
The Journal of Systems and Software 132 (2017) 165–185

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Efficient query processing on large spatial databases: A performance

study

George Roumelis a , Michael Vassilakopoulos b , ∗, Antonio Corral c , Yannis Manolopoulos d

a Department of Informatics, Aristotle University, Thessaloniki, Greece
b Department of Electrical & Computer Engineering, University of Thessaly, Volos, Greece
c Department on Informatics, University of Almeria, Almeria, Spain
d Department of Informatics, Aristotle University, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 5 October 2016

Revised 6 January 2017

Accepted 5 July 2017

Available online 6 July 2017

Keywords:

Spatial databases

Spatial access methods

Quadtrees

xBR-trees

R-trees

Query processing

Performance evaluation

a b s t r a c t

Processing of spatial queries has been studied extensively in the literature. In most cases, it is accom-

plished by indexing spatial data using spatial access methods. Spatial indexes, such as those based on

the Quadtree, are important in spatial databases for efficient execution of queries involving spatial con-

straints and objects. In this paper, we study a recent balanced disk-based index structure for point data,

called xBR + -tree, that belongs to the Quadtree family and hierarchically decomposes space in a regular

manner. For the most common spatial queries, like Point Location, Window, Distance Range, Nearest Neigh-

bor and Distance-based Join , the R-tree family is a very popular choice of spatial index, due to its excellent

query performance. For this reason, we compare the performance of the xBR + -tree with respect to the

R ∗-tree and the R + -tree for tree building and processing the most studied spatial queries. To perform this

comparison, we utilize existing algorithms and present new ones. We demonstrate through extensive ex-

perimental performance results (I/O efficiency and execution time), based on medium and large real and

synthetic datasets, that the xBR + -tree is a big winner in execution time in all cases and a winner in I/O

in most cases.

© 2017 Elsevier Inc. All rights reserved.

1

i

a

t

M

s

K

d

s

e

a

D

a

a

m

(

f

i

M

r

i

t

t

c

w

t

(

a

p

s

M

h

0

. Introduction

Due to the demanding need for efficient spatial access methods

n many spatial database applications (Rigaux et al., 20 0 0; Shekhar

nd Chawla, 2003), significant research effort has been devoted to

he development of new spatial index structures (Samet, 1990b;

anolopoulos et al., 2006; Samet, 2007). However, as shown in

everal previous comparative studies (Hoel and Samet, 1992; 1995;

im and Patel, 2010; Kanth et al., 2002), there is no unique in-

ex structure that works efficiently, in all cases. These performance

tudies were executed taking into account a great variety of mod-

rn applications, where a variety of Spatial Queries arise.

The most common spatial queries where points are involved

re Point Location, Window, Distance Range, Nearest Neighbor and

istance-based Join Queries. Moreover, such queries have been

lso used as the basis of many complex operations in advanced

pplications (e.g. multimedia databases (Faloutsos et al., 1994),

edical images databases (Korn et al., 1996), geometric databases
∗ Corresponding author.

E-mail addresses: groumeli@csd.auth.gr (G. Roumelis), mvasilako@uth.gr

(M. Vassilakopoulos), acorral@ual.es (A. Corral), manolopo@csd.auth.gr

(Y. Manolopoulos).

l

(

t

o

t

ttp://dx.doi.org/10.1016/j.jss.2017.07.005

164-1212/© 2017 Elsevier Inc. All rights reserved.
 Mehrotra and Gary, 1993), CAD (Jagadish, 1991), Geographical In-

ormation Systems (GIS) (Samet, 1990a), etc).

Hierarchical index structures are useful because of their abil-

ty to focus on the interesting subsets of data (Samet, 1990b;

anolopoulos et al., 2006). This focusing results in an efficient

epresentation and improved execution times on query process-

ng and is, thus, particularly useful for performing spatial opera-

ions (Samet, 2007). Important advantages of these structures are

heir conceptual clarity and their great capability for query pro-

essing. The Quadtree is a well known hierarchical index structure,

hich has been applied successfully on GIS, image processing, spa-

ial information analysis, computer graphics, digital databases, etc.

 Samet, 1990a; 2007). It was introduced in the early 1970s (Finkel

nd Bentley, 1974), it is based on the principle of recursive decom-

osition of space and has become an important access method for

patial data (Gaede and Günther, 1998).

The External Balanced Regular (xBR)-tree (Vassilakopoulos and

anolopoulos, 20 0 0) is a secondary memory structure that be-

ongs to the Quadtree family (widely used in GIS applications

 Samet, 1990a)), which is suitable for storing and indexing mul-

idimensional points (and, in extended versions, line segments,

r other spatial objects). We utilize an improved version of xBR-

ree, called xBR

+ -tree (Roumelis et al., 2015), which is also a disk-

http://dx.doi.org/10.1016/j.jss.2017.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.07.005&domain=pdf
mailto:groumeli@csd.auth.gr
mailto:mvasilako@uth.gr
mailto:acorral@ual.es
mailto:manolopo@csd.auth.gr
http://dx.doi.org/10.1016/j.jss.2017.07.005

166 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

2

w

r

a

(

s

(

S

c

r

t

p

b

r

Q

s

t

x

t

e

B

t

a

(

o

(

T

s

f

o

G

x

t

t

t

t

t

l

i

o

(

(

e

o

r

Q

I

p

t

Q

s

e

t

a

o

t

a

p

(

b
resident structure. The xBR

+ -tree improves the xBR-tree in the

node structure and in the splitting process. The node structure of

the xBR

+ -tree stores information which makes query processing

more efficient.

In this paper, we compare the xBR

+ -tree with popular R-tree

indexes, regarding storage requirements, time needed for the tree

construction and spatial query performances. The family of R-trees

has been populated with lots of assorted variations. Each variation

tries to optimize a particular aspect (splitting, deletion, etc). How-

ever, we concentrate on the R

∗-tree (Beckmann et al., 1990), be-

cause it is the most commonly employed spatial indexing structure in

the spatial database community (Manolopoulos et al., 2006; Shekhar

and Chawla, 2003), and to the R

+ -tree, because it is an index struc-

ture based on disjoint decomposition of space like the xBR + -tree.

This paper substantially extends our previous work Roumelis

et al. (2011b) (where xBR-trees were compared to R

∗-trees using

single dataset queries and datasets of medium size and it was

shown that the two structures are comparable) and Roumelis et al.

(2015) (where a new tree, the xBR

+ -tree, was presented and com-

pared to the xBR-tree using single dataset queries and datasets of

medium size and it was shown that the two structures are com-

parable in building, while the xBR

+ -tree is a winner in query pro-

cessing) and its contributions include the following:

• The presentation of a new alternative Depth-First (DF) algo-

rithm for Distance Range Queries (DRQs), K Nearest Neighbor

Queries (KNNQs) and Constrained K Nearest Neighbor Queries

(CKNNQs), utilizing a minimum binary heap (minHeap) instead

of sorting on the xBR

+ -tree, R

∗-tree and R

+ -tree,
• The presentation of the first algorithms for K Closest Pair

Queries (KCPQs), εDistance Join Queries (εDJQs) on the xBR

+ -
tree, and presentation of new alternative DF algorithms for

KCPQs and εDJQs , utilizing a minHeap instead of sorting, on R

∗-

trees and R

+ -trees,
• A detailed performance comparison (I/O and execution time)

of xBR

+ -trees (non-overlapping trees of the quadtree family)

against R

+ -trees (non-overlapping trees of the R-tree family)

and R

∗-trees (industry standard belonging to the R-tree family)

on tree building, single dataset queries (Point Location Queries

- PLQs -, Window Queries - WQs -, DRQs, KNNQs and CKNNQs) and

dual dataset (distance-based join) queries (KCPQs , εDJQs). Note

that the performance study was conducted on medium and

large spatial (real and synthetic) datasets.

Note that, in this paper we utilize large spatial datasets (where

the quantifier “large” designates several tens of millions of spatial

objects) since we believe that such datasets can be effectively pro-

cessed in centralized systems, if efficient methods are used. Even

larger (huge) datasets would require the utilization of methods on

parallel and distributed environments (e.g. http://spatialhadoop.cs.

umn.edu) .

This paper is organized as follows. In Section 2 we review re-

lated work on comparing spatial access methods, regarding spa-

tial query processing and provide the motivation for this work. In

Section 3 , we briefly review the main characteristics of the R-trees

(highlighting the R

∗-tree and R

+ -tree). In Section 4 , we describe the

xBR

+ -tree. In Section 5 , we present the algorithms for processing

spatial queries, where one or two datasets are involved, over R-

trees and the xBR

+ -tree. In Section 6 , we show results of the exten-

sive experimentation performed, using real and synthetic datasets,

for comparing the performance of the two R-trees index structures

(R

∗-tree and R

+ -tree) and the xBR

+ -tree. Finally, in Section 7 we

provide the conclusions arising from this research work and dis-

cuss related future work directions.
. Related work and motivation

The Quadtree belongs to a class of hierarchical data structures

hose common property is that they are based on the principle of

ecursive regular decomposition of space . These structures are char-

cterized as space-driven access methods according to Rigaux et al.

20 0 0) . It is most often used to partition a 2d space by recursively

ubdividing it into four quadrants or regions: NW (North West), NE

North East), SW (South West) and SE (South East). According to

amet (1984) , Quadtrees can be classified by following three prin-

iples: (1) the type of data that they are used to represent (points,

egions, curves, surfaces and volumes), (2) the principle guiding

he decomposition process, and (3) the resolution (variable or not).

In order to represent Quadtrees, there are two approaches: the

ointer-based and pointerless approaches. In general, the pointer-

ased Quadtree representation is one of the most natural ways to

epresent a Quadtree structure. In this method, every node of the

uadtree will be represented as a record with pointers to its four

ons. Sometimes, in order to process specific operations, an ex-

ra pointer from a node to its father could also be included. The

BR

+ -tree belongs to the category of pointer-based Quadtrees . On

he other hand, the pointerless representation of a Quadtree defines

ach node of the tree as a unique locational code (Samet, 1990a).

y using the regular subdivision of space, it is possible to compute

he locational code of each node in the tree. The linear Quadtree is

n example of pointerless Quadtree. We refer the reader to Samet

1990a, 1990b, 2007) and Yin et al. (2011) for further details.

The xBR

+ -tree (Roumelis et al., 2015) belongs to the category

f pointer-based Quadtrees and it is an extension of the xBR-tree

 Vassilakopoulos and Manolopoulos, 20 0 0; Roumelis et al., 2011b).

he xBR

+ -tree has similarities with other well-known multidimen-

ional access methods (Gaede and Günther, 1998). For example, the

orm of nodes in xBR

+ -trees has similarities to the form of nodes

f Generalized BD-trees (GBD-trees) (Ohsawa and Sakauchi, 1990).

BD-trees are based on kd-tree-like decomposition of space, while

BR

+ -trees on Quadtree-like decomposition. Moreover, the split-

ing of internal nodes in xBR

+ -trees is handled in a more sophis-

icated way than in GBD-trees. The xBR

+ -tree has also similarities

o the hB-tree (Lomet and Salzberg, 1990), where space is also par-

itioned according to kd-trees (unlike the xBR

+ -tree, where parti-

ioning follows the data space hierarchy principle) and holey brick -

ike regions are created. Unlike the hB-tree, in the xBR

+ -tree, each

nternal node has only one pointer to a child node and the entries

f an internal node are region-pointer pairs and not tree structures

kd-trees), as in the hB-tree. Finally, we refer the reader to Samet

1990a, 1990b) , Gaede and Günther (1998) , Samet (2007) and Yin

t al. (2011) for further details on multidimensional access meth-

ds.

Regarding the performance comparison of spatial query algo-

ithms using the most cited spatial access methods (R-trees and

uadtrees), several previous research efforts have been published.

n Hoel and Samet (1992) a qualitative comparative study was

erformed taking into account three popular spatial indexes (R

∗-

ree (Beckmann et al., 1990), R

+ -tree (Sellis et al., 1987) and PMR

uadtree (Nelson and Samet, 1986)), in the context of processing

patial queries (point query, nearest line segment, window query,

tc.) in large line segment databases. The conclusion reached was

hat the R

+ -tree and PMR Quadtree were the best when the oper-

tions involve search, since they result in a disjoint decomposition

f space. On the other hand, the R

∗-tree was more compact than

he R

+ -tree (and the PMR Quadtree) but its performance was not

s good as the R

+ -tree, due to the non-disjointness of the decom-

osition induced by it.

In Hoel and Samet (1995) , various R-tree variants (R-tree

 Guttman, 1984), R

∗-tree and R

+ -tree) and the PMR Quadtree have

een compared for the traditional spatial overlap join operation.

http://spatialhadoop.cs.umn.edu)

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 167

T

R

t

d

p

p

R

c

o

f

t

p

(

i

e

i

R

i

d

s

e

i

t

a

f

E

M

R

f

i

s

i

b

S

t

m

s

b

t

a

J

t

i

w

f

e

e

b

o

(

f

J

s

o

N

(

B

c

q

w

b

i

R

n

fi

t

L

K

t

p

x

s

N

(

p

d

d

i

t

t

e

p

p

t

l

n

t

a

t

a

3

s

b

c

a

k

S

(

2

1 http://spatialhadoop.cs.umn.edu/datasets.html .
2 http://astronomy.mnstate.edu/cabanela/MAPS _ Database/ .
hey showed that the R

+ -tree and PMR Quadtree outperform the

-tree and R

∗-tree using 2d GIS spatial data. That is, with respect

o the overlap join, the spatial data structures based on a disjoint

ecomposition of space (like the R

+ -tree and PMR Quadtree) out-

erformed spatial data structures based on a non-disjoint decom-

osition such as the numerous variants of the R-tree including the

∗-tree. Moreover, as the size of the output of the spatial join in-

reases with respect to the larger of the two inputs, methods based

n a disjoint regular decomposition (like the PMR Quadtree) per-

ormed significantly better. Due to the good performance results of

he R

+ -tree for overlap join, in this research work, we have com-

ared this structure to the xBR

+ -tree for spatial queries.

Another interesting comparison was presented in Kanth et al.

2002) , where the R-tree and the Quadtree have been contrasted

n the context of Oracle Spatial, using a variety of range and Near-

st Neighbor (NN) queries on spatial data arising in 2d Geograph-

cal Information Systems (GISs). It was shown that, in general, the

-tree outperforms the Quadtree. From this experimental compar-

son, Oracle, in general, recommends using R-trees over Quadtrees,

ue to higher tiling levels in the Quadtree that cause very expen-

ive preprocessing and storage costs.

In Chen and Patel (2007) , the R

∗-tree and a Quadtree index

nhanced with Minimum Bounding Rectangle (MBR) keys for the

nternal nodes (MBRQuadtree) have been compared with respect

o the All-Nearest Neighbor (ANN) query. The ANN query takes

s input two datasets of multidimensional points and computes

or each point in the first dataset the NN in the second one.

xperimentally, the authors showed that for ANN queries, the

BRQuadtree is a much more efficient indexing structure than the

∗-tree index.

In Kim and Patel (2010) , the authors have compared the per-

ormance of R-trees and Quadtrees index structures for evaluat-

ng the K NN and the K Distance Join (using the algorithms de-

cribed in Hjaltason and Samet (1998)) query operations and the

ndex construction methods (dynamic insertion for the R

∗-tree and

ucket Quadtree) and bulk-loading algorithm (Sort-Tile-Recursive,

TR, for the R-tree (Leutenegger et al., 1997) and bulk-loading for

he Quadtree). It was shown that the query processing perfor-

ance of the R

∗-tree was significantly affected by the index con-

truction methods, while the Quadtree was relatively less affected

y the index construction method. The regular and disjoint parti-

ioning method used by the Quadtree has an inherent structural

dvantage over the R

∗-tree in performing K NN and K Distance

oin queries. The Quadtree-based index structure could be a bet-

er choice than the widely used R

∗-tree for spatial queries when

ndices are constructed dynamically. Moreover, it was shown that

hen data are static (i.e. when a bulk-loading algorithm is used

or an index construction) and KNNQs / K Distance Join Queries are

xecuted, the STR built R-tree showed the best performance. How-

ver, when data are dynamic (i.e. there are frequent updates), a

ucket Quadtree begins to outperform the R

∗-tree. This is due to

verlap among MBRs that increases with increasing dataset sizes

once the dynamic R

∗-tree algorithm is used), and the R

∗-tree per-

ormance is degraded.

