tree. The first
type is the internal nodes that constitute the index. The sec-
ond type is the leaves containing all the data items, namely
the line segments of the trajectories of the moving objects.
Both the leaves and the internal nodes reside on disk.

6.1. Internal nodes

In an internal node, a number of pairs of the form
haddress, pointeri are contained. The number of these pairs
is non-predefined because the addresses being used are of
variable size. An address expresses a child node region
and is paired with the pointer to this child node. Appar-
ently, both the size of an address and the total space occu-
pied by all pairs within a node must not exceed the node
size.

The variable length coding of addresses can be done in
various ways. In the following we present a simple, but
quite effective encoding method (for more complicated
methods, see (Elias, 1975; Zobel et al., 1992)). For one bin-
ary integer x initially we form code c that consists of two
parts. The first has blog2xc 0 s and one 1, while the second
is the number x� 2blog2xc in binary form, expressed with
blog2xc bits. In Table 1, in the second column the c encod-
ing of the numbers of the first column are depicted. The
code we finally use is d that encodes the number
blog2xc þ 1 with first part code c (with the two parts of c
concatenated) and with second part the same to that of
code c (in binary form the number x� 2blog2xc). In Table
1, in the third column the d encoding of the numbers of
the first column are depicted. Code d is larger than c for
most values x < 15, but beyond that, it is never worse.

The addresses in these pairs are used to represent certain
subquadrants that result from the repetitive subdivision of
the initial space. This is done by assigning the numbers 0, 1,
2 and 3 to NW, NE, SW and SW quadrants, respectively.
For example the address 1 is used to represent the NE
quadrant of the initial space, while the address 10 to repre-
sent the NW subquadrant of the NE quadrant of the initial
space.

This new indexing scheme, the XBR-tree, introduces a
new idea. That is, the region of a child is the subquadrant
specified by the address in its pair, minus the subquadrants
corresponding to all the previous pairs of the internal node
to which it belongs.

Fig. 4 presents an XBR-tree of two levels that consists of
only an internal node and two leaves. The *, whenever
present in the figures, is used to define the end of each
address. The address 2* of the left child in the internal node
denotes the SW quadrant of the initial space. On the con-
trary, the address * of the right child specifies the initial
space minus the SW quadrant.

For the sake of presentation, in the following we first
discuss the insertion (search) of a point datum in the
XBR-tree. When a search or an insertion of a point is per-
formed, descending the tree from the root specifies the

Fig. 5. An XBR-tree with two levels of internal nodes.

Fig. 6. The XBR-tree after splitting the rightmost leaf of the tree in Fig. 2.

K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091 1085
appropriate leaves and their regions. At the root, the region
that has to be checked is the whole space. When visiting an
internal node, we check in turn every contained pair. The
first pair with a subquadrant that contains the particular
coordinates is chosen and its pointer to the next level is
followed. By examining this way the pairs in each node,
the region under consideration is refined, since we intersect
it with the subquadrant of the chosen pair and subtract
the subquadrants of the pairs appearing to the left of this
pair.

In Fig. 5 a situation where insertions caused the splitting
of the left child of Fig. 4 is depicted. This splitting caused a
splitting of the internal node too and the creation of a new
root. Let us assume that we want to find the data element
in the tree, which is marked by x. In that case, we first visit
the root and check one by one its pairs. The first pair, with
the address 2*, has coordinates that contain the x and
therefore we follow its pointer. As we move to the next
level, the address 2* of the first pair of the internal node
denotes the SW subquadrant of the SW subquadrant of
the initial space. This is a region that does not contain x

and we choose to follow the pointer of the second pair.
Finally, we get to the leaf level and more specifically to
the leaf that contains the data element x.

The insertion, or search procedure of a line segment in
the XBR-tree is similar to the ones described above, with
one key difference: a line segment is stored in the XBR-tree
to all the leaves that it crosses. This means that during our
descend from the root to the leaf nodes level, in each inter-
nal node, we sequentially examine the haddress, pointeri
pairs and recursively visit every (and not simply the first)
child node with a region that is crossed by the specific line
segment. During this sequential examination of the pairs of
an internal node, we exclude from consideration the part of
the line segment that has already fallen within the region
of a child node (determined by a previous pair).