In the context of performance studies, in Corral and Almendros-

iménez (2007) , an interesting performance comparison (with re-

pect to number of disk read accesses, response time and mem-

ry requirements) of distance-based query (Distance Range, K -

earest Neighbors, K -Closest Pairs and εDistance Join) algorithms

Depth-First Search -DFS-, Best-First Search -BFS- and Recursive

est-First Search -RBFS-) on R

∗-trees was presented. The main con-

lusion was that BFS was the best for all studied distance-based

ueries, but it may consume many main memory resources. DFS

as slightly worse than BFS (except for the case where an LRU-

uffer is included), but it consumed less memory resources, since

t needs linear space with respect to the height of the R

∗-trees.
BFS was the worst alternative (although it uses recursion and it

eeds linear space) since it revisits internal nodes to follow a best-

rst order.

In Roumelis et al. (2011b), the performance of R

∗-trees and xBR-

rees was compared for the most usual spatial queries, like Point

ocation, Window, Distance Range, K Nearest Neighbor and Constraint

NN queries. The conclusions arising from this comparison showed

hat the two indexes were competitive. The xBR-tree is more com-

act and it is built faster than the R

∗-tree. The performance of the

BR-tree was higher for PLQs, DRQs and WQs , while the R

∗-tree was

lightly better for KNNQs and needed less disk accesses for CKN-

Qs .

Finally, in Roumelis et al. (2015) improvements of the xBR-tree

modified internal node structure and tree building process) were

resented, leading to the xBR

+ -tree. An extensive performance stu-

io (I/O efficiency and execution time) based on real and synthetic

atasets was also presented, taking into account the tree build-

ng process and the processing of single dataset queries, using the

wo Quadtrees-based structures. These results showed that the two

rees are comparable regarding their building performance, how-

ver, the xBR

+ -tree was an overall winner regarding spatial query

rocessing.

The main objective of this paper is to compare the xBR

+ -tree

erformance (Roumelis et al., 2015) (the best index structure of

he xBR-tree family) against the performance of the most popu-

ar spatial access method of the R-tree family , the R

∗-tree and a

on-overlapping member of this family, the R

+ -tree, considering

he most representative spatial queries, where one or two indexes

re involved and to highlight the performance winner, considering

he characteristics of each query. Our contribution differs from Kim

nd Patel (2010) in the following aspects:

• We utilized a new dynamic, disk-resident, balanced Quadtree-

based index structure (called xBR

+ -tree). In Kim and Patel

(2010) , a simple bucket Quadtree, a partially RAM-resident, un-

balanced structure was utilized.
• The performance comparison is carried out for more spa-

tial queries when one dataset is involved (PLQ, WQ, DRQ and

CKNNQ) and when two datasets are involved (εDJQ), not only

for the KNNQ and KCPQ (called K Distance Join Query in Kim

and Patel (2010)).
• We have compared the xBR

+ -tree with the R

+ -tree also (an R-

tree index based on disjoint decomposition of space), not only

with the R

∗-tree as in Kim and Patel (2010) .
• We have used in our experiments two large real datasets from

OpenStreetMap

1 with 5.8 and 11.5 million of 2d points, whereas

in Kim and Patel (2010) , the authors used artificial data from

Palomar Observatory Sky Survey 2 , choosing for their experi-

ments just the first 2 millions of records from the original data

(from around 90 millions) and for creating 2d points, the first

two attributes of the 39 stored.

. The R-tree family

R-trees (Guttman, 1984) are hierarchical, height balanced data

tructures, derived from B-trees (Comer, 1979) and designed to

e used in secondary storage. R-trees are considered as excellent

hoices for indexing various kinds of spatial data (points, rect-

ngles, line-segments, polygons, etc.) and have been adopted in

nown commercial systems (e.g. Informix (Brown, 2001), Oracle

patial (Kothuri et al., 2007; Greener and Ravada, 2013), MySQL

 Schwartz et al., 2012), PostGIS (Obe and Hsu, 2015; Corti et al.,

014), etc.). They are used for the dynamic organization of a set of

http://spatialhadoop.cs.umn.edu/datasets.html
http://astronomy.mnstate.edu/cabanela/MAPS_Database/

168 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

Fig. 1. A collection of points representing 16 capital cities, the corresponding

grouping to R ∗-tree nodes and the R ∗-tree structure.

s

fl

n

v

b

g

g

b

a

fi

o

i

g

R

2

a

t

s

n

t

u

p

t

3

g

t

i

t

s

b

t

s

i
spatial objects represented by their Minimum Bounding Rectangles

(MBRs). The MBR represents the smallest axes-aligned rectangle in

which the spatial objects are contained. A 2d MBR is determined

by two 2d points that belong to its faces, one that has the min-

imum and one that has the maximum coordinates (these are the

endpoints of one of the diagonals of the MBR). Using the MBR in-

stead of the exact geometrical representation of the object, its rep-

resentational complexity is reduced to two points where the most

important features of the spatial object (position and extension)

are maintained. Consequently, the MBR is an approximation widely

employed, and the R-trees belong to the category of data-driven ac-

cess methods (Rigaux et al., 20 0 0), since their structure adapts itself

to the MBRs distribution in the space (the partitioning adapts to

the object distribution in the embedding space).

The rules obeyed by the R-tree are as follows.

1. All leaves reside on the same level.

2. Each leaf node contains entries, E , of the form (MBR, Oid) , such

that MBR is the minimum bounding rectangle that encloses the

object determined by the identifier Oid .

3. Internal nodes contain entries, E , of the form (MBR, Addr) ,

where Addr is the address of the child node and MBR is the

minimum bounding rectangle that encloses MBRs of all entries

in that child node (it is also called directory MBR).

4. Nodes (except possibly for the root) of an R-tree of class (m,

M) contain between m and M entries, where m ≤� M /2 � (M and

m are called maximum and minimum branching factor, or fan-

out).

5. The root contains at least two entries, if it is not a leaf.

For more details about the R-tree structure, see Manolopoulos

et al. (2006) .

Like other spatial tree-like index structures, an R-tree partitions

the multidimensional space by grouping objects in a hierarchical

manner. A subspace occupied by a tree node in an R-tree is always

contained in the subspace of its parent node, i.e. the MBR enclosure

property . According to this property, an MBR of an R-tree node (at

any level, except at the leaf level) always encloses the MBRs of its

descendant R-tree nodes. This property of spatial containment be-

tween MBRs stored in R-tree nodes is commonly used by spatial

queries as the WQ and spatial join. Another important property of

the R-trees that store spatial objects in a spatial database is the

MBR face property . This property says that every face of any MBR

of an R-tree node (at any level) touches at least one point of some

spatial object in the spatial database. Distance-based queries, like

the KNNQ, DRQ, KCPQ and εDJQ , use this last property.

3.1. The R ∗-tree

Many variations of R-trees have appeared in the literature

(exhaustive surveys can be found in Gaede and Günther, 1998;

Manolopoulos et al., 2006). One of the most popular and efficient

variations is the R

∗-tree (Beckmann et al., 1990). The R

∗-tree is a

variant of the R-tree that provides several improvements to the in-

sertion algorithm. Essentially, these improvements aim at optimiz-

ing the following parameters: (1) node overlapping, (2) area cov-

ered by a node, and (3) perimeter of an MBR of internal node.

The latter is representative of the shape of the rectangles because,

given a fixed area, the shape that minimizes the rectangle perime-

ter is the square.

The R

∗-tree added two major enhancements to the R-tree, in

case a node overflows. First, rather than just considering the area,

the node-splitting algorithm in the R

∗-tree also minimized the

perimeter and overlap enlargement of the MBRs. It tends to reduce

the number of subtrees to follow for search operations. Second, the

R

∗-tree introduced the notion of forced reinsertion to make the tree
hape less dependent to the insertion order. When a node over-

ows, it is not split immediately, but a portion of entries of the

ode is reinserted from the tree root. The forced reinsertion pro-

ides two important improvements. First, it may reduce the num-

er of splits and, second it is a dynamic technique for tree reor-

anization. With these two enhancements, the improved split al-

orithm and the reinsertion strategy, the R

∗-tree results in a much

etter organization with respect to the original R-tree.

It is worth remembering that the data structures for the R-tree

nd R

∗-tree are the same. Hence, the data retrieval operations de-

ned for the R-tree remain valid for the R

∗-tree. Due to the better

rganization of the R

∗-tree, the performance of the spatial queries

s likely to be significantly improved. For this reason, the R

∗-tree

enerally outperforms R-tree and it is commonly accepted that the

∗-tree is one of the most efficient R-tree variants (Rigaux et al.,

0 0 0).

Fig. 1 depicts a collection of points representing 16 capital cities

nd the corresponding R

∗-tree (assuming M = 4 and m = 2), where

he tree nodes correspond to disk pages. Observe that the index

tructure, while keeping the tree balanced, adapts to the skew-

ess of data distribution. Solid lines denote the MBRs of the sub-

rees that are rooted in inner nodes (dotted rectangles). In this fig-

re, the leaves are represented by L i (1 ≤ i ≤ 6), the MBRs enclosing

oints are denoted as I i (1 ≤ i ≤ 6) and R i (1 ≤ i ≤ 2) correspond to

he MBRs enclosing I i MBRs.

.2. The R + -tree

To overcome the problems associated with overlapping of re-

ions in the R-trees, in Sellis et al. (1987) an access method called

he R

+ -tree was introduced. The main motivation for the R

+ -tree

s to avoid overlap among the MBRs. Unlike the R-tree, the R

+ -
ree uses clipping ; that is, there is no overlap between MBRs at the

ame tree level. MBRs that intersect more than one MBRs have to

e stored on several different nodes. The result of this data struc-

ure is that there may be several paths, starting at the root to the

ame rectangle. As a result of this policy and taking into account

ts structure, the R

+ -tree will lead to an increase of the height of

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 169

Fig. 2. The same collection of points, the corresponding grouping to R + -tree nodes

and the R + -tree structure.

t

R

o

r

u

t

2

a

a

s

s

R

u

c

t

m

o

t

o

2

a

o

s

s

4

t

2

t

a

2

o

q

a

d

m

4

(

p

s

t

(

t

B

r

t

s

s

n

i

i

t

i

p

u

h

c

t

m

o

a

f

t

t

a

t

n

e

s

r

z

m

he tree. However, considering the retrieval time, point searches in

+ -trees correspond to single-path tree traversals from the root to

ne of the leaves (and therefore, it tends to be faster than the cor-

esponding R-tree operation). On the other hand, range searches

sually lead to the traversal of multiple paths in both index struc-

ures.

The R

+ -tree can be characterized as follows (Rigaux et al.,

0 0 0):

1. The root has at least two entries, except when it is a leaf.

2. The MBRs of two internal nodes at the same level cannot over-

lap.

3. If node N is not a leaf (internal node), its MBR contains all rect-

angles in the subtree rooted at N .

4. A rectangle of the collection to be indexed is assigned to all leaf

nodes the MBRs of which it overlaps. A rectangle assigned to a

leaf node N is either overlapping N.MBR or is fully contained in

N.MBR . This duplication of objects into several neighbor leaves

is similar to what we encountered earlier in other space-driven

structures (they are based on partitioning the embedding space

into rectangular cells, independently of the distribution of the

spatial objects).

Fig. 2 presents an R

+ -tree for the same collection of points. Note

lso that both at the leaf level and at internal levels, node MBRs

re not overlapping (different organization of the nodes with re-

pect to Fig. 1). The notation of internal nodes and leaves are the

ame as in the R

∗-tree of Fig. 1 .

The structure of an R

+ -tree node is the same as that of the

-tree. However, because we cannot guarantee a minimal storage

tilization m (as for the R-tree), and because rectangles are dupli-
ated, an R

+ -tree can be significantly larger (in terms of height)

han the R-tree built for the same dataset. The construction and

aintenance of the R

+ -tree are rather more complex than with the

ther variants of the R-tree.

As examples of spatial query processing using R

+ -trees,

he point location query performance benefits from the non-

verlapping of nodes. As for space-driven structures (Rigaux et al.,

0 0 0), a single path down the tree is followed, and fewer nodes

re visited than with the R-tree. The gain for window query is less

bviously assessed. Object duplication not only increases the tree

ize, but potentially leads to expensive post-processing of the re-

ult (sorting for duplication removal).

. The xBR

+ -tree

The xBR

+ -tree (Roumelis et al., 2015) (an extension of the xBR-

ree (Vassilakopoulos and Manolopoulos, 20 0 0; Roumelis et al.,

011b)) is a hierarchical, pointer-based, disk-resident index struc-

ure, built utilizing a regular decomposition of space (space-driven

ccess method), suitable for indexing multidimensional points. For

d the hierarchical decomposition of space in the xBR

+ -tree is that

f Quadtrees (the space is recursively subdivided in 4 equal sub-

uadrants) and the space indexed is a square . The nodes of the tree

re disk pages of two kinds: leaves , which store the actual multi-

imensional data themselves and internal nodes , which provide a

ultiway indexing mechanism.

.1. Internal nodes

Internal node entries in xBR

+ -trees contain entries of the form

 Shape, qside, DBR, Pointer). Each entry corresponds to a child-node

ointed by Pointer . The region of this child-node is related to a

ubquadrant of the original space. Shape is a flag that determines if

he region of the child-node is a complete or non-complete square

the area remaining, after one or more splits; explained later in

his subsection). This field is heavily used in queries. DBR (Data

ounding Rectangle) stores the coordinates of the rectangular sub-

egion of the child-node region that contains point data (at least

wo points must reside on the sides of the DBR), while qside (not

tored in xBR-tree internal node entries) is the side length of the

ubquadrant of the original space that corresponds to the child-

ode.

The subquadrant of the original space related to the child-node

s expressed by an Address . This Address (which has a variable size)

s not explicitly stored in the xBR

+ -tree (unlike the xBR-tree), al-

hough it is uniquely determined and can be easily calculated us-

ng qside and DBR (in fact, the coordinates of the subquadrant ex-

ressed by Address are calculated by query processing algorithms

sing qside and DBR). Each Address represents a subquadrant which

as been produced by Quadtree-like hierarchical subdivision of the

urrent space (of the subquadrant of the original space related to

he current node). It consists of a number of directional digits that

ake up this subdivision. The NW, NE, SW and SE subquadrants

f a quadrant are distinguished by the directional digits 0, 1, 2

nd 3, respectively. For 2d space, we use two directional bits, one

or each dimension. The lower bit represents the subdivision on

he horizontal (X -axis) dimension, while the higher bit represents

he subdivision on the vertical (Y -axis) dimension (Vassilakopoulos

nd Manolopoulos, 20 0 0; Roumelis et al., 2011b). It is easy to ex-

end this representation to three or more dimensions by using a

umber of directional bits equal to the number of dimensions. For

xample, the Address 1 represents the NE quadrant of the current

pace, while the Address 10 the NW subquadrant of the NE quad-

ant of the current space. The address of the left child is ∗ (has

ero digits), since the region of the left child is the whole space

inus the region of the right child.

170 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

Fig. 3. The same collection of points, the corresponding grouping to xBR + -tree

nodes and the xBR + -tree structure.

f

h

w

m

4

e

c

t

s

i

d

l

c

o

r

s

e

p

t

a

d

a

o

4

t

b

4

r

b

n

f

t

i

a

4

a

t

h

(

5

D

(

s

s

However, the actual region of the child-node is, in general, the

subquadrant of its Address minus a number of smaller subquad-

rants, the subquadrants corresponding to the next entries of the

internal node (the entries in an internal node are saved sequen-

tially, in preorder traversal of the Quadtree that corresponds to

the internal node). For example, in Fig. 3 an internal node (a root)

that points to 2 internal nodes that point to 7 leaves is depicted.

The region of the root is the original space, which is assumed to

have a quadrangular shape. The region of the right child is the NW

quadrant of the original space. The region of the left child is the

whole space minus the region of the NW quadrant, a non-complete

square. The ∗ symbol is used to denote the end of a variable size

address. The Address of the right child is 0 ∗, since the region of

this child is the NW quadrant of the original space. The Address of

the left child is ∗ (has zero directional digits), since the region of

this child refers to the remaining space. Each of these Addresses is

expressed relatively to the minimal quadrant that covers the inter-

nal node (each Address determines a subquadrant of this minimal

quadrant). For example, in Fig. 3 , the Address 3 ∗ is the SE subquad-

rant of the NW subquadrant of whole space (absolute Address 03 ∗).

During a search, or an insertion of a data element with specified

coordinates, the appropriate leaf and its region is determined by

descending the tree from the root.

Note that all the fields of an xBR

+ -tree internal node entry have

a fixed size. By avoiding storing the variable-sized field Address

(unlike the xBR-tree), processing of internal nodes is simplified,

since their capacity is fixed. Moreover, the use of the DBR field (not

stored in xBR-tree internal node entries) makes processing of spa-

tial queries more efficient, since it signifies the subregion of the

child-node that actually contains data, which is (in general) dif-
erent to and smaller than the region of this child-node, leading to

igher selectivity of the paths that have to be followed downwards

hen descending the tree and deciding the parts of the tree that

ay contain (part of) the query answer.

.2. Leaf nodes

External nodes (leaves) of the xBR

+ -tree simply contain the data

lements and have a predetermined capacity C . When C is ex-

eeded, due to an insertion in a leaf, the region of this leaf is par-

itioned in two subregions. The one (new) of these subregions is a

ubquadrant of the region of the leaf which is created by partition-

ng the region of the leaf according to hierarchical (Quadtree like)

ecomposition, as many times as needed so that the most popu-

ated subquadrant (that corresponds to this new subregion) has a

ardinality that is smaller than or equal to C . The other one (old)

f these subregions is the region of the leaf minus the new sub-

egion. In Roumelis et al. (2015) , the criterion of choosing the new

ubregion was the cardinality of this subregion to be smaller or

qual to xC , where 0.5 < x < 1, however the criterion we use in this

aper was more effective and simple. Note also that in the xBR

+ -
ree, data elements are stored in leaves in X -order (the elements

re sorted in ascending order of their X -axis coordinate). This or-

er permits us to use the plane sweep technique (when appropri-

te) during processing of the data elements of a leaf, in the process

f answering certain query types.

.3. Splitting process of nodes

When an internal node of the xBR

+ -tree overflows, it is split in

wo. The goal of this split is to achieve the best possible balance

etween the space use in the two nodes.

.3.1. Splitting of internal nodes

The split in the xBR

+ -tree is either based on existing quad-

ants or in ancestors of existing quadrants. First, a Quadtree is

uilt that has as nodes the quadrants specified in the internal

ode (Vassilakopoulos and Manolopoulos, 20 0 0). This tree is used

or determining the best possible split of the internal node in

wo nodes that have almost equal number of bits, as proposed

n Vassilakopoulos and Manolopoulos (20 0 0) , or entries (a simpler

nd equally effective criterion, according to experimentation).

.3.2. Splitting of leaves

Splitting of a leaf creates a new entry that must be hosted by

n internal node of the parent level. This can cause backtracking to

he upper levels of the tree and may even cause an increase of its

eight. More details appear in Vassilakopoulos and Manolopoulos

20 0 0) .

. Spatial query processing

In this section, we outline algorithms for processing PLQs, WQs,

RQs, KNNQs, CKNNQs, KCPQs and εDJQs on the R-tree family

query processing in R

∗-trees, R

+ -trees and R-trees, in general, is

imilar) and xBR

+ -trees. In general terms, the definitions of these

patial queries are as follows:

• Given an index I P and a query point q , the PLQ returns true if

q belongs to I P , false otherwise.
• Given an index I P and a query rectangle r , the result of the WQ

is the set of all points in I P that are completely inside r .
• Given an index I P , a query point q and a distance threshold

ε ≥ 0, the DRQ returns all points of I P , that are within the spec-

ified distance ε from q (according to a distance function).

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 171

t

(

j

T

t

e

s

q

q

s

5

d

w

F

c

c

n

o

o

W

a

(

i

i

r

A

t

c

d

r

n

q

d

c

o

a

c

D

• Given an index I P , a query point q , and a value K > 0, the K NNQ

returns K points of I P which are closest to q based on a distance

function.
• Given an index I P , a query point q , a value K > 0 and a distance

threshold ε ≥ 0, the CK NNQ returns K closest points of I P which

are within the distance ε from q .
• Given two indexes I P and I Q , and an integer value K > 0, the

K CPQ (Corral et al., 20 0 0; 20 04) returns a set of K different

pairs of points (p i , p j) ∈ I P × I Q , such that p i ∈ I P , p i ∈ I Q , with the

K smallest distances between all possible pairs of points that

can be formed by choosing one point of I P and one point of I Q ,

based on a distance function.
• Given two indexes I P and I Q , and a real value ε ≥ 0, ε DJQ (Corral

and Almendros-Jiménez, 2007) returns all the possible different

pairs of points (p i , p j) ∈ I P × I Q that can be formed by choosing

one point p i ∈ I P and one point p j ∈ I P , having a distance smaller

than or equal to ε of each other, based on a distance function.

To answer the aforementioned spatial queries using members of

he R-tree family, or xBR

+ -trees a two-step procedure is followed

 Brinkhoff et al., 1993). Filter step : the collection of all spatial ob-

ects whose MBRs/DBRs satisfy the given spatial query is found.

hese spatial objects constitute the candidate set. Refinement step :

he actual exact geometry of each member of the candidate set is

xamined to eliminate false hits and find the final answer to the

patial query. In the following, we will describe in more detail the

uery processing techniques that have developed for each spatial

uery type. Since the Refinement step is orthogonal to the Filtering

tep , the developed techniques have mainly focused on the latter.

.1. Algorithmic techniques used

All the single dataset queries above can be processed in a top-

own manner beginning from the root of the tree. There are two,

ell known, basic techniques that can be applied.

The first one is processing the nodes of the tree in Depth-

irst (DF) mode: By examining the relation of an entry of the

urrent internal node to the query object, point or area, we de-

ide on recursively applying the same procedure on the child

ode pointed by this entry. When this recursive call returns, an-

ther entry of this internal node may be examined, depending

n the query being processed and the result calculated so far.

hen a recursive call reaches a leaf node, the Refinement step is

pplied.

The second one is processing the nodes of the tree in Best-First

BF) mode: By examining the relation of each entry of the current

nternal node to the query object, point or area, we decide about

nserting this entry in a global priority queue, where there may al-

eady exist entries inserted during earlier stages of the algorithm.

fter all entries of the current node have been examined, the en-

ry with top priority is extracted from the queue and processing

ontinues with the node pointed by this entry.

We applied four versions of DF algorithms.

• The first one, named Normal Depth First (N-DF) algorithm, is

the simplest of all. The query object is tested first against each

entry of the current node, in the order that the entries are

stored. The criterion for such a test depends on the query be-

ing processed and the result calculated so far and its result

is boolean (true / false). If the result for the entry tested is

true, then the algorithm is applied recursively on the child node

pointed by this entry.
• The second one is named Depth First (DF) algorithm. For each

entry of the current node (in the order that the entries are

stored), the minimum distance, mindist , between the query ob-

ject and the region of the entry is calculated. If the (non-

boolean) value of this metric for the entry examined satisfies
the criterion corresponding to the query being processed and

the result calculated so far, then the algorithm is applied recur-

sively on the node pointed by this entry.
• The third one, named Sorted Depth First (S-DF) algorithm, is a

fairly used and efficient DF technique. There is an initial step

that must be implemented when an internal node is visited, so

as to select the entry of this node that best satisfies the crite-

rion corresponding to the query being processed and the result

calculated so far. In this step, for all entries of the current node,

mindist(q, M) values are calculated, inserted in an array and

sorted. Then the algorithm is applied recursively on the node

pointed by the entry corresponding to the lowest mindist value.

When this recursive call returns, recursion is possibly (depend-

ing on the query being processed and the result calculated so

far) applied on the entry with the next mindist value.
• The fourth one, named Heap Depth First (H-DF) algorithm, is a

new technique that utilizes one local (to the current node) min-

imum Heap (minHeap) prioritized by the mindist metric. The

minHeap replaces the sorted array of S-DF and this is expected

to speed up the selection process of the next best entry for ap-

plying recursion. In fact, the fewer the entries of the current

node that will be eventually used for recursive calls, the more

the algorithm will accelerate (since extracting from minHeap

part and not all of its entries corresponds to a partial appli-

cation of HeapSort, in contrast to always completely sorting the

respective array of S-DF).

We also applied one BF algorithm.

• In the following, this is called BF algorithm and it is iterative. It

keeps a global (to the whole tree) minimum binary heap, min-

Heap , holding (part of) the entries of the nodes visited so far,

prioritized by their mindist to the query object. Initially, min-

Heap contains the tree root. Iteratively, the entry at the root

of minHeap is removed from the heap and the node pointed

by this entry is visited; its entries are potentially added to the

heap, according to the relation of mindist of each entry to the

criterion of the query being processed and the result calculated

so far. The algorithm continues by visiting the node pointed by

the entry with the minimum mindist in minHeap until the heap

becomes empty or the mindist value of the entry located in the

root of the heap does not satisfy the criterion corresponding

to the query being processed and the result calculated so far.

When the algorithm reaches a leaf node, the Refinement step is

applied.

All the dual dataset queries above can be processed in a top-

own manner by synchronous tree traversals, beginning from the

oots of the two trees. Again, the basic ideas of processing the

odes of the trees in DF and BF mode are utilized.

We applied three versions of DF algorithms for dual dataset

ueries. N-DF cannot be applied, due to its boolean criterion. We

id not apply a version analogous to DF, because the number of

ombinations that should be examined is large when the entries

f two nodes (one from each tree representing a different dataset)

re combined, unless a technique that reduces the number these

ombinations is applied. Thus, we applied versions analogous to S-

F and H-DF, only.

• The first one is named Sorted Depth First for 2 datasets (S-

DF-2) algorithm. We start at the roots of the two trees (cur-

rent pair of nodes). For each pair of entries formed by combin-

ing the entries of the current pair of nodes, the minimum dis-

tances, mindist values, between the regions of the elements of

the pair are calculated (these are distances between rectangu-

lar regions), inserted in an array and sorted. Then the order of

this array is used for recursive application of the algorithm. If

172 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

5

t

P

i

c

o

w

M

o

v

n

F

l

i

o

a

t

i

t

s

f

t

e

t

t

c

c

c

n

5

r

a

q

t

q

p

s

c

n

a

o

t

r

s

t

D

i

i

T

t

a

5

b

(

t
mindist of the next array entry (a pair of nodes) satisfies the cri-

terion corresponding to the query being processed and the re-

sult calculated so far, then the algorithm is applied recursively

on the nodes pointed by the elements of this pair. In case a re-

cursive call reaches a pair of nodes where one of its elements is

a leaf, then the pairs of entries are formed by the region of this

leaf and the entries of the node pointed by the other element

of the pair (which is an internal node). In case a recursive call

reaches a pair of nodes where both of its elements are leafs,

the Refinement step is applied.
• The second one, named Heap Depth First for 2 datasets (H-

DF-2) algorithm, is a new technique that utilizes one local (to

the current pair of nodes) minimum Heap (minHeap) prioritized

by the mindist metric that replaces the sorted array of S-DF-2.

For the reasons described above, this algorithm is expected to

speed up the selection process of the next best entry for apply-

ing recursion.
• The third one, is named Classic Plane Sweep Depth First for 2

datasets (C-DF-2) algorithm. In this algorithm, when a pair of

nodes is visited, for each node of this pair, the starting coordi-

nate of one of the axes, w.l.o.g. let’s assume this is x -axis, of the

rectangular regions of this node entries are sorted and Classic

Place Sweep (Roumelis et al., 2016) is applied between the two

sorted coordinate sequences. If x -distance of the pair of entries

under examination is smaller than the current threshold cor-

responding to the query being processed and the result calcu-

lated so far, then the actual mindist is calculated for this pair of

entries and, if the calculated value satisfies the criterion corre-

sponding to the query being processed and the result calculated

so far, the algorithm is applied recursively on the nodes pointed

by the elements of this pair. Unlike S-DF-2 and H-DF-2, this al-

gorithm avoids unnecessary calculations of mindist values. Note

that in C-DF-2, when a recursive call reaches a pair of nodes

where one of its elements is a leaf, plane sweep is not applied

(plane sweep makes sense when two sets of rectangular regions

are combined), but the region of this leaf is combined with all

the entries of the other node.

We also applied one BF algorithm for dual dataset queries.

• This is called Classic Plane Sweep Best First for 2 datasets (C-

BF-2) algorithm and also utilizes Classic Place Sweep (Roumelis

et al., 2016). This algorithm is iterative. It keeps a global (to

the whole pair of trees) minimum binary heap, minHeap , hold-

ing (part of) the pairs of entries of the pairs of nodes visited

so far, prioritized by their mindist . Initially, minHeap contains

the two tree roots. Iteratively, the entry at the root of min-

Heap is removed from the heap and the pair of nodes pointed

by this entry is visited. For the pairs of entries formed from

this pair of nodes plane sweep is applied, like in C-DF-2 and,

each pair of entries that satisfies the criterion corresponding to

the query being processed and the result calculated so far is

inserted in minHeap . The algorithm continues by visiting the

pair of nodes pointed by the pair of entries with the mini-

mum mindist in minHeap until the heap becomes empty or the

mindist value of the pair of entries located in the root of the

heap does not satisfy the criterion corresponding to the query

being processed and the result calculated so far. In case the al-

gorithm visits a pair of nodes where one of its elements is a

leaf, then the pairs of entries are formed by the region of leaf

and the entries of the node pointed by the other element of

the pair (which is an internal node) and plane sweep is not ap-

plied, but the region of this leaf is combined with all the entries

of the other node. In case the algorithm visits a pair of nodes

where both of its elements are leafs, the Refinement step is
applied. t
.2. Point location and window queries

PLQs and WQs can be processed using N-DF algorithm on both

he R-tree and xBR

+ -tree families. The query object in the case of

LQs is the query point and the testing criterion is whether there

s overlapping between the query point and the MBR / DBR of the

urrent entry of the R-tree/xBR

+ -tree. The query object in the case

f WQs is the query window (rectangle) and the testing criterion is

hether there is intersection between the query window and the

BR / DBR of the current entry. Since the criterion can only get one

f two possible values TRUE/FALSE, there is no way or reason the

alues of the criterion to be compared between entries. When the

ode pointed by the Addr is a leaf then Refinement step is applied.

or PLQs , the query point is searched between the points of the

eaf and if it is found the result is returned in the calling procedure

n order the searching process to be terminated. For WQs , the set

f points of the current leaf within the query window are found

nd this set of points is returned. The searching process will be

erminated when all entries of the root node have been tested.

Especially for the xBR

+ -tree, as noted in Section 4.1 , the entries

n an internal node are saved in preorder traversal of the Quadtree

hat corresponds to the internal node and are examined in reverse

equential order (this means that first a subregion is examined be-

ore any enclosing region of this subregion, and in this way, mul-

iple examinations of overlapping regions are avoided). So the last

ntry of the current internal node is examined first. Moreover, for

he xBR

+ -tree, in WQs a termination condition can be applied and

he searching process can be terminated before all entries of the

urrent node have been tested: whenever the query window is

ontained within the REG of the current entry of the node pro-

essing stops. This is due to no overlapping between regions of the

odes.

.3. Distance range queries

DRQs can be performed with all variants of DF and BF algo-

ithms that were described above in Section 5.1 on both the R-tree

nd xBR

+ -tree families. The query object is a circle centered on the

uery point with radius a given value ε. Since in N-DF algorithm

he testing criterion is whether there is intersection between the

uery circle and the MBR / DBR of the current entry, in order to sim-

lify processing, the query circle is replaced by its MBR in the Filter

tep , while in the Refinement step the points inside the actual query

ircle are selected. Especially for the xBR

+ -tree, the same termi-

ation condition noted in Section 5.2 can be applied in the N-DF

lgorithm.

For the other four algorithms (DF, H-DF, S-DF and BF) the query

bject is the circle described above and mindist is the distance be-

ween the center of the query circle and the MBR / DBR of the cur-

ent entry. The testing criterion is whether this mindist value is

maller than or equal to ε. The special termination condition of

he xBR

+ -tree for the DF algorithm can be applied just like the N-

F one, while for the other three algorithms (S-DF, H-DF and BF)

t must be partially changed, since the examination of the entries

s not in the reverse order in which they are saved in the node.

hus, if the query circle is contained in the REG and the region of

he entry is a complete square then the termination condition is

pplied.