6.2. Leaf nodes

The leaves of the XBR-tree contain all the line segments
inserted in the tree. The total number of line segments in
each leaf node are restricted by a predefined capacity C
which cannot be exceeded. When after an insertion of a line
segment a specific leaf node overflows then it is split into
four equal subquadrants.
All the resulting subquadrants that contain any of the
lines segments of the old leaf node are inserted in the inter-
nal node. The subquadrants that contain more line seg-
ments than the predefined capacity, store these segments
in overflow pages. This means that unlike the use of
XBR-trees for point data where the tree is completely bal-
anced, in the case of line segments, the XBR-tree is com-
pletely height balanced only above the leaf nodes. In
practice, since the line segments are short (small in relation
to the spatial extent of a leaf node) and the capacity of a
leaf node is quite large, the possibility of overflow pages
is small (an overflowed leaf node containing many small
line segments has very high probability to be split in four
non-overflowed subquadrants) and overflow pages do not
have a significant effect on the performance of XBR-trees.

Let us assume that after repetitive insertions of line seg-
ments in the NW subquadrant of the right leaf of the tree in
Fig. 5, this leaf is split into four. Every subquadrant that
contains at least one line segment, is inserted in the inter-
nal node. Since, in this figure all the line segments are
inserted in only one region, the address 00* which specifies
this region is inserted in the internal node, before the
address *. The modifications of the tree after the split are
depicted in Fig. 6.

6.3. Splitting of internal nodes

Whenever an internal node overflows, then a split into
two occurs. This split is done in such a way, so that a good
balance between the regions of the two resulting nodes is
achieved. In order to decide, how this split will be per-
formed, we first construct a quadtree. The nodes of this
quadtree contain all the quadrants which exist in the inter-
nal node of the XBR-tree to be split. Such an internal node
is depicted in Fig. 7a and its regions in Fig. 7b.

The addresses comprising this internal node are all sub-
dividing its region. Each of these addresses appears in the
quadtree as a square node. If we follow the path to any
such node, then all the intermediate nodes are marked as
circles. It is possible, the square of an address to be the
ancestor of other squares. Moreover, the address * is used
to define the root.

The number assigned to each node represents the num-
ber of the squares that will be freed, if we remove the sub-
tree rooted by this node. This number can be easily

Fig. 7. Splitting of an internal XBR tree node.

1086 K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091
calculated by a bottom-up procedure. In Fig. 7c, the num-
ber 1 is assigned to all the external squares. These squares
are 100*, 101*, 00*, 01* and 02*. Furthermore, the sum of
the values of its children plus 1 is assigned to each internal
square. For instance, the square of address 0* is assigned
the number 4 (1 + 1 + 1 + 1 = 4).

To each circle we only assign the sum of the values of its
children. For example, to the second child of the root,
which is a circle, 2 is assigned, since it has only one child
which is a circle as well with value 2. After the construction
of the quadtree, we traverse it with a view to find a node
that is not the root, is a square and is assigned the largest
number of all squares in the tree.

If we observe the tree in Fig. 7c, we will see that the larg-
est number of squares is 4 and it corresponds to the left-
most root child, with address 0. The two nodes that
result from this procedure are presented in Fig. 7d and e.
The node of the father node will have to be changed to
include the address 0*.

6.3.1. Deletion

Deletion is used while updating the location and the
velocity vector of each object, at each time point. That is,
the last line segment of the trajectory of each moving object
is updated at the end of each time interval (in general, it
must be deleted and reinserted to reflect the actual data).
Instead of the old line segment, a new one is inserted, to
express the expected trajectory from the new current to
the next time point.