.4. Nearest neighbor queries

Based on the branch-and-bound paradigm, the K Nearest Neigh-

or Query algorithms use several metrics to prune the search space

 Roussopoulos et al., 1995). The most important metric is mindist ,

he minimum distance between the query object and the region of

he entry under examination. Another metric, minmaxdist , refers to

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 173

t

i

f

o

p

s

a

w

r

i

o

d

C

i

a

Q

a

v

H

H

e

t

u

e

o

d

s

e

i

t

e

d

t

a

t

t

i

c

q

n

w

q

a

u

o

c

ε

t

t

a

fi

E

b

5

o

a

s

c

2

t

e

l

f

a

p

t

b

a

t

6

x

6

i

p

l

T

s

t

p

f

m

=

6

a

1

t

N

a

r

e

o

t

(

a

a
he minimum distance from the query object within which a point

n the region of the entry under examination is guaranteed to be

ound. Finally, maxdist is the maximum distance between the query

bject and any point in the region of the entry under examination.

The first Nearest Neighbor Query (NNQ) algorithm for R-trees,

roposed in Roussopoulos et al. (1995) , traverses the tree recur-

ively in a DF manner. Starting from the root, all entries are sorted

ccording to their mindist from the query object, and the entry

ith the smallest mindist is visited first. The process is repeated

ecursively until the leaf level is reached, where a potential NN

s found. During backtracking to the upper levels, the algorithm

nly visits entries whose mindist is smaller than or equal to the

istance of the NN found so far. This algorithm was enhanced in

heung and Fu (1998) , proving that any node can be pruned by us-

ng minmaxdist (Roussopoulos et al., 1995) distance function. A BF

lgorithm for NNQ was proposed in Hjaltason and Samet (1995) for

uadtrees and in (Hjaltason and Samet, 1999) for R-trees. BF keeps

 minimum binary heap, minHeap , with the entries of the nodes

isited so far, prioritized according to their mindist . Initially, min-

eap contains the entries of the tree root. When the root of min-

eap is chosen for processing, it is removed from the heap and the

ntries of its tree node are added to the heap. The algorithm con-

inues visiting the entry with the minimum mindist in minHeap ,

ntil the heap becomes empty or the mindist value of the node

ntry located in the root of heap is larger than the distance value

f the nearest neighbor that has been found so far (i.e. the pruning

istance). BF is I/O optimal because it only visits the nodes neces-

ary for obtaining the NN. The generalization to find the K Near-

st Neighbor (K NN) is straightforward. An additional data structure

s just needed, a maximum binary heap, maxKHeap (prioritized by

he distance from the query point), holding the K nearest points

ncountered so far.

It is obvious that the four algorithms (DF, S-DF, H-DF and BF)

escribed in Section 5.1 can be adapted to KNNQs on both the R-

ree and xBR

+ -tree families. The query object is the circle centered

t the query point and having radius equal to the key of the root of

he full maxKHeap ; otherwise (not full maxKHeap) this circle covers

he whole space. The testing criterion (Filter step) is whether there

s an intersection between the query circle and the MBR / DBR of the

urrent entry; in the Refinement step the points inside the actual

uery circle are selected.

Especially for the xBR

+ -tree, the same termination condition

oted in Section 5.3 can be applied in the algorithms for KNNQs ;

hen the region of the current entry is square and contains the

uery circle then the process is terminated. More details about this

lgorithm appear in Roumelis et al. (2011b); 2011a).

The CKNNQ is a combination of the KNNQ and DRQ ; for this

ery, we can adapt the DF, S-DF, H-DF or BF algorithms for NNQ

n both the R-tree and xBR

+ -tree families. The query object is the

ircle with center the query point and radius the given maximum

value for the case of not full maxKHeap , otherwise the radius is

he key of the root of the full maxKHeap . The testing criterion (Fil-

er step) is whether there is intersection between the query circle

nd the MBR / DBR of the current entry in the Filter step ; in the Re-

nement step the points inside the actual query circle are selected.

specially for the xBR

+ -tree, the same termination condition can

e applied as in the NNQ algorithms.

.5. Distance join queries

Be reminded that the KCPQ asks for the K closest pairs of spatial

bjects in the Cartesian Product of two datasets. If both datasets

re indexed by R-trees, the concept of synchronous tree traver-

al and DF or BF traversal order can be combined for query pro-

essing (Hjaltason and Samet, 1998; Corral et al., 20 0 0; Shin et al.,

0 03; Corral et al., 20 04). Details on such DF and BF algorithms on
wo R

∗-trees, from the non-incremental point of view, using sev-

ral optimization techniques (i.e. plane-sweep, distance functions

ike minmaxdist and maxdist) appear in Corral et al. (2004) . In the

ollowing, we outline the distance join algorithms we applied on

ll the three trees.

• For KCPQs , we applied all the four algorithms S-DF-2, H-DF-2,

C-DF-2 and C-BF-2 described in Section 5.1 . The testing criterion

is based on the distance threshold which is, either equal to the

key of the root of the maxKHeap , in case of a full maxKHeap ,

or to an infinite length, in case of a non-full maxKHeap . The

testing criterion is whether the distance of the pair objects (MB

R / DBR) under examination is smaller than the distance thresh-

old. In the Refinement step (when the algorithm visits a pair of

leaves), Classic Plane Sweep is applied between the points of

the two leaves. If a pair of points consists of points with a dis-

tance smaller than the distance threshold, this pair is inserted

in maxKHeap .
• For the ε DJQ (ε ≥ 0), the above DF or BF algorithms for KCPQ

(for all trees) are adapted in a straightforward way. There is no

maxKHeap , or limit on the cardinality of the result and the dis-

tance threshold always equals ε. Starting from the root nodes,

tree nodes are traversed down to the leaves, depending on the

result of whether mindist of the pair of entries under exami-

nation is less than or equal to ε. When the algorithm reaches

a pair of leaves, Classic Plane Sweep is applied between the

points of the two leaves. All the pairs of points with a distance

smaller than or equal to ε are added to the answer set.

These algorithms (except for H-DF-2, which is new) have been

roposed in the past for the R-tree family. However, algorithms for

he KCPQ and the εDJQ have not been presented for the xBR

+ -tree

efore. In this work, we adapted the existing R-tree algorithms and

pplied the H-DF-2 technique on the specific structure of xBR

+ -
ree.

. Experimentation

We designed and run a large set of experiments to compare

BR

+ -trees with respect to R-tree variants (R

∗-tree and R

+ -tree).

.1. Experimental settings

We used 6 real spatial datasets of North America, represent-

ng cultural landmarks (NAclN with 9203 points) and populated

laces (NAppN with 24,491 points), roads (NArdN with 569,082

ine-segments) and rail-roads (NArrN with 191,558 line-segments).

o create sets of 2d points, we have transformed the MBRs of line-

egments from NArdN and NArrN into points by taking the cen-

er of each MBR (i.e. |NArdN| = 569,082 points, |NArrN| = 191,558

oints). Moreover, in order to get the double amount of points

rom NArrN and NArdN, we chose the two points with min and

ax coordinates of the MBR of each line-segment (i.e. |NArdND|

 1,138,164 points, |NArrND| = 383,116 points). The data of these

 files were normalized in the range [0, 1] 2 . We have also cre-

ted synthetic clustered datasets of 125,0 0 0, 250,0 0 0, 50 0,0 0 0 and

,0 0 0,0 0 0 points, with 125 clusters in each dataset (uniformly dis-

ributed in the range [0, 1] 2), where for a set having N points,

 /125 points were gathered around the center of each cluster,

ccording to Gaussian distribution. We have also used two large

eal spatial datasets (retrieved from http://spatialhadoop.cs.umn.

du/datasets.html (Eldawy and Mokbel, 2015)) to justify the use

f spatial query algorithms on disk-resident data instead of using

hem in-memory. They represent water resources of North America

Water) consisting of 5,836,360 line-segments and parks or green

reas of all world (Park) consisting of 11,504,035 polygons. To cre-

te sets of points, we have transformed the MBRs of line-segments

http://spatialhadoop.cs.umn.edu/datasets.html

174 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

Table 1

Tree construction characteristics.

Tree height Tree size (MBytes) Creation time (s)

Dataset

Num Elem

(×10 3)

Node size

(KB) xBR + R ∗ R + xBR + R ∗ R + xBR + R ∗ R +

NAclN 9.203 1 4 4 4 0.615 0.669 0.652 0.0511 0.3119 0.1252

NAppN 24.491 1 4 4 4 1.600 0.820 1.718 0.2286 1.0239 0.2663

NArrN 191.558 2 4 4 4 11.61 13.47 12.39 2.5324 15.385 2.8480

NArrND 383.180 4 4 3 4 22.78 26.82 24.03 6.5064 86.771 8.0914

NArdN 569.082 8 3 3 3 34.73 40.67 34.97 12.112 461.78 19.558

NArdND 1138.19 16 3 3 3 69.31 82.10 67.95 39.606 3450.7 66.697

125KCN 125.0 0 0 2 4 4 4 7.578 7.984 7.242 1.0643 8.6246 1.5947

250KCN 250.0 0 0 4 3 3 3 15.09 15.90 14.23 2.9603 46.682 4.5291

500KCN 50 0.0 0 0 8 3 3 3 30.02 31.83 28.06 8.5643 339.39 15.969

10 0 0KCN 1,0 0 0.0 0 16 3 3 3 59.33 63.49 56.19 28.882 2360.6 60.635

Water 5,836.36 2 5 5 11 359.2 438.1 395.4 114.97 584.23 286.98

Water 5,836.36 4 4 4 5 352.9 443.6 382.3 139.92 1638.6 262.23

Park 11,504.0 8 4 4 4 684.0 839.7 731.6 402.91 9460.3 947.12

Park 11,504.0 16 3 3 3 682.7 855.5 719.0 565.42 37,174 1240

s

t

t

w

w

p

6

w

u

w

c

c

q

o

u

6

(

o

q

i

o

t

t

f

t

c

a

t

t
from Water into points by taking the center of each MBR and we

have considered the centroid of polygons from Park.

The experiments were run on a Ubuntu Linux v. 14.04 machine

with Intel core duo 2x2.8 GHz processor, 4GB of RAM and a Sea-

gate Barracuda 3TB SATA 3 hard disk, using the GNU C/C++ com-

piler (gcc).

For page (node) sizes of 1KB, 2KB, 4KB, 8KB and 16KB we

run experiments for tree building, counting tree characteristics and

creation time and experiments for all spatial queries studied here

(PLQ, WQ, DRQ, KNNQ, CKNNQ, KCPQ and εDJQ), counting disk read

accesses (I/O) and total execution time (I/O and CPU).

6.2. Experiments for comparing index structures

In these experiments, we built the xBR

+ -tree, the R

∗-tree and

the R

+ -tree. We constructed each tree, using LRU-buffer 3 of 1024

pages. For each dataset, the insertion order of the data was the

same for all trees. In Table 1 , construction characteristics of the

three trees, for a representative set of dataset and node size com-

binations (for the sake of presentation length), are depicted.

Regarding tree heights, studying the complete set of construc-

tion characteristics of the three trees (for all dataset and node size

combinations), we conclude that:

• The xBR

+ -tree and R

∗-tree have similar tree heights.
• The R

+ -tree for the large real spatial datasets and the smaller

node sizes (1KB and 2KB) is significantly higher.

This is due to the fact that the R

+ -tree, to avoid overlapping,

in many cases, splits internal nodes and several of their descends

at subsequent levels, creating nodes with limited occupancy. For

a smaller node size, an internal node is more likely to be split

unevenly and the new node with the smaller occupancy may not

increase significantly its occupancy in the future, if there are not

enough new data within its region. This shows the sensitivity of

the R

+ -tree to the order of insertion of the data.

Regarding tree sizes, the three trees have similar sizes, since the

largest part of each tree consists of leaves and the leaves exhibit

similar occupancy in all trees (average leaf occupancy of the xBR

+ -
tree, the R

∗-tree and the R

+ -tree is 65.14%, 68.24% and 65.14%, re-

spectively). In conclusion:

• For real datasets the xBR

+ -tree needs less space in disk (i.e. it

is more compact).
• +
For synthetic datasets the R -tree has the smallest disk size.

3 The improvement of the creation times of the xBR + -tree in relation to the re-

spective creation times in Roumelis et al. (2015) is due to the use of the LRU-buffer.

h

l

s

o

Regarding creation times:

• The xBR

+ -tree is always the fastest.

This is due to the regular way that the xBR

+ -tree divides the

pace. Moreover, node splitting follows a single path, starting from

he leaf level and ending, on the worst case, at the root level. On

he contrary, in the R

+ -tree splits may be propagated to parent, as

ell as, to children nodes (Sellis et al., 1987).

• The R

+ -tree is always the slowest.

This is due to forced reinsertion and the multiple paths

hile searching for the appropriate leaf that will host the new

oint (Beckmann et al., 1990).

.3. Creation of input for queries on single datasets

We split the whole space into 2 4 , 2 6 , ���, 2 16 equal rectangular

indows, in a row-order mapping manner. These windows were

sed as query windows for WQs . The centroids of these windows

ere used as query points PLQs, K-NNQs and CK-NNQs . The incir-

les of these windows were used as query ranges for DRQs (the

entroid of each of these windows was used as the center of a

uery range and the extend of this range, ε, was equal to the half

f the side length of this window). For K-NNQs and CK-NNQs , we

sed the set of K values {1, 10, 100, 10 0 0}.

.4. Experiments for non distance-based queries on single datasets

 PLQs and WQs)

As the number of experiments performed was huge, we show

nly representative results, since they were analogous for each

uery category. For PLQs we executed two sets of experiments us-

ng the N-DF algorithm. In the first set we used as query points the

riginal datasets and in the second one we used as query points

he centroids of the query windows. Indicative results for the Wa-

er dataset are shown in Fig. 4 a (I/O) and b (execution time) and

or the 10 0 0 KCN dataset are shown in Fig. 4 c (I/O) and d (execu-

ion time).

These figures show that the results are different for the two

ases of experiments. For the case of the query shown in Fig. 4 a

nd b (Water), when searching for an existing point into the spa-

ial dataset, the number of disk read accesses needed by the R

+ -
ree and the xBR

+ -tree is equal to the tree height. On the other

and, the number of disk read accesses for the R

∗-tree is a little

arger than the height of the tree. The execution time of R

∗-tree is

maller than the one of the R

+ -tree and a little larger than the one

f the xBR

+ -tree.

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 175

Fig. 4. PLQ : disk read accesses (a) and exec. time (b) vs. node size (Water) with query points all dataset points and disk read accesses (c) and exec. time (d) vs. node size

(10 0 0 KCN) with query points the centroids of the query windows.

p

a

d

w

e

o

n

8

n

f

r

t

f

n

t

t

i

n

e

p

p

t

o

n

n

t

t

t

Table 2

WQ : disk read accesses and exec. time per query on NArdND (2 12 query win-

dows) vs. node size.

Disk Read Accesses Execution Time (μs)

Node Size R + R ∗ xBR + R + R ∗ xBR +

1 144.4 24.60 21.81 241.6 41.62 19.72

2 69.05 13.82 11.71 182.7 33.40 14.39

4 36.33 9.049 7.039 165.0 34.19 13.62

8 20.75 5.714 4.113 173.0 36.38 14.30

16 14.71 4.267 3.139 239.5 47.98 18.31

Fig. 5. WQ : exec. time vs. (a) node size (NArdND, 2 12 , query windows) and (b)

number of query windows (Park with node size = 4K).

(

s

W

w

q

a

b

t

s

b

r

i

s

(

t

0

d
Studying the complete set of results of PLQs using as query

oints the original datasets, we find out that the same situation

ppears. Regarding I/O, we conclude that:

• For both the xBR

+ -tree and the R

+ -tree, the number of disk

read accesses is equal to the height of the tree for every query

point, if this point exists in the dataset, because of the single

path that has to be followed until this point is found.
• For the R

∗-tree, the number of disk read accesses is a little

larger than the height of the tree because of the multiple paths

that are possibly needed to be followed until the point is found.

Summarizing the results for the execution time:

• The xBR

+ -tree was faster than the R

+ -tree in all cases (60/60)

and faster than the R

∗-tree in most cases (56/60).
• The R

∗-tree was faster than the R

+ -tree in all cases, for all

datasets and node sizes.
• Especially, for the node size of 16KB, the xBR

+ -tree needed

fewer disk read accesses for all datasets, with an average rel-

ative difference of 5.75% to the R

∗-tree.
• Moreover, it was faster for all datasets (12/12) with an average

relative difference of 70.9% to the R

∗-tree.

For the case of the experiment shown in Fig. 4 c and d (10 0 0 KCN

ataset), the number of disk read accesses needed by the R

+ -tree

hen searching for a point non-existing in the spatial dataset is

qual to the tree height. Note that for this dataset, the tree height

f the R

+ -tree, the R

∗-tree and the xBR

+ -tree equals 6, 5, 6 for 1KB

odes, 4, 4, 5 for 2KB nodes, 4, 4, 4 for 4KB nodes and 3, 3, 3 for

KB and 16KB nodes, respectively. In the case of the xBR

+ -tree, the

umber of disk read accesses needed is less than the tree height

or most query points. In the case of R

∗-tree, the number of disk

ead accesses depends on the size of the empty space in relation to

he occupied space (inside MBRs) and is larger than the tree height

or all node sizes. Studying the results for the execution time, we

ote that there is a fairly constant difference in favor of the xBR

+ -
ree against the other two trees. This query (PLQ) is related to the

ree height and the size of MBRs that enclose the data points. So

t seems easier for the R

∗-tree to decide that the query point does

ot exist in the dataset, than for the xBR

+ -tree. But this fact is not

nough to make the R

∗-tree faster than the xBR

+ -tree, since CPU

rocessing of the tree structure is lighter for the xBR

+ -tree.

Studying the complete set of results of PLQs using as query

oints the centroids of the query windows, we find out that for R

∗-

rees, the number of disk read accesses is smaller than the height

f the tree for all real datasets, while for synthetic datasets this

umber is larger than the height of the tree. For R

+ -trees, the

umber of disk read accesses is always equal to the height of the

ree because there is no overlapping between its leafs. For xBR

+ -
rees, the number of disk read accesses is always smaller than the

ree height. Summarizing I/O results, we find out that:

• The R

∗-tree needed the smallest number of disk read accesses

in most cases (41/60).
• The xBR

+ -tree needed the smallest number of disk read ac-

cesses in 18/60 cases.
• Only in one case the R

+ -tree needed the smallest number of

disk read accesses.

The results for the execution time showed that:

• The xBR

+ -tree is faster for all datasets and node sizes (60/60).

The WQ was executed using the N-DF algorithm, for all datasets

12) and all node sizes (5), searching for the points residing in-

ide the query windows of various sizes (6). The results of the

Q for the NArdND dataset, using 2 12 windows that cover the

hole data space, regarding the number of disk read accesses per

uery (Table 2) and the execution time vs. the node size (Table 2

nd Fig. 5 a) are shown as a representative case. The use of a ta-

le is preferred due to the large difference of values between R

+ -
ree and the other two trees, especially for the cases of small node

izes (1KB, 2KB). Note that, in Tables 2–7 , a value in bold is the

est value of its line.

In Table 2 , it is shown that the xBR

+ -tree needed fewer disk

ead accesses (Acc) than the other two trees. As the node size

ncreases, the absolute I/O difference between the trees becomes

maller, but the relative difference (Acc R + − Acc R ∗) /Acc R + has values

0.83, 0.80, 0.75, 0.72, 0.71) that are all in favor of R

∗-tree, while

he relative difference (Acc R ∗ − Acc xBR +) /Acc R ∗ has values (0.11, 0.15,

.22, 0.28, 0.26) that are all in favor of xBR

+ -tree. Note the re-

uction of the difference from the smallest node size (1KB) to the

176 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

Table 3

WQ : disk read accesses and exec. time per query on Park (node size = 4KB) vs. num-

ber of Query Windows.

Disk Read Accesses Execution Time

Number

Query Wins

R +

× 10 3
R ∗

× 10 3
xBR +

× 10 3
R +

μs

R ∗

μs

xBR +

μs

2 4 26.18 11.38 11.085 120,510 44,651 17,375

2 6 10.71 2.865 2.773 49,653 11,272 4,338

2 8 4.869 0.726 0.695 22,350 2861 1,088

2 10 2.312 0.188 0.175 10,997 739.0 280.6

2 12 1.122 0.051 0.045 5170 198.4 75.09

2 14 0.555 0.015 0.013 2638 59.18 24.91

Table 4

DRQ : disk read accesses per query on NArrND (2 12 query ranges) vs. node size.

Disk Read Accesses Execution Time (μs)

Node

Size

R +

(DF)

R ∗

(BF)

xBR +

(DF)

R +

(DF)

R ∗

(BF)

xBR +

(DF)

1 46.95 8.606 8.238 78.70 15.92 9.288

2 24.47 5.441 4.769 65.47 14.72 7.585

4 11.72 3.519 3.845 53.90 15.74 8.587

8 10.07 2.825 2.410 86.92 20.17 9.034

16 5.554 2.500 2.185 93.70 31.52 12.43

Fig. 6. DRQ : exec. time vs. (a) node size (NArrND, 2 12 query ranges) and (b) number

of query ranges (500KCN with node size = 4K).

Table 5

DRQ : disk read accesses and exec. time per query on 500KC1N (node size = 4KB) vs.

number of Query Ranges.

Disk Read Accesses Execution Time (μs)

Number

Query Points

R +

(DF)

R ∗

(BF)

xBR +

(DF)

R +

(DF)

R ∗

(BF)

xBR +

(DF)

2 4 725.5 376.5 413.0 3463 1822 724.3

2 6 303.9 106.9 108.5 1427 516.1 191.6

2 8 136.6 35.43 31.30 629.3 170.0 57.80

2 10 65.48 14.38 10.48 295.3 66.15 21.62

2 12 33.69 7.721 5.090 152.1 34.14 12.00

2 14 18.56 5.343 4.187 87.52 22.67 9.738

N

t

o

(

i

t

s

r

c

T

0

t

0

x

n

t

i

R

n

e

w

f

d

t

(

x
largest size (16KB). This is due to the reduction of tree height, as

the node size increases. In Table 2 and in Fig. 5 a, it is shown that

the xBR

+ -tree is the fastest and the R

∗-tree is faster than the R

+ -
tree, for all node sizes. All three trees needed less total execution

time (I/O and CPU) for the node size equal to 4KB, even though

larger node sizes needed fewer disk read accesses.

The results of the WQ on the large dataset Park indexed by trees

with node size = 4KB, for windows with variable size, regarding

the number of disk read accesses (Table 3) and the execution time

(Table 3 and Fig. 5 b) vs the number of query windows are shown

as one representative case. The use of a table is preferred due to

the large difference of values between R

+ -tree and the other two

trees. For both metrics (disk read accesses and execution time), the

xBR

+ -tree has the best performance and the R

+ -tree the worst.

Studying the complete set of results (360 experiments) of WQs ,

we validate the above performance behavior. Regarding I/O:

• The number of disk read accesses per query window for

the xBR

+ -tree was the smallest for the most experiments

(323/360).
• For the R

∗-tree, it was smallest for the remainder of the exper-

iments (37/360).

Regarding the execution time metric:

• The xBR

+ -tree had the best performance in all cases (360/360).
• The average relative difference of execution time performance

between the R

∗-tree and the xBR

+ -tree is between 49.6% and

64.7%, increasing with the enlargement of the node size.
• In all trees, the execution time is reduced as the node size is

increased. It is minimized for node size equal to 4KB, or 8KB.

This is due to a tradeoff between I/O cost and CPU processing.

This behavior holds for the experiments of all datasets and all

query windows.

6.5. Experiments for distance-based queries on single datasets (DRQs)

The DRQ was executed for all datasets (12) and all node sizes

(5), searching for the points inside the incircles of the query win-

dows, for various radius sizes (6 ε-values). Five Algorithms, N-DF,

DF, S-DF, H-DF and BF, were tested for all (360) experiments. The

number of disk read accesses is the same for the algorithms DF,

S-DF, H-DF and BF because they all use the mindist metric and

the query object is fixed. The R

+ -tree responded best with the

algorithms using the mindist in all cases (360/360) in disk read

accesses and faster with the DF algorithm (216/360 in execution

time). The R

∗-tree responded best with the algorithms using the

mindist in all cases (360/360) and faster with the BF algorithm in

most cases (350/360 in execution time). The xBR

+ -tree responded

best with the algorithms using the mindist in most cases (327/360)

and faster with the DF algorithm (191/360 in execution time). So

the performance comparison for the DRQ was performed among

the R

+ -tree with the DF, the R

∗-tree with the BF and the xBR

+ -
tree with the DF algorithm. The results of the DRQ executed on the
ArrND dataset for the 2 12 ranges (with ε ≤ 1
2 × 1 √

2 12
) scanning

he data space are shown as a representative case. The number

f disk read accesses per query (Table 4) and the execution time

 Table 4 and Fig. 6 a) vs node size, are depicted. The use of a table

s preferred because of the large difference of values between R

+ -
ree and the other two trees, especially for the cases of small node

izes (1KB, 2KB, 4KB).

In this table, it is shown that the xBR

+ -tree needed fewer disk

ead accesses (Acc) than the other two trees. As the node size in-

reases, the I/O difference between the trees remains almost stable.

he relative difference (Acc R + − Acc R ∗) /Acc R + has values (0.82, 0.78,

.70, 0.72, 0.55) that are all in favor of the R

∗-tree, while the rela-

ive difference (Acc R ∗ − Acc xBR +) /Acc R ∗ has values (0.04, 0.12, −0.09,

.15, 0.13) that are all (except the negative one) in favor of the

BR

+ -tree. Note the reduction of the difference from the smallest

ode size (1KB) to the largest one (16KB). This is due to the reduc-

ion of the tree height as the node size increases. In Table 4 and

n Fig. 6 a, it is shown that the xBR

+ -tree is the fastest and the

∗-tree is faster than the R

+ -tree, for all node sizes. The R

+ -tree

eeded less total execution time (I/O and CPU) with node size

qual to 4KB, while the other two trees needed less execution time

ith node size equal to 2KB, even though larger node sizes needed

ewer disk read accesses.

The results of the DRQ on the synthetic dataset 500 KCN in-

exed by trees with node size = 4KB, for various ε sizes, regarding

he number of disk read accesses (Table 5) and the execution time

 Table 5 and Fig. 6 a) vs. the number of query ranges are shown. The

BR

+ -tree has the best performance regarding disk read accesses

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 177

Fig. 7. K (= 100) NNQ : disk read accesses (a) and exec. time (b) vs. node size (NArdN, 2 12 query points) and disk read accesses (c) and exec. time (d) vs. K values of NN

(250KCN with node size = 4K, 2 12 query points).

i

R

e

w

6

a

(

w

D

s

a

t

e

i

H

t

b

t

s

d

a

q

B

o

t

f

n

T

0

d

−

s

r

t

s

t

Table 6

K (= 100) NNQ : disk read accesses per query on NArdN (2 12 query points) vs. node

size.

Disk Read Accesses Execution Time (μs)

Node

Size

R +

(BF)

R ∗

(BF)

xBR +

(H-DF)

R +

(BF)

R ∗

(BF)

xBR +

(H-DF)

1 268.1 16.93 26.28 514.1 40.00 43.88

2 125.7 12.23 15.11 400.1 45.58 39.12

4 89.92 9.022 9.636 625.9 55.10 37.41

8 43.91 5.979 7.655 4 4 4.0 68.53 51.27

16 26.92 5.227 5.860 533.9 99.92 60.99

s

t

(

t

a

t

C

m

l

x

t

c

t

2

t

p

N

T

K

a

t

(
n most of the cases (except the one for node size = 4KB) and the

+ -tree has the worst, while the xBR

+ -tree has always the best ex-

cution time performance and the R

+ -tree the worst.

Studying the complete set of results (360 experiments) of DRQs ,

e validate the above performance behavior. Regarding I/O:

• The xBR

+ -tree had the best performance in most experiments

(292/360).
• The R

∗-tree had the best performance in the remainder of the

experiments (68/360).

Regarding the execution time metric:

• The xBR

+ -tree had the best performance in all cases (360/360).
• The average relative difference of execution time performance

between the R

∗-tree and the xBR

+ -tree is between 49.3% and

68.4%, increasing with the enlargement of node size.

.6. Experiments for neighboring queries on single datasets (K-NNQs

nd CK-NNQs)

The KNNQ was executed for all datasets (12) and all node sizes

5), searching for the points near the centroids of the (2 12) query

indows, for various values of K (4). Four Algorithms, DF, S-DF, H-

F and BF, were tested for all (240) experiments. The R

+ -tree re-

ponded best with the BF algorithm (222/240 in disk read accesses

nd 201/240 in execution time). The R

∗-tree responded best with

he BF algorithm (224/240 in disk read accesses and 239/240 in ex-

cution time). The xBR

+ -tree responded best with the BF algorithm

n disk read accesses in most cases (166/240) and was faster with

-DF algorithm in 161/240 cases. We considered as most impor-

ant criterion the execution time and selected the BF algorithm for

oth R-trees and the H-DF algorithm for the xBR

+ -tree to continue

he performance comparison for KNNQs . In Fig. 7 a and b, we can

ee the results of the KNNQ with K = 100 executed on the NArdN

ataset for the 2 12 query points, distributed evenly in data space,

s one representative case. The number of disk read accesses per

uery point and the execution time vs. the node size are shown.

ecause of the large difference of values between R

+ -tree and the

ther two trees, it is not easy to distinguish the differences be-

ween xBR

+ -tree and R

∗-tree. Therefore, Table 6 has been included.

In this table and in Fig. 7 a, it is shown that the R

∗-tree needed

ewer disk read accesses (Acc) than the other two trees. As the

ode size increases, the I/O difference between the trees decreases.

he relative difference (Acc R + − Acc R ∗) /Acc R + has values (0.94, 0.90,

.90, 0.86, 0.81) that are all in favor of the R

∗-tree and the relative

ifference (Acc R ∗ − Acc xBR +) /Acc R ∗ has values (−0.55, −0.24, −0.07,

0.28, −0.12) that are also all in favor of the R

∗-tree. As the node

ize is increased exponentially, the number disk read accesses is

educed but not with the same ratio. For the R

+ -tree the ratio of

he numbers of disk read accesses between two consecutive node

izes varies (from 0.47 up to 0.72). For the R

∗-tree the ratio of

he numbers of disk read accesses between two consecutive node
izes presents smaller variation (from 0.66 up to 0.87) while for

he xBR

+ -tree this ratio presents an intermediate level of variation

from 0.58 up to 0.79). In Table 6 and in Fig. 7 b, it is shown that

he xBR

+ -tree is faster than R

∗-tree for node sizes larger than 1KB,

nd the R

∗-tree is faster than the R

+ -tree, for all node sizes. All

hree trees have different behavior in total execution time (I/O and

PU). For the R

+ -tree, the total execution time varies without any

onotony. For the R

∗-tree the execution time has monotonous en-

argement with node size. Contrary to the previous behaviors, the

BR

+ -tree needed less total execution time for a node size equal

o 4KB, even though larger node sizes needed fewer disk read ac-

esses.

In Fig. 7 c and d, we can see the results of the KNNQ on the syn-

hetic dataset 250 KCN indexed by trees with node size = 4KB, for

12 query points, regarding the number of disk read accesses and

he execution time vs. the value of K . The xBR

+ -tree has the best

erformance regarding disk read accesses looking for the 1 or 10

Ns, while R

∗-tree has best performance for the 10 2 or 10 3 NNs.

he R

+ -tree needed the most disk read accesses for all values of

 . The xBR

+ -tree has always the best execution time performance

nd the R

+ -tree has the worst.

Studying the complete set of results (240 experiments for each

ree) of the KNNQ we validate the above performance behavior:

• The number of disk read accesses per query point was the

smallest for the R

∗-tree in most experiments (173/240).
• It was the smallest for the xBR

+ -tree in the rest of the experi-

ments (67/240).
• Regarding the execution time metric, the xBR

+ -tree had the

best performance in most cases (209/240).
• The xBR

+ -tree has the minimum number of best performance

cases in execution time with the smallest node size (26/48) and

has the maximum number of best performance cases with the

biggest node size (4 8/4 8).
• The average relative difference of execution time performance

between the R

∗-tree and the xBR

+ -tree in the node size of 16KB

is 49.2%.