Since a line segment may cross the regions of several
XBR-tree leaf nodes, it has to be removed from all these
leaf nodes. Following a procedure similar to the insertion
of a line segment, we start from the root and visit each
internal node. In each internal node, we sequentially exam-
ine the haddress, pointeri pairs and recursively visit child
nodes with regions that are crossed by the specific line seg-
ment. This way, we determine all the leaves that are crossed
by the line segment (the line segment must be deleted from
each of these leaves).

Each leaf node cannot contain less than x · C line seg-
ments, where x is chosen to define the fewer line segments
allowed in a leaf node (x < 0.5). If a leaf node, from which
we remove the line segment, underflows (if it contains less
than x · C line segments), then a merge occurs. First, the
haddress, pointeri pair corresponding to this leaf that
resides in its parent internal node is deleted. Then, the rest
line segments, of the leaf node are added to the rightmost
child of the parent internal node (the rightmost brother
of the leaf node).

If this child overflows, then it is split (as described in the
‘‘Leaf Nodes’’ subsection) and the split may propagate to
higher levels (hosting internal nodes). Since, the internal
nodes do not have a minimum occupancy threshold, the
merge process is not applied to the internal nodes. A more
sophisticated deletion process that considers alternative
merging of an underflowed leaf node with other brother
leaves, is currently under development. In this merging,
any of the sibling leaves can participate, apart from its
rightmost brother. We are also considering the implemen-
tation of merging, of the internal nodes.

7. Experimentation

The trees were implemented and the experiments were
executed on a Pentium PC of 1600 MHz CPU with
1024 K of main memory. The page size was set to 4 K
and the resulting leaf node size was 204 line segments. After
experimentation, we came to the conclusion that the use of
a buffer of 100 K with least-recently-used page replacement
has shown better performance in comparison to other
choices.

At time unit 0, an initial location and velocity vector is
assigned to each moving object randomly (based on a uni-
form distribution). The velocity ranges between 0 and
25 m/s. The movement characteristics for each moving
object remain constant during each time interval. Since,
we consider that in real life applications all moving objects
change their position and their velocity vector really often,
this is reflected in the experimentation as well. That is, dur-
ing the execution of the updates (at each time point), all the
moving objects randomly change their movement charac-
teristics (position, velocity vector).

There are two different sets of experiments that have
been carried out. In the first set of experiments (Figs. 8–
19), we considered 1000 time units being separated into
100 equal time intervals, each one of 10 time units. In the
second set of experiments (Figs. 20 and 21), however, the
initial 1000 time units are not separated into 100 time inter-
vals but into 10, each one of 100 time units. Several cardi-
nalities of the set of moving objects N are used for the
experimentation. Furthermore, the spatiotemporal queries
carried out are of two types. In the first type of experiments
the query under consideration is a window one, whereas in
the second type of experiments it is a timestamp one. The
spatial (temporal) range of both the two types of queries
takes values 0.1, 0.01 and 0.001 of the total space (of the
total time range considered). We also presumed that every
10 time units one window or one timestamp query occurs.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for window queries with range 0.1

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 8. Disk accesses for window queries with range 0.1.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for window queries with range 0.01

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 9. Disk accesses for window queries with range 0.01.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for window queries with range 0.001

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 10. Disk accesses for window queries with range 0.001.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
qu

er
y

(s
ec

on
ds

)

Number of query

Time per window query with range 0.1 (Number of objects 800)

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 11. Elapsed time for window queries with range 0.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
qu

er
y

(s
ec

on
ds

)

Number of query

Time per window query with range 0.01 (Number of objects 800)

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 12. Elapsed time for window queries with range 0.01.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
qu

er
y

(s
ec

on
ds

)

Number of query

Time per window query with range 0.001 (Number of objects 800)

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 13. Elapsed time for window queries with range 0.001.

K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091 1087
During the experiments we counted the number of node
accesses and the execution time cost during the execution
of the window and the timestamp queries.

The first three experiments presented in Figs. 8–10
study the number of the disk accesses. Namely, we
counted the number of the disk accesses that were
required for the three trees (PMR-tree, XBR-tree and
MV3R-tree) during the execution of the window queries.
In each experiment the varying parameters are the number
of the objects and the size of the window query. The

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for timestamp queries with range 0.1

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 14. Disk accesses for timestamp queries with range 0.1.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for timestamp queries with range 0.01

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 15. Disk accesses for timestamp queries with range 0.01.

 0

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for timestamp queries with range 0.001

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 16. Disk accesses for timestamp queries with range 0.001.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
qu

er
y

(s
ec

on
ds

)

Number of query

Time per timestamp query with range 0.1 (Number of objects 800)

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 17. Elapsed time for timestamp queries with range 0.1.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
qu

er
y

(s
ec

on
ds

)

Number of query

Time per timestamp query with range 0.01 (Number of objects 800)

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 18. Elapsed time for timestamp queries with range 0.01.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
qu

er
y

(s
ec

on
ds

)

Number of query

Time per timestamp query with range 0.001 (Number of objects 800)

MV3R-Tree
XBR-Tree
PMR-Tree

Fig. 19. Elapsed time for timestamp queries with range 0.001.

1088 K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091
objects vary from 100 to 900, whereas the query size takes
values 0.1, 0.01 and 0.001. In all the three figures, the disk
accesses made by the XBR-tree are significantly fewer,
than those of both the MV3R-tree and the PMR-tree.
Moreover, in Figs. 8 and 9 the PMR-tree appears to have
fewer disk accesses than the MV3R-tree, while the situa-
tion is the opposite in Fig. 10.

The next three experiments study the time elapsed dur-
ing each query execution (execution time cost). For each
tree, we performed 10 queries, each one during a constant

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for window queries with range 0.1

MV3R-Tree
XBR-Tree

Fig. 20. Disk accesses for window queries.

 50

 100

 150

 200

 250

 300

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Number of objects

Number of disk accesses for timestamp queries with range 0.1

MV3R-Tree
XBR-Tree

Fig. 21. Disk accesses for timestamp queries.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 d

is
k

pa
ge

s

Number of objects

Number of disk pages

MV3R-Tree
PMR-Tree
XBR-Tree

Fig. 22. Number of disk pages occupied by the three structures (number
of objects ranges from 100 to 900).

K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091 1089
time interval. The parameters in these experiments are the
number of the query from 1 to 10, the query range that
takes values 0.1, 0.01 and 0.001. The number of the
objects is 800. Since in each experiment there are 10 que-
ries performed, in each figure there are 10 numbers corre-
sponding to the elapsed time. In all the three figures the
XBR-tree outperforms the other two, namely the PMR-
tree and the MV3R-tree. More precisely, in each query
execution, the time spent by it is less than the time spent
by the two other trees. Furthermore, unlike the disk
accesses, the time spent by the MV3R-tree is less than
the PMR-tree, in each query (with the difference growing
in 13).

Figs. 14–16 are analogous to Figs. 8–10. That is, they all
present the same sorts of results under the same assump-
tions. The only difference between them is that Figs. 14–
16 implement timestamp queries, whereas Figs. 8–10 win-
dow queries. In all the figures, the MV3R-tree appears to
have made the most disk accesses than the other trees,
the PMR-tree and the XBR-tree. On the other hand, the
tree with the fewest disk accesses is the XBR-tree.

The next experiment is presented in Figs. 17–19. These
figures depict the time elapsed during the execution of ten
different timestamp queries. The varying parameter is the
number of the query, which takes values from 1 to 10.
Moreover, the range of the query is set to 0.1, 0.01 and
0.001 in Figs. 17–19, respectively. The number of the mov-
ing objects is 800. By the results presented, we can conclude
that the XBR-tree spends less time, than the other two trees
(although the PMR quadtree follows very close). The most
time, than all the trees, is consumed by the MV3R-tree.