The CKNNQ was executed for all datasets (12) and all node sizes

5), searching for the points inside the incircles of the (2 12) query

178 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

Fig. 8. CK NNQ : disk read accesses (a) and exec. time (b) vs. node size (NArrN, 2 12 query points) and read disk read accesses (c) and exec. time (d) vs. K values of NN (Water

with node size = 4K, 2 12 query points).

Table 7

CK NNQ : disk read accesses per query on NArrN (2 12 query points) vs. node size.

Disk Read Accesses Execution Time (μs)

Node

Size

R +

(BF)

R ∗

(BF)

xBR +

(BF)

R +

(BF)

R ∗

(BF)

xBR +

(BF)

1 20.04 4.094 4.273 36.06 10.21 6.703

2 11.83 2.977 3.128 33.58 10.65 6.389

4 8.067 2.215 2.214 40.53 12.47 7.556

8 5.113 2.169 2.135 45.50 17.72 8.641

16 4.648 2.131 2.147 77.13 50.07 13.31

r

a

t

t

6

t

q

s

d

N

t

2

a

l

q

K

a

{

6

b

s

M

w

6

i

w

f

D

t

r

S

s

t
windows (with ε ≤ 1
2 × 1 √

2 12
), for various values of K (4). Four Al-

gorithms, DF, S-DF, H-DF and BF, were tested for all (240) exper-

iments. All the three structures responded best with the BF al-

gorithm. In detail, the R

+ -tree responded best in 197/240 exper-

iments in disk read accesses and in 191/240 in execution time.

The R

∗-tree responded best 202/240 in disk read accesses and

in 132/240 in execution time. Finally, xBR

+ -tree responded best

144/240 in disk read accesses and in 190/240 in execution time.

In Fig. 8 a and b, we can see the results of the CKNNQ executed on

the NArrN dataset for the 2 12 query points, distributed evenly in

data space, as one representative case. The number of disk read ac-

cesses per query point and the execution time vs. the node size are

shown. Because of the large difference of values between R

+ -tree

and the other two trees, it is not easy to distinguish the differences

between xBR

+ -tree and R

∗-tree. Therefore, Table 7 is depicted.

In this table and in Fig. 8 a, it is shown that the R

∗-tree and

xBR

+ -tree needed an almost equal number of disk read accesses

(Acc). As the node size increases, the I/O difference between the

trees decreases. The relative difference (Acc R + − Acc R ∗) /Acc R + has

values (0.80, 0.75, 0.73, 0.58, 0.54) that are all in favor of the R

∗-

tree and the relative difference (Acc R ∗ − Acc xBR +) /Acc R ∗ has values

(−0.04, −0.05, 0.00, 0.02, −0.01), the 3 negative ones being in fa-

vor of the R

∗-tree. For the R

+ -tree the ratio of the numbers of disk

read accesses between two consecutive node sizes varies widely

(from 0.59 up to 0.91). For the R

∗-tree this ratio presents a smaller

variation (from 0.73 up to 0.98) and for the xBR

+ -tree it presents a

similar variation (from 0.73 up to 1.01). In Table 7 and in Fig. 8 b, it

is shown that the xBR

+ -tree is the fastest and the R

∗-tree is faster

than the R

+ -tree, for all node sizes. All three trees have similar be-

havior in total execution time (I/O and CPU). The total execution

time has monotonous increment with node size. In Fig. 8 c and d,

we can see the results of the CKNNQ on the large real dataset Wa-

ter indexed by the three trees with node size = 4KB, for 2 12 query

points, regarding the number of disk read accesses and execution

time vs. the value of K . Because of the large number of nodes in

this dataset the number of disk read accesses is quite stable for

all trees. It is most stable for the R

+ -tree while for the other two

trees varies between 1.4 and 1.8 for R

∗-tree and 1.8 and 2.2 for

the xBR

+ -tree. The R

∗-tree has the best performance regarding disk
ead accesses and the R

+ -tree the worst, while the xBR

+ -tree has

lways the best execution time performance and the R

+ -tree has

he worst.

Studying the complete set of results (240 experiments for each

ree) of the CKNNQ , we validate the above performance behavior.

• The number of disk accesses per query point for the xBR

+ -
tree was the smallest in most experiments (138/240) and for

the R

∗-tree it was the smallest in the rest of the experiments

(102/240).
• Regarding the execution time metric, the xBR

+ -tree has the

best performance in all the experiments (240/240).
• The average relative difference of execution time performance

between the R

∗-tree and the xBR

+ -tree is between 39.6% and

60.5%, increasing with the enlargement of the node size.

.7. Creation of input for queries on dual datasets

In order to evaluate the performance of the trees in spa-

ial queries where two indexes are involved (distance join

ueries), we have used ten combinations between real and

ynthetic spatial datasets. Four combinations between real

atasets of North America (i.e. NAppN × NArrN, NAppN × NArdN,

ArrN × NArdN and NArrND × NArdND), four combinations be-

ween two separate instances of synthetic clustered datasets (i.e.

50 KC 1 N × 250 KC 2 N , 500 KC 1 N × 50 0 KC 2 N , 50 0 KC 1 N × 500 KC 2 N ,

nd 10 0 0 KC 1 N × 10 0 0 KC 2 N) and two combinations between the

argest real datasets (i.e. NArdND × Water and Water × Park) for

uery processing of the KCPQ and εDJQ . For KCPQs , the number

 of closest pairs gets values from the set {1, 10, 10 2 , 10 3 , 10 4 }

nd for εDJQs , the maximum distance (ε) gets values from the set

 0 , 1 . 25 × 10 −5 , 2 . 5 × 10 −5 , 5 × 10 −5 , 10 × 10 −5 }.

.8. Experiments for join (dual dataset) queries (KCPQs and εDJQs)

In the experiments performed, the effect of LRU-buffer has also

een studied, because a node of the one tree can be paired with

everal nodes of the other tree, in successive or not time points.

oreover, both trees corresponding to a combination of datasets

ere of equal node size.

.8.1. Selection of buffer size and algorithms for the KCPQ

All combinations of datasets (10) and all node sizes (5), for var-

ous values of K (5) and with several values of LRU-buffer size (5)

ere used. In this series of experiments the target was to find out

or which buffer size and with which algorithm among S-DF-2, H-

F-2, C-DF-2 and C-BF-2 each tree responded better. It is obvious

hat as the size of the LRU-buffer increases, the number of disk

ead accesses decreases and the related results will be omitted.

o for the above target, only the execution time per query will be

tudied.

In Fig. 9 a, we can see the results of the KCPQ on the combina-

ion of synthetic datasets 10 0 0 KC 1 N × 10 0 0 KC 2 N , both indexed by

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 179

Fig. 9. K CPQ with (a) R + -tree on 10 0 0KC1N × 10 0 0KC2N; (b) R ∗-tree on NArdND × Water; (c) xBR + -tree on NArdND × Water: exec. time vs. buffer size per Algorithm with

K = 10 3 and node size = 2KB.

Table 8

K(= 10 3) CPQ with R + -tree: Min Exec Time per query for all combinations of

datasets.

Combination

of datasets

Exec time

(s)

Node size

(KB)

Buffer size

(pages) Algorithm

NAppN × NArrN 0.1725 1 2 8 C-BF-2

NAppN × NArdN 0.4091 1 0 C-DF-2

NArrN × NArdN 1.0496 8 0 C-BF-2

NArrND × NArdND 1.8803 8 0 C-BF-2

250KC1N × 250KC2N 1.7793 8 2 10 C-BF-2

500KC1N × 500KC2N 5.6271 16 2 8 C-BF-2

500KC2N × 1000KC1N 12.112 16 2 12 C-BF-2

10 0 0KC1N × 10 0 0KC2N 28.515 16 2 12 C-BF-2

NArdND × Water 342.64 16 2 12 C-BF-2

R

p

2

t

t

T

(

7

5

t

e

t

i

n

t

w

i

a

c

n

w

a

o

t

o

t

a

a

d

m

a

h

r

Table 9

K(= 10 3) CPQ with R ∗-tree: Min Exec Time per query for all combinations of

datasets.

Combination

of datasets

Exec time

(ms)

Node size

(KB)

Buffer size

(pages) Algorithm

NAppN × NArrN 56.640 2 0 C-BF-2

NAppN × NArdN 136.46 4 0 C-BF-2

NArrN × NArdN 157.64 1 2 8 C-BF-2

NArrND × NArdND 310.96 1 2 8 C-BF-2

250KC1N × 250KC2N 206.93 4 2 6 C-BF-2

500KC1N × 500KC2N 405.03 4 2 6 C-BF-2

500KC2N × 1000KC1N 599.60 8 2 6 C-BF-2

10 0 0KC1N × 10 0 0KC2N 845.10 16 0 C-BF-2

NArdND × Water 30.255 1 0 C-BF-2

Water × Park 1,031.9 4 0 C-BF-2

Table 10

K(= 10 3) CPQ with xBR + -tree: Min Exec Time per query for all combinations of

datasets.

Combination

of datasets

Exec time

(ms)

Node size

(KB)

Buffer size

(pages) Algorithm

NAppN × NArrN 17.302 16 0 C-DF-2

NAppN × NArdN 34.306 4 0 H-DF-2

NArrN × NArdN 57.432 8 0 C-BF-2

NArrND × NArdND 114.51 16 0 C-BF-2

250KC1N × 250KC2N 42.111 4 0 C-BF-2

500KC1N × 500KC2N 71.459 8 0 C-BF-2

500KC2N × 1000KC1N 99.164 8 0 C-BF-2

10 0 0KC1N × 10 0 0KC2N 124.28 8 0 C-BF-2

NArdND × Water 30.706 2 0 C-BF-2

Water × Park 473.56 4 0 C-BF-2

s

(

i

c

x

p

2

2

t

1

e

(

3

d

m

a

i

x

+ -trees with node size of 2KB, searching for the K = 10 0 0 closest

airs with all four algorithms, using LRU-buffer sizes of 0, 2 6 , 2 8 ,

10 , 2 12 pages, as one representative case. It is shown that with

he C-DF-2 and C-BF-2 algorithms the R

+ -tree is approximately 3

imes faster than with the other algorithms for all buffer sizes.

he lowest execution time value is with a buffer size of 2 10 pages

nodes) for all algorithms and the minimum execution time value,

2,450 ms (72 s), with the C-DF-2 algorithm.

Considering the complete set of 45/50 experiments for the

 buffer sizes (the biggest of the 10 dataset combinations, Wa-

er × Park, was not tested for all node sizes because of the big ex-

cution time values it required), we collected the minimum execu-

ion time values for each combination and these results are shown

n Table 8 . It is shown that there is not a single best buffer size,

either a single best node size. We conclude that for combina-

ions between small real datasets it is better to have no buffering,

hile for combinations of small synthetic and larger real datasets

t is better to have buffering larger than 2 8 pages (nodes). The best

lgorithm for R

+ -trees executing the KCPQ is the C-BF-2 (in 9/10

ases).

In Fig. 9 b, we can see the results of the KCPQ on the combi-

ation of real datasets NArdND × Water, both indexed by R

∗-trees

ith node size = 2KB, searching for the K = 10 0 0 closest pairs with

ll four algorithms, using LRU-buffer sizes of 0, 2 6 , 2 8 , 2 10 , 2 12 , as

ne representative case. It is shown that with the C-BF-2 algorithm

he R

∗-tree is from 1.6 up to 2 times faster than the best of the

ther tree algorithms for all buffer sizes. The smallest execution

ime value was achieved with buffer size of 0 pages (nodes) for all

lgorithms and the minimum execution time value, 42.418 ms, was

chieved with the C-BF-2 algorithm.

Considering the complete set of all (50) experiments for the 10

ataset combinations and 5 buffer sizes, we collected the mini-

um execution time values for each combination. These results

re shown in Table 9 . It is shown that R

∗-tree responded best in

alf of the cases (5/10), including the combination between large

eal datasets, without buffering, while in the 4 combinations with
ynthetic datasets it responded best with 2 6 pages in LRU-buffer

in 3/4 cases). The best algorithm for R

∗-trees executing the KCPQ

s the C-BF-2.

Finally, in Fig. 9 c, we can see the results of the KCPQ on the

ombination of real datasets NArdND × Water, both indexed by

BR

+ -trees with node size = 2KB, searching for the K = 10 0 0 closest

airs, with all four algorithms, using LRU-buffer sizes of 0, 2 6 , 2 8 ,

10 , 2 12 , as one representative case. It is shown that with the C-BF-

 algorithm the xBR

+ -tree is from 3.0 up to 3.3 times faster than

he best of the S-DF-2 and C-DF-2 algorithms and from 1.1 up to

.2 faster than the H-DF-2 algorithm for all buffer sizes. The low-

st execution time value was achieved with buffer size of 0 pages

nodes) for all algorithms and the minimum execution time value,

0.706 ms, was achieved with the C-BF-2 algorithm.

Considering the complete set of all (50) experiments for the 10

ataset combinations and 5 buffer sizes, we collected the mini-

um execution time values for each combination and these results

re shown in Table 10 . It is shown that xBR

+ -tree responded best

n all the cases (10/10) without buffering. The best algorithm for

BR

+ -trees executing the KCPQ was the C-BF-2 (in 8/10 cases).

180 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

Fig. 10. K CPQ on large real datasets Water × Park: disk read accesses (a) and exec. time (b) vs. node size (K = 10 3) and disk read accesses (c) and exec. time (d) vs. K values

of CP (node size = 4K).

Table 11

ε DJQ (ε = 1 . 25 × 10 −5) with R + -tree: Min Exec Time per query for all combinations

of datasets.

Combination

of datasets

Exec time

(ms)

Node size

(KB)

Buffer size

(pages) Algorithm

NAppN × NArrN 0.146 1 2 10 H-DF-2

NAppN × NArdN 0.347 1 0 H-DF-2

NArrN × NArdN 0.873 1 2 10 H-DF-2

NArrND × NArdND 2.085 1 2 10 H-DF-2

250KC1N × 250KC2N 5.994 1 2 8 H-DF-2

500KC1N × 500KC2N 25.16 1 2 8 H-DF-2

500KC2N × 1000KC1N 29.98 1 2 10 H-DF-2

10 0 0KC1N × 10 0 0KC2N 55.97 1 2 8 H-DF-2

NArdND × Water 2202 4 2 10 C-BF-2

6

K

w

t

n

b

d

s

c

q

t

t

a

b

m

t

b

f

l

a

n

a

b

i

r

a

c

b

t

≤

2

w
In conclusion, we note that:

• There is no meaning for a comparison between the R

+ -tree and

the other two trees because of the very large difference in ex-

ecution times observed (the R

+ -tree was mainly designed for

PLQs and WQs).
• Based on the above results, we continue the performance com-

parison between the R

∗-tree and xBR

+ -tree, using the C-BF-2

algorithm for both trees without LRU-buffer (0 pages) for all

node sizes, for various values of K (1, 10, 10 2 , 10 3 and 10 4) and

for both performance metrics (i.e. the number of disk read ac-

cesses and the execution time).

6.8.2. Performance study of the KCPQ

In Fig. 10 a and b, we can see the results of the KCPQ with

K = 10 3 , executed on the combination of large real datasets Wa-

ter × Park, as one representative case. The number of disk read

accesses per query point and the execution time vs. the node size

are shown. The xBR

+ -tree needed fewer disk read accesses (Acc)

than the R

∗-trees having node sizes between 2KB and 8KB. As the

node size increases, the ratio of the I/O difference between the two

trees varies. The relative difference (Acc R ∗ − Acc xBR +) /Acc R ∗ has val-

ues (−1.59, 0.22, 0.20, 0.12, −0.23), the 3 positive one being in fa-

vor of the xBR

+ -tree. For the R

∗-tree, the ratio of the numbers of

disk read accesses between two consecutive node sizes presents a

small variation (from 0.5 up to 0.6) and is always decreased. For

the xBR

+ -tree, this ratio presents a similar variation from 0.6 up

to 0.8 (except the first case from 1 to 2 KB where it is 0.2). In

Fig. 10 b, it is shown that the xBR

+ -tree is faster than R

∗-tree for

all node sizes bigger than 1KB. For both trees the execution time

has a minimum value with a node size of 4KB, even though larger

node sizes needed fewer disk read accesses. In Fig. 10 c and d, we

can see the results of the KCPQ on the same combination of large

real datasets indexed by trees with node size of 4KB, regarding the

number of disk read accesses and the execution time vs. the value

of K . The number of disk read accesses needed by both trees re-

mains stable although the number of K is increased exponentially.