In Figs. 20 and 21 the XBR-tree and the MV3R-tree are
used for window and timestamp queries. First, in Fig. 20
the number of the objects varies from 1000 to 10,000 and
the range of the window query is set to 0.1. This figure
depicts the number of the disk accesses needed by the
two trees. Similarly, in Fig. 21, the number of the objects
varies from 1000 to 10,000 and the range of the timestamp
query is set to 0.1. This figure, also presents the number of
the disk accesses, during the execution of the timestamp
queries. In this set of experiments, the XBR-tree outper-
forms the MV3R-tree. The reader may wonder, why in
Figs. 20 and 21 we have not presented the results for the
PMR quadtree, as well. The answer to this is that for these
cardinalities of moving objects the time demanded by the
execution of the PMR tree was excessive for gathering
the corresponding results.

In an attempt to explain the results of all the above
experiments, we can mention that the XBR-tree is a very
compact tree, due to the compressed representation of
addresses. Therefore, it has a smaller height, and it occu-
pies fewer nodes than the PMR-tree and the MV3R-tree.
In Fig. 22 the number of pages occupied by the three struc-
tures is presented, when the number of objects ranges from
100 to 900, while in Fig. 23 the number of pages occupied
by the XBR and MV3R trees is presented, when the num-
ber of objects ranges from 1000 to 10,000 (PMR trees have
not been included in this figure, since no query processing
results have been presented for these trees for more than
900 objects). It is clear that XBR-trees occupy significantly
smaller disk space than the other two structures.

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 d

is
k

pa
ge

s

Number of objects

Number of disk pages

MV3R-Tree
XBR-Tree

Fig. 23. Number of disk pages occupied by XBR and MV3R trees
(number of objects ranges from 1000 to 10,000).

1090 K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091
Moreover, (like the PMR quadtree, but unlike the
MV3R tree) there is no spatial overlapping between nodes
and thus, no revisiting of the same nodes during queries
execution. As a result of the above two properties, the disk
accesses made during the experiments are significantly
fewer, since fewer nodes are accessed, in each query
execution (for both the two types of queries, the timestamp
and window queries) and the XBR-tree in all the above
cases outperforms the other two (the PMR-tree and the
MV3R-tree).

8. Conclusion and future work

Since, there exist a great variety of applications that deal
with moving objects, their efficient representation, handling
and querying are of great interest. Some of the most prom-
inent of these application domains are Mobile Computing
and Geographic Information Systems.

In Raptopoulou et al. (2004) the performance of the
XBR-tree has been compared to the performance of the
PMR-tree for answering window (range) queries. In this
paper, we have extended the work of Raptopoulou et al.
(2004) by more detailed experimentation and by compar-
ing the XBR-tree with not only the PMR-tree (another
quadtree based method), but with the MV3R-tree also
(an R-tree based method). The experimentation is based
on artificial data (objects that move randomly and change
their movement characteristics at each time point) and
studies both query processing efficiency, as well as, disk
space utilization. Not only window queries, but timestamp
queries are considered, as well (unlike Raptopoulou et al.,
2004), for several cardinalities of moving objects and sizes
of query area. In all the experimentations conducted, it is
evident that the XBR-tree outperforms both the PMR-tree
and the MV3R-tree: the XBR-tree is clearly more efficient
than the other two tree structures in terms of the disk
accesses performed and the execution time needed for pro-
cessing both window and timestamp queries, and at the
same time, occupies less disk pages.
Our future research plans include the following:

• The implementation of different types of spatiotemporal
queries, besides the timestamp and window ones. Such
queries include nearest neighbor queries (‘‘Find the k

nearest neighbors of a moving object, during each time
interval of its movement’’) and spatiotemporal joins
(e.g. ‘‘From all the airplanes moving in the sky, indicate
the ones that intersect clouds while they move’’).

• Since for our purposes we have used two different two-
dimensional XBR-trees, one for the axes (x, t) and one
for the axes (y, t), we plan to examine the combination
of these two trees in one of three-dimensions.

• In this paper, we have modelled the movement of objects
by polylines, unlike (Tao and Papadias, 2001b) where
the discrete positions of the objects are stored. We plan
to follow the approach of Tao and Papadias (2001b)
also, using an XBR tree version for point data, and com-
pare the performance of the different structures under
this alternative modeling of movement.

• In this paper, we have only considered the historic
movement of the objects. An evident future extension
is to extend our techniques and algorithms for handling
of the future movement of the objects, as well (taking
advantage of the last segment of each object trajectory
that corresponds to the near future, along with the use
of other techniques).

References

Agarwal, P.K., Arge, L., Erickson, J., 2000. Indexing moving points. In:
Proceedings of the 19th ACM Symposium on Principles of Database
Systems (PODS), Dallas, TX, pp. 175–186.

Becker, B., Gshwind, S., Ohler, T., Seeger, B., Widmayer, P., 1996. An
asymptotically optimal multiversion B-tree. The VLDB Journal 5 (4),
264–275.

Chon, H.D., Agarwal, D., Abbadi, A.E., 2001. Storage and retrieval of
moving objects. In: Proceedings of the 2nd International Conference
on Mobile Data Management (MDM), Hong-Kong, China, pp. 173–
184.

Elias, P., 1975. Universal codeword sets and representations of the
integers. IEEE Transactions on Information Theory 21, 194–203.

Guttman, A., 1984. R-trees: a dynamic index structure for spatial
searching. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Boston, MA, pp. 47–57.

Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopoulos, D., 2002.
Efficient indexing of spatiotemporal objects. In: Proceedings of the 8th
International Conference on Extending Database Technology
(EDTB), Prague, Czech Republic, pp. 251–268.

Hoel, E.G., Samet, H., 1991. Efficient processing of spatial queries in line
segment databases. In: Proceedings of the 2nd International Sympo-
sium on Spatial Databases (SSD), Zurich, Switzerland, pp. 237–256.

Ishikawa, Y., Kitagawa, H., Kawashima, T., 2002. Continual neighbor-
hood tracking for moving objects using adaptive distances. In:
Proceedings of the International Database Engineering and Applica-
tions Symposium (IDEAS), Edmonton, Alberta, pp. 54–63.

Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E., Aref, W.G., 2002.
Efficient evaluation of continuous range queries on moving objects. In:
Proceedings of the 13th International Conference on Database and
Expert Systems Applications (DEXA), Aix-en-Provence, France, pp.
731–740.

K. Raptopoulou et al. / The Journal of Systems and Software 79 (2006) 1079–1091 1091
Kollios, G., Gounopoulos, D., Tsotras, V.J., 1999a. Nearest neighbor
queries in a mobile environment. In: Proceedings of the International
Workshop on Spatio-temporal Database Management (STDBM), pp.
119–134.

Kollios, G., Gunopoulos, D., Tsotras, V., 1999b. On Indexing mobile
objects. In: Proceedings of the 18th ACM Symposium on Principles of
Database Systems (PODS), Philadelphia, PA, pp. 261–272.

Kumar, A., Tsotras, V.J., Faloutsos, C., 1998. Designing access methods
for bitemporal databases. IEEE Transaction on Knowledge and Data
Engineering 10 (1), 1–20.

Lazaridis, I., Porkaew, I., Mehrotra, S., 2002. Dynamic queries over
mobile objects. In: Proceedings of the 8th International Conference on
Extending Database Technology (EDTB), Prague, Czech Republic,
pp. 269–286.

Lomet, D., Salsberg, B., 1989. Access methods for multiversion data. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, Portland, OR, pp. 315–324.

Moreira, J., Ribeiro, C., Abdessalem, T., 2000. Query operations for
moving objects database systems. In: Proceedings of the 8th ACM
International Symposium on Advances in Geographic Information
Systems (GIS), Atlanda, GA, pp. 108–114.

Nascimento, M.A., Silva, J.R.O., 1998. Towards historical R-trees. In:
Proceedings of the 13th ACM Symposium on Applied Computing
(SAC), Atlanda, GA, pp. 235–240.

Nelson, R.C., Samet, H., 1986. A consistent hierarchical representation
for vector data. Computer Graphics 20 (4), 197–206.