The xBR

+ -tree has the best performance regarding disk read ac-

cesses in all the cases.

Studying the complete set of results (250 experiments for each

tree) for the KCPQ , we validate the above performance behavior.

• The number of disk accesses per query for the xBR

+ -tree was

the smallest for most experiments (224/250).
• The xBR

+ -tree was faster than the R

∗-tree in all experiments

with node sizes of 2KB and 16KB, in 46/50 cases with node size

of 4KB, while, in total, it was faster in 231/250 cases.
• The average relative difference of execution time performance

between the R

∗-tree and the xBR

+ -tree is between 62.7% and
71.9%. f
.8.3. Selection of buffer size and algorithms for the εDJQ

For the εDJQ the same scenario of experiments to the one of

CPQ was performed to find out for which buffer size and with

hich algorithm among S-DF-2, H-DF-2, C-DF-2 and C-BF-2 each

ree responded better, regarding the execution time metric.

In Fig. 11 a, we can see the results of the εDJQ on the combi-

ation of synthetic datasets 10 0 0 KC 1 N × 10 0 0 KC 2 N , both indexed

y R

+ -trees, with node size of 4KB, searching for the pairs with

istance ≤ 1 . 25 × 10 −5 with all four algorithms, using LRU-buffer

izes of 0, 2 6 , 2 8 , 2 10 , 2 12 pages, as one representative case. We

hose to present the same dataset combinations to the previous

uery (KCPQ) because of the similarity which exists between the

wo types of queries. It is shown that with the C-DF-2 algorithm

he R

+ -tree is slightly faster than with the other algorithms for

ll buffer sizes. The lowest execution time value is achieved with

uffer size of 2 10 pages (nodes) for all algorithms and the mini-

um execution time value, 152,541 ms (152 s), is achieved with

he C-DF-2 algorithm.

Considering the complete set of 45/50 experiments for the 5

uffer sizes (the biggest combination Water × Park was not tested

or all node sizes because of the big execution time values) we col-

ected the minimum execution time values for each combination

nd these results are shown in Table 11 . It is shown that there is

ot a single best buffer size, while 9/10 best execution times were

chieved with node size equal to 1KB. We conclude that for com-

inations between small real datasets it is better to have 2 10 pages

n LRU-buffer, while for combinations of small synthetic and large

eal datasets it is better to have 2 8 buffer pages (nodes). The best

lgorithm for R

+ -trees executing the εDJQ is the H-DF-2 (in 9/10

ases).

In Fig. 11 b, we can see the results of the εDJQ on the com-

ination of real datasets NArdND × Water, both indexed by R

∗-

rees with node size of 4KB, searching for the pairs with distance

1 . 25 × 10 −5 with the four algorithms, using LRU-buffer sizes of 0,

6 , 2 8 , 2 10 , 2 12 pages, as one representative case. It is shown that

ith the C-BF-2 algorithm the R

∗-tree is from 1.1 up to 1.4 times

aster than the best of the other tree algorithms for all buffer sizes.

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 181

Fig. 11. ε DJQ with (a) R + -tree on 10 0 0KC1N × 10 0 0KC2N; (b) R ∗-tree on NArdND × Water; (c) xBR + -tree on NArdND × Water: exec. time vs. buffer size per Algorithm with

ε = 1 . 25 × 10 −5 and node size = 4KB.

Table 12

ε DJQ (ε = 1 . 25 × 10 −5) with R ∗-tree: Min Exec Time per query for all combinations

of datasets.

Combination

of datasets

Exec time

(ms)

Node size

(KB)

Buffer size

(pages) Algorithm

NAppN × NArrN 50.619 4 0 C-BF-2

NAppN × NArdN 129.48 4 0 C-BF-2

NArrN × NArdN 157.00 1 2 8 C-BF-2

NArrND × NArdND 319.55 1 2 8 C-BF-2

250KC1N × 250KC2N 176.06 8 2 6 C-BF-2

500KC1N × 500KC2N 356.79 16 2 6 C-BF-2

500KC2N × 1000KC1N 532.82 16 0 C-BF-2

10 0 0KC1N × 10 0 0KC2N 782.53 16 2 6 C-BF-2

NArdND × Water 25.698 1 0 C-BF-2

Water × Park 1,212.5 4 0 C-BF-2

T

p

v

d

m

s

i

d

s

(

i

c

x

d

s

s

u

2

g

a

a

w

l

d

x

d

t

Table 13

ε DJQ (ε = 1 . 25 × 10 −5) with xBR + -tree: Min Exec Time per query for all combina-

tions of datasets.

Combination of

datasets

Exec

Time(s)

Node

size

Buffer

size Algorithm

NAppN × NArrN 11.094 16 0 H-DF-2

NAppN × NArdN 27.156 4 0 H-DF-2

NArrN × NArdN 46.244 4 0 H-DF-2

NArrND × NArdND 119.86 2 0 H-DF-2

250KC1N × 250KC2N 21.346 16 0 C-BF-2

500KC1N × 500KC2N 47.708 8 0 H-DF-2

500KC2N × 1000KC1N 73.090 8 0 H-DF-2

10 0 0KC1N × 10 0 0KC2N 102.57 8 0 H-DF-2

NArdND × Water 23.360 2 0 C-BF-2

Water × Park 682.02 4 0 H-DF-2

6

ε

W

a

s

t

o

t

l

(

R

t

u

t

F

f

v

f

o

b

a

o

t

h

c

t

he lowest execution time value is achieved with buffer size of 0

ages (nodes) for all algorithms and the minimum execution time

alue, 37.837 ms, is achieved with the C-BF-2 algorithm.

Considering the complete set of all (50) experiments for the 10

ataset combinations and 5 buffer sizes, we collected the mini-

um execution time values for each combination and these re-

ults are shown in Table 12 . It is shown that R

∗-tree responded best

n half cases (5/10), including the combinations between large real

atasets, without buffering, while in the 4 combinations between

ynthetic datasets it responded best with 2 6 pages in LRU-buffer

in 3/4 cases). The best algorithm for R

∗-trees executing the εDJQ

s the C-BF-2.

Finally, in Fig. 11 c, we can see the results of the εDJQ on the

ombination of real datasets NArdND × Water, both indexed by

BR

+ -trees with node size of 4KB, searching for the pairs with

istance ≤ 1 . 25 × 10 −5 with all four algorithms, using LRU-buffer

izes of 0, 2 6 , 2 8 , 2 10 , 2 12 pages, as one representative case. It is

hown that with the C-BF-2 algorithm the xBR

+ -tree is from 2.8

p to 3.5 times faster than the best among the S-DF-2 and C-DF-

 algorithms and from 1.03 up to 1.13 faster than the H-DF-2 al-

orithm for all buffer sizes. The lowest execution time value was

chieved with buffer size of 2 6 pages (nodes) for all algorithms

nd the minimum execution time value, 33.437 ms, was achieved

ith the C-BF-2 algorithm.

Considering the complete set of all (50) experiments, we col-

ected the minimum execution time values for each combination of

atasets and these results are shown in Table 13 . It is shown that

BR

+ -tree responded best without buffering in all combinations of

atasets. The best algorithm for xBR

+ -trees executing the εDJQ is

he H-DF-2 (8/10 cases).

In conclusion, we note that:

• There is no meaning for a comparison between the R

+ -tree and

the other two trees for εDJQ , because of the very big difference

in execution times observed (the R

+ -tree was mainly designed

for PLQs and WQs).
• We continue the performance comparison between the R

∗-tree

and xBR

+ -tree, using the C-BF-2 algorithm for the first one and

the H-DF-2 algorithm for the second one, without LRU-buffer

(0 pages) for all node sizes, for various values of ε(0 , 1 . 25 ×
10 −5 , 2 . 5 × 10 −5 , 5 × 10 −5 , 10 × 10 −5) and for both performance

metrics (i.e. the number of disk read accesses and the execution

time).

.8.4. Performance study of the εDJQ

In Fig. 12 a and b, we can see the results of the εDJQ with

 = 1 . 25 × 10 −5 executed on the combination of large real datasets

ater × Park, as one representative case. The number of disk read

ccesses per query and the execution time vs. the node size are

hown. The xBR

+ -tree needed fewer disk read accesses (Acc) than

he R

∗-tree for all node sizes. As the node size increases, the ratio

f the I/O difference between the two trees varies. The relation be-

ween I/O performance and the node size is quite stable (almost

inear). The relative difference (Acc R ∗ − Acc xBR +) /Acc R ∗ has values

0.76, 0.71, 0.66, 0.61, 0.49), all in favor of the xBR

+ -tree. For the

∗-tree, the ratio of the numbers of disk read accesses between

wo consecutive node sizes presents a small variation (from 0.42

p to 0.49 and always is decreased) and for the xBR

+ -tree this ra-

io presents a similar level of variation, from 0.51 up to 0.60. In

ig. 12 b, it is shown that the xBR

+ -tree is faster than the R

∗-tree

or all node sizes. For both trees the execution time has minimum

alue with node size of 4KB, even though larger node sizes needed

ewer disk read accesses. In Fig. 12 c and d, we can see the results

f the εDJQ on the same combination of large real datasets indexed

y trees with node size of 4KB, regarding the number of disk read

ccesses and the execution time vs. the value of ε. The number

f disk read accesses needed by xBR

+ -tree remains very stable al-

hough the value of ε is increased exponentially. The xBR

+ -tree

as the best performance regarding disk read accesses in the most

ases (3/5), while in the execution time it was the best in all cases.

Studying the complete set of results (250 experiments for each

ree) for the εDJQ , we validate the above performance behavior.

182 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

Fig. 12. ε DJQ on large real datasets Water × Park: disk read accesses (a) and exec. time (b) vs. node size (ε = 1 . 25 × 10 −5) and disk read accesses (c) and exec. time (d) vs.

ε values (node size = 4KB).

Table 14

Synopsis of efficiency of xBR + -tree in all queries vs. R ∗-tree.

all node sizes node size = 16KB

Query name Time I/O Time gain I/O

Single-dataset queries:

WQ 360/360 323/360 72/72 64.7% 68/72

DRQ 360/360 292/360 72/72 68.4% 67/72

KNNQ 209/240 67/240 4 8/4 8 49.2% 18/48

CKNNQ 240/240 138/240 4 8/4 8 60.5% 30/48

Dual-dataset queries:

KCPQ 231/250 224/250 50/50 71.9% 45/50

εDJQ 235/250 216/250 49/50 66.4% 43/50

W

t

j

q

t

R

p

n

g

t

t

i

• The number of disk accesses per query for the xBR

+ -tree was

the smallest for most experiments (216/250).
• The xBR

+ -tree was faster than the R

∗-tree in all experiments

with node sizes 2KB and 4KB, in 49/50 cases with node size of

16KB, while in total it was faster in 235/250 case.
• The average relative difference of execution time performance

between the R

∗-tree and the xBR

+ -tree is between 66.2% and

68.2%.

6.9. Summary and conclusions of experimental results

The experimental results of tree building are summarized in the

following.

• The xBR

+ -tree needs a little less space (in most cases) and is

built in a smaller time than the two R-trees.
• The xBR

+ -tree building is faster than the R

∗-tree and the R

∗-

tree is faster than R

+ -tree for all datasets and node sizes.
• This difference is increasing as the node size increases and be-

comes bigger for the large real datasets.

The fractions of cases where the xBR

+ -tree is an execution

time and I/O performance winner, for each (single, or dual dataset)

query, is depicted in Table 14 . The second and third columns re-

fer to the aggregate results for all page sizes, while the fourth and

sixth columns refer to results when using a page size of 16KB. The

fifth column refers to the xBR

+ -tree gain in execution time, (R

∗-

tree exec. time - xBR

+ -tree exec. time) / R

∗-tree exec. time, for the

page size of 16KB (e.g. a gain value equal to 66.67% for a query

means that the xBR

+ -tree needs 1/3 of the execution time of the

R

∗-tree to answer this query). By studying these results, we con-

clude that the xBR

+ tree is a clear performance winner, in relation

to the R

∗-tree (the best among R-trees). More specifically:

• The xBR

+ -tree is a big winner in execution time in all cases and

a winner in I/O in all cases except of the I/O of the KNNQ .
• The xBR

+ -tree is an almost absolute winner when the page size

equals 16KB (for this page size the xBR

+ -tree is a relative win-

ner in the I/O of the KNNQ , too). Note the high percentages of
gain for this page size.
Note that the R

+ -tree was designed specifically for PLQs and

Qs and not for other ones, like DRQs, KNNQs, KCPQs , εDJQs , etc.

The regular subdivision of space, the additional representa-

ion of the minimum rectangles bounding the actual data ob-

ects (DBRs), the extra termination condition applicable in certain

ueries and the storage order of the entries of internal nodes gave

he ability to the xBR

+ -tree to be a more efficient structure than

-trees and even than the R

∗-tree. More specifically, the building

erformance of the xBR

+ -tree can be credited to the following:

• Due to the regular subdivision of space, the calculations needed

are much fewer and simpler than those of the R

∗-tree.

The building time of an xBR

+ -tree is smaller even than the one

eeded for building the respective, very simple, R

+ -tree. The very

ood performance of the xBR

+ -tree in queries can be credited to

he following:

• The regular subdivision of space leads to laying the

(sub)quadrants, created by the data distribution, in the cor-

ners of the embedding (sub)space. In this way, the distances

between them are maximized and pruning during join query

processing is increased.
• Due to the quadrangular shape of the (sub)quadrants, the di-

mensions of the contained DBRs are minimized. The minimal

dimensions of DBRs in conjunction with their laying in the cor-

ners of the embedding (sub)space allows the high exploitation

of metrics like mindist (the R

+ -trees, due to their structure, do

not utilize efficiently such pruning techniques).
• In xBR

+ -trees, DBRs are exploited as an extra tool of delimiting

the subspace containing data objects.
• By examining the entries of an xBR

+ -tree internal node in re-

verse preorder traversal of the Quadtree that corresponds to

this internal node (a subregion is examined before any enclos-

ing region of this subregion), multiple examinations of overlap-

ping regions are avoided (at least in point location and window

queries).
• The disjointness between regions and the combination of the

region of each node with the Shape property of this node gives

the ability of an extra termination condition in window and

range queries (this condition cannot be applied in R-trees, due

to their structure).

The conclusions arising from the performance results of the al-

ernative DF/BF algorithms for processing queries are summarized

n the following:

• For PLQs and WQs , N-DF algorithms are the only applicable,

since the criterion for such queries is boolean (true/false).
• For the rest of the queries, among DF algorithms, the winning

algorithm and the respective percentage of cases is depicted in

Table 15 . It is obvious that the H-DF variants are the most effi-

cient ones in xBR

+ -trees, in 4/5, and in R

∗-trees, in 3/5 of the

query types. As noted in Section 5.1 , this is due to partial sort-

ing of (pairs of) entries by mindist when H-DF variants are used.

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 183

Table 15

The winning DF algorithm (and the respective percentage of cases) for DRQs, KNNQs,

CKNNQs, KCPQs , and εDJQs .

R + -tree R ∗-tree xBR + -tree

Query name (%) Alg (%) Alg (%) Alg

Single-dataset queries:

DRQ 69.2 DF 75.3 DF 54.4 DF

KNNQ 64.6 S-DF 81.7 H-DF 99.2 H-DF

CKNNQ 64.6 H-DF 65.8 H-DF 51.7 H-DF

Dual-dataset queries:

KCPQ 90.0 C-DF-2 54.8 H-DF-2 95.6 H-DF

εDJQ 44.8 C-DF-2 99.6 C-DF-2 95.6 H-DF-2

7

x

a

t

q

t

w

r

d

f

s

a

o

x

a

e

c

f

R

t

D

N

d

b

i

a

l

c

t

t

t

p

i

A

M

d

R

B

B

B

C

C

C
C

C

C

C
E

F

F

G

G

G

H

H

H

H

H

J

K

K

K

K

L

L

M

M

N

O

O

R
• BF algorithms perform significantly better on the R

∗-tree, since,

due to overlapping between regions of nodes at the same level,

the minimization of I/O that BF algorithms achieve plays an im-

portant role.