Pfoser, D., Jensen, C.S., Theodoridis, Y., 2000. Novel approaches to the
indexing of moving object trajectories. In: Proceedings of the 26th
International Conference on Very Large Data Bases (VLDB), Cairo,
Egypt, pp. 395–406.

Procopiuc, C.M., Agarwal, P.K., Har-Peled, S., 2002. STAR-tree: an
efficient self-adjusting index for moving objects. In: Proceedings of the
4th Workshop on Algorithm Engineering and Experiments (ALE-
NEX), San Fransisco, CA, pp. 178–193.

Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y., 2004.
Towards quadtree-based moving objects databases. In: Proceedings
of the 8th East European Conference on Advances in Databases and
Information Systems (ADBIS), Budapest, Hungary, pp. 230–245.

Saltenis, S., Jensen, C.S., Leutenegger, S., Lopez, M., 2000. Indexing the
positions of continuously moving objects. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Dallas,
TX, pp. 331–342.

Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S., 1997. Modeling and
querying moving objects. In: Proceedings of the 13th IEEE Interna-
tional Conference on Data Engineering (ICDE), Birmingham, UK, pp.
422–432.

Tao, Y., Papadias, D., 2001a. Efficient historical R-trees. In: Proceedings
of the 13th International Conference on Scientific and Statistical
Database Management (SSDBM), Fairfax, VA, pp. 223–232.

Tao, Y., Papadias, D., 2001b. MV3R-tree—a spatio-temporal access
method for timestamp and interval queries. In: Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB), Roma,
Italy, pp. 431–440.

Tayeb, J., Ulusoy, O., Wolfson, O., 1998. A quadtree based dynamic
attribute indexing method. The Computer Journal 41 (3), 185–200.

Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y., 1998.
Overlapping linear quadtrees: a spatiotemporal indexing method.
In: Proceedings of the 6th ACM International Symposium on
Advances in Geographic Information Systems (GIS), Bethesda, MD,
pp. 1–7.

Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y., 2000. Multi-
version linear quadtrees for spatiotemporal data. In: Proceedings of
the 4th East-European Conference on Advances in Databases and
Information Systems (ADBIS-DASFAA), Prague, Czech Republic,
pp. 279–292.

Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y., 2003. Over-
lapping linear quadtrees and spatio-temporal query processing. The
Computer Journal 43 (4), 325–343.

Vassilakopoulos, M., Manolopoulos, Y., 1999. External balanced regular
(x-BR) trees: new structures for very large spatial databases. In:
Proceeding 7th Panhellenic Conference on Informatics, Ioannina,
Greece, pp. III.61–III.68.

Wolfson, O., Xu, B., Chamberlain, S., Jiang, L., 1998. Moving objects
databases: issues and solutions. In: Proceedings of the 10th Interna-
tional Conference on Scientific and Statistical Database Management
(SSDBM), Capri, Italy, pp. 111–122.

Xu, X., Han, J., Lu, W., 1990. RT-tree: an improved R-tree index
structure for spatio-temporal databases. In: Proceedings of the 4th
International Symposium on Spatial Data Handling (SSDH), Zurich,
Switzerland, pp. 1040–1049.

Zhu, H., Su, J., Ibarra, O.H., 2002. Trajectory queries and octagons in
moving object databases. In: Proceedings of the 11th ACM Interna-
tional Conference on Information and Knowledge Management
(CIKM), McLean, VA, pp. 413–421.

Zobel, J., Moffat, A., Sacks-Davis, R., 1992. An efficient indexing
technique for full-text database systems. In: Proceedings of the 18th
International Conference on Very Large Data Bases (VLDB),
Vancouver, British Columbia, pp. 352–362.

	On past-time indexing of moving objects
	Introduction
	Related work
	Monitoring of moving objects
	The PMR-tree
	Insertion in the PMR-tree
	Deletion in the PMR-tree

	The multi version 3D R-tree (MV3R-tree)
	MVR-tree
	3D-tree
	Query processing in MV3R-trees

	The XBR-tree
	Internal nodes
	Leaf nodes
	Splitting of internal nodes
	Deletion

	Experimentation
	Conclusion and future work
	References