. Conclusions and future work

In Roumelis et al. (2015) , the xBR

+ -tree was compared to the

BR-tree for single dataset queries and datasets of medium size

nd “a detailed relative performance study of the xBR

+ -tree against

he R

∗-tree and/or R

+ -tree for single dataset and multi-dataset

ueries” was mentioned as the main future work target, since

hese structures had never been compared in the literature.

In this paper, we accomplished this target based on single, as

ell as, on dual dataset queries, utilizing existing and new algo-

ithms and performing experiments on medium, as well as, large

atasets. More specifically, in this paper, we presented algorithms

or PLQs and WQs used in the above three structures. We also pre-

ented for these structures N-DF, S-DF and BF existing algorithms

nd the new H-DF algorithm for DRQs, KNNQs and CKNNQs . More-

ver, we presented the first algorithms for KCPQs and εDJQs on the

BR

+ -tree and a new alternative DF algorithm (H-DF-2) for KCPQs

nd εDJQs for all the three trees. We also highlighted the differ-

nces between alternative algorithms.

Moreover, by a detailed performance comparison (I/O and exe-

ution time) of xBR

+ -trees (non-overlapping trees of the quadtree

amily), R

+ -trees (non-overlapping trees of the R-tree family) and

∗-trees (industry standard belonging to the R-tree family) for

ree building, processing single point dataset queries (PLQs, WQs,

RQs, KNNQs and CKNNQs) and distance-based join queries (KN-

Qs , εDJQs), using medium and large spatial (real and synthetic)

atasets, we showed that the xBR

+ -tree is a clear winner in tree

uilding, a big winner in execution time in all cases and a winner

n I/O in all cases, except for the I/O of the KNNQ (it is an almost

bsolute winner when the page size equals 16KB).

The building performance of the xBR

+ -tree is due to the regu-

ar subdivision of space that leads to much fewer and simpler cal-

ulations. The higher query performance of the xBR

+ -tree is due

o the combination of the regular subdivision of space, the addi-

ional representation of the minimum rectangles bounding the ac-

ual data objects (DBRs) and the extra termination condition ap-

licable in certain queries and the storage order of the entries of

nternal nodes gave

In the future we plan to:

• Compare the three trees for data of dimensionality larger than

2,
• Create extensions of the xBR

+ -tree for non-point data objects

and algorithms for processing queries on them and compare to

competitive structures,
• Create extensions of the xBR

+ -tree for parallel and distributed

environments,
• +
Create algorithms to bulk-load xBR -trees.
cknowledgments

Work of the second, third and fourth author funded by the

INECO research project [TIN2013-41576-R] and the Junta de An-

alucia research project [P10-TIC-6114].

eferences

eckmann, N. , Kriegel, H.-P. , Schneider, R. , Seeger, B. , 1990. The R ∗-tree: An effi-
cient and robust access method for points and rectangles. In: SIGMOD Confer-

ence.Atlantic City, NJ, pp. 322–331 .

rinkhoff, T. , Horn, H. , Kriegel, H.-P. , Schneider, R. , 1993. A storage and access archi-
tecture for efficient query processing in spatial database systems. In: SSD Con-

ference. Singapore, pp. 357–376 .
rown, P. , 2001. Object-Relational Database Development: A Plumber’s Guide. In-

formix Press .
hen, Y. , Patel, J.M. , 2007. Efficient evaluation of all-nearest-neighbor queries. In:

ICDE Conference. Istanbul, Turkey, pp. 1056–1065 .

heung, K.L. , Fu, A.W.-C. , 1998. Enhanced nearest neighbour search on the R-tree.
ACM SIGMOD Record 27 (3), 16–21 .

omer, D. , 1979. The ubiquitous B-tree. ACM Comput. Surv. 11 (2), 121–137 .
orral, A. , Almendros-Jiménez, J.M. , 2007. A performance comparison of dis-

tance-based query algorithms using R-trees in spatial databases. Inf. Sci. 177
(11), 2207–2237 .

orral, A. , Manolopoulos, Y. , Theodoridis, Y. , Vassilakopoulos, M. , 20 0 0. Closest pair

queries in spatial databases. In: SIGMOD Conference. Dallas, TX, pp. 189–200 .
orral, A. , Manolopoulos, Y. , Theodoridis, Y. , Vassilakopoulos, M. , 2004. Algorithms

for processing k -closest-pair queries in spatial databases. Data Knowl. Eng. 49
(1), 67–104 .

orti, P. , Kraft, T.J. , Mather, S.V. , Park, B. , 2014. PostGIS Cookbook. Packt Publishing .
ldawy, A. , Mokbel, M.F. , 2015. Spatialhadoop: a MapReduce framework for spatial

data. In: ICDE Conference. Seoul, South Korea, pp. 1352–1363 .
aloutsos, C. , Barber, R. , Flickner, M. , Hafner, J. , Niblack, W. , Petkovic, D. , Equitz, W. ,

1994. Efficient and effective querying by image content. J. Intell. Inf. Syst. 3

(3/4), 231–262 .
inkel, R.A. , Bentley, J.L. , 1974. Quad trees: a data structure for retrieval on compos-

ite keys. Acta Informatica 4 (1), 1–9 .
aede, V. , Günther, O. , 1998. Multidimensional access methods. ACM Comput. Surv.

30 (2), 170–231 .
reener, S. , Ravada, S. , 2013. Applying and Extending Oracle Spatial. Packt Publish-

ing .

uttman, A. , 1984. R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD Conference. Boston, MA, pp. 47–57 .

jaltason, G.R. , Samet, H. , 1995. Ranking in spatial databases. In: SSD Conference.
Portland, ME, pp. 83–95 .

jaltason, G.R. , Samet, H. , 1998. Incremental distance join algorithms for spatial
databases. In: SIGMOD Conference. Chicago, IL, pp. 237–248 .

jaltason, G.R. , Samet, H. , 1999. Distance browsing in spatial databases. ACM Trans.

Database Syst. 24 (2), 265–318 .
oel, E.G. , Samet, H. , 1992. A qualitative comparison study of data structures

for large line segment databases. In: SIGMOD Conference. San Diego, CA,
pp. 205–214 .

oel, E.G. , Samet, H. , 1995. Benchmarking spatial join operations with spatial out-
put. In: VLDB Conference. Zurich, Switzerland, pp. 606–618 .

agadish, H.V. , 1991. A retrieval technique for similar shapes. In: SIGMOD Confer-

ence. Denver, CO, pp. 208–217 .
anth, K.V.R. , Ravada, S. , Abugov, D. , 2002. Quadtree and R-tree indexes in Oracle

Spatial: a comparison using GIS data. In: SIGMOD Conference. Madison, WI,
pp. 546–557 .

im, Y.J. , Patel, J.M. , 2010. Performance comparison of the R ∗-tree and the quadtree
for k -NN and distance join queries. IEEE Trans. Knowl. Data Eng. 22 (7),

1014–1027 .

orn, F. , Sidiropoulos, N. , Faloutsos, C. , Siegel, E.L. , Protopapas, Z. , 1996. Fast near-
est neighbor search in medical image databases. In: VLDB Conference. Bombay,

India, pp. 215–226 .
othuri, R.V. , Godfrind, A. , Beinat, E. , 2007. Pro Oracle Spatial for Oracle Database

11g. APress .
eutenegger, S.T. , Edgington, J.M. , López, M.A. , 1997. STR: a simple and efficient al-

gorithm for R-tree packing. In: ICDE Conference.Birmingham, UK, pp. 497–506 .

omet, D.B. , Salzberg, B. , 1990. The hb-tree: a multiattribute indexing method with
good guaranteed performance. ACM Trans. Database Syst. 15 (4), 625–658 .

anolopoulos, Y. , Nanopoulos, A . , Papadopoulos, A .N. , Theodoridis, Y. , 2006. R-trees:
Theory and Applications. Springer, London, UK .

ehrotra, R. , Gary, J.E. , 1993. Feature-based retrieval of similar shapes. In: ICDE Con-
ference. Vienna, Austria, pp. 108–115 .

elson, R.C. , Samet, H. , 1986. A consistent hierarchical representation for vector
data. In: SIGGRAPH Conference.Dallas, TX, pp. 197–206 .

be, R. , Hsu, L. , 2015. PostGIS in Action, 2 Manning .

hsawa, Y. , Sakauchi, M. , 1990. A new tree type data structure with homogeneous
nodes suitable for a very large spatial database. In: ICDE Conference. Los Ange-

les, USA, pp. 296–303 .
igaux, P. , Scholl, M. , Voisard, A. , 20 0 0. Introduction to Spatial Databases: Applica-

tions to GIS. Morgan Kaufmann .

http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100002878
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0036

184 G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185

S

S

S

S

S

V

Y
Roumelis, G., Corral, A., Vassilakopoulos, M., Manolopoulos, Y., 2016. New plane-
sweep algorithms for distance-based join queries in spatial databases. GeoInfor-

matica 1–58. doi: 10.1007/s10707- 016- 0246- 1 . First Online.
Roumelis, G. , Vassilakopoulos, M. , Corral, A. , 2011. Nearest neighbor algorithms

using xBR-trees. In: Panhellenic Conference on Informatics. Kastoria, Greece,
pp. 51–55 .

Roumelis, G. , Vassilakopoulos, M. , Corral, A. , 2011. Performance comparison of
xBR-trees and R ∗-trees for single dataset spatial queries. In: ADBIS Conference.

Vienna, Austria, pp. 228–242 .

Roumelis, G. , Vassilakopoulos, M. , Loukopoulos, T. , Corral, A. , Manolopoulos, Y. , 2015.
The xBR + -tree: an efficient access method for points. In: DEXA Conference. Va-

lencia, Spain, pp. 43–58 .
Roussopoulos, N. , Kelley, S. , Vincent, F. , 1995. Nearest neighbor queries. In: SIGMOD

Conference. San Jose, CA, pp. 71–79 .
Samet, H. , 1984. The quadtree and related hierarchical data structures. ACM Comput.

Surv. 16 (2), 187–260 .

Samet, H. , 1990a. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Boston, MA .
amet, H. , 1990b. The Design and Analysis of Spatial Data Structures. Addison-Wes-
ley, Boston, MA .

amet, H. , 2007. Foundations of Multidimensional and Metric Data Structures. Mor-
gan Kaufmann, San Francisco, CA .

chwartz, B. , Zaitsev, P. , Tkachenko, V. , 2012. High Performance MySQL - Optimiza-
tion, Backups, and Replication, 3 O’Reilly .

ellis, T. , Roussopoulos, N. , Faloutsos, C. , 1987. The R + -tree: a dynamic index for
multi-dimensional objects. In: VLDB Conference. Brighton, UK, pp. 507–518 .

hekhar, S. , Chawla, S. , 2003. Spatial Databases - A Tour. Prentice Hall .

Shin, H. , Moon, B. , Lee, S. , 2003. Adaptive and incremental processing for distance
join queries. IEEE Trans. Knowl. Data Eng. 15 (6), 1561–1578 .

assilakopoulos, M. , Manolopoulos, Y. , 20 0 0. External balanced regular xBR-trees:
new structures for very large spatial databases. In: Advances in Informatics: Se-

lected papers of the 7th Panhellenic Conference on Informatics. World Scientific
Publ. Co., pp. 324–333 .

in, X. , Düntsch, I. , Gediga, G. , 2011. Quadtree representation and compression of

spatial data. Trans. Rough Sets 13, 207–239 .

http://dx.doi.org/10.1007/s10707-016-0246-1
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30138-3/sbref0052

G. Roumelis et al. / The Journal of Systems and Software 132 (2017) 165–185 185

G eece and is currently working as a teacher and a vice-principle in a local high school of
T the Open University of Cyprus (2011) and is currently a PhD candidate in the Informatics

D ude access methods, query processing and spatial and spatio-temporal databases. He has
p rests also include software development and support for educational and administration

u

M matics from the University of Patras (Greece) and a PhD in Computer Science from the
D oniki (Greece). He has been with the University of Macedonia, the Aristotle University

o c Open University, the Open University of Cyprus, the University of Western Macedonia,
t served the Greek Public Administration as an Informatics Engineer. Currently, he is an

A ter Engineering of the University of Thessaly. He has participated in/coordinated several

R ent. His research interests include databases, data structures, algorithms, data mining,
e ent.

A ersity of Almeria (Spain). He received his PhD (2002) in Computer Science (European

D veral research projects in Spain (INDALOG, vManager, etc.) and Greece (CHOROCHRONOS,
A a & Knowledge Engineering, The Computer Journal, GeoInformatica, Information Sciences,

e main research interests include access methods, query processing and spatial and spatio-
t

Y tle University of Thessaloniki. He has been with the University of Toronto, the University

o ector of the University of Western Macedonia in Greece, Head of his own department,
a a Management. He has co-authored 5 monographs and 8 textbooks in Greek, as well as

> 0 distinct academic institutions (h-index = 49). He has also received 4 best paper awards

f keynote speaker in 13 international events. He has served as main co-organizer of several
m 06, EANN 2007, ICANN 2010, AIAI 2012, WISE 2013, CAISE 2014, MEDI 2015, ICCCI 2016,

T Cyprus, Czech Republic, Estonia, EU, Hong-Kong, Georgia, Greece, Israel, Italy, Poland and
R rnal, The World Wide Web Journal, The Computer Journal.
eorge Roumelis studied Physics in Aristotle University of Thessaloniki (AUTH), Gr
hessaloniki, Greece. He obtained a master’s degree in Informational Systems from

epartment of AUTH, working on spatial databases. His main research interests incl
ublished several original papers in international conferences and journals. His inte

nits in the public educational system of Greece.

ichael Vassilakopoulos obtained a five-year Diploma in Computer Eng. and Infor
epartment of Electrical and Computer Eng. of the Aristotle University of Thessal

f Thessaloniki, the Technological Educational Institute of Thessaloniki, the Helleni
he University of Central Greece and the University of Thessaly. For three years he

ssociate Professor of Database Systems at the Department of Electrical and Compu

TD projects related to Databases, GIS, WWW, Information Systems and Employm
mployment analysis, information systems, GIS and current trends of data managem

ntonio Corral is an Associate Professor at the Department of Informatics, Univ

octorate) from the University of Almeria (Spain). He has participated actively in se
RCHIMEDES, etc.). He has published in referred scientific international journal (Dat

tc.), conferences (SIGMOD, SSD, ADBIS, SOFSEM, PADL, etc.) and book chapters. His
emporal databases.

annis Manolopoulos is Professor with the Department of Informatics of the Aristo

f Maryland at College Park and the University of Cyprus. He has also served as R
nd Vice-Chair of the Greek Computer Society. His research interest focuses in Dat

 300 journal and conference papers. He has received > 11.0 0 0 citations from > 170

rom SIGMOD, ECML/PKDD, MEDES and ISSPIT conferences and has been invited as
ajor conferences (among others): ADBIS 2002, SSTD 2003, SSDBM 2004, ICEIS 20

PDL 2017. He has also acted as evaluator for funding agencies in Austria, Canada,
ussia. Currently, he serves in the Editorial Boards of (among others) The VLDB Jou

	Efficient query processing on large spatial databases: A performance study
	1 Introduction
	2 Related work and motivation
	3 The R-tree family
	3.1 The R*-tree
	3.2 The R-tree

	4 The xBR-tree
	4.1 Internal nodes
	4.2 Leaf nodes
	4.3 Splitting process of nodes
	4.3.1 Splitting of internal nodes
	4.3.2 Splitting of leaves

	5 Spatial query processing
	5.1 Algorithmic techniques used
	5.2 Point location and window queries
	5.3 Distance range queries
	5.4 Nearest neighbor queries
	5.5 Distance join queries

	6 Experimentation
	6.1 Experimental settings
	6.2 Experiments for comparing index structures
	6.3 Creation of input for queries on single datasets
	6.4 Experiments for non distance-based queries on single datasets (PLQs and WQs)
	6.5 Experiments for distance-based queries on single datasets (DRQs)
	6.6 Experiments for neighboring queries on single datasets (K-NNQs and CK-NNQs)
	6.7 Creation of input for queries on dual datasets
	6.8 Experiments for join (dual dataset) queries (KCPQs and DJQs)
	6.8.1 Selection of buffer size and algorithms for the KCPQ
	6.8.2 Performance study of the KCPQ
	6.8.3 Selection of buffer size and algorithms for the DJQ
	6.8.4 Performance study of the DJQ

	6.9 Summary and conclusions of experimental results

	7 Conclusions and future work
	 Acknowledgments
	 References

