
Exploiting Web Log Mining for Web Cache

Enhancement

Alexandros Nanopoulos Dimitrios Katsaros Yannis Manolopoulos

Department of Informatics, Aristotle University

Thessaloniki 54006, Greece

falex,dimitris,manolopog@delab.csd.auth.gr

Abstract. Improving the performance of the Web is a crucial require-

ment, since its popularity resulted in a large increase in the user perceived

latency. In this paper, we describe a Web caching scheme that capitalizes

on prefetching. Prefetching refers to the mechanism of deducing forth-

coming page accesses of a client, based on access log information. Web log

mining methods are exploited to provide e�ective prediction of Web-user

accesses. The proposed scheme achieves a coordination between the two

techniques (i.e., caching and prefetching). The prefetched documents are

accommodated in a dedicated part of the cache, to avoid the drawback

of incorrect replacement of requested documents. The requirements of

the Web are taken into account, compared to the existing schemes for

bu�er management in database and operating systems. Experimental re-

sults indicate the superiority of the proposed method compared to the

previous ones, in terms of improvement in cache performance.

Keywords: Prediction, Web Log Mining, Web Caching, Prefetching,

Association rules.

1 Introduction

The problem of modelling and predicting a user's accesses on a Web-site has
attracted a lot of research interest. It has been used [20] to improve the Web
performance through caching [2, 12] and prefetching [34, 22, 35, 29, 39, 40],
recommend related pages [19, 38], improve search engines [11] and personalize
browsing in a Web site [39].

Nowadays, the improvement of Web performance is a very signi�cant require-
ment. Since the Web's popularity resulted in heavy traÆc in the Internet, the
net e�ect of this growth was a signi�cant increase in the user perceived latency.
Potential sources of latency are the Web servers' heavy load, network congestion,
low bandwidth, bandwidth underutilization and propagation delay.

The caching of Web documents at various points in the network (client, proxy,
server [2, 12]) has been developed to reduce latency. Caching capitalizes on the
temporal locality. E�ective client and proxy caches reduce the client perceived
latency, the server load and the number of travelling packets, thus increase the
available bandwidth. Several caching policies have been proposed during the pre-
vious years, especially for proxy servers [2, 12]. Nevertheless, there exist cases

where the bene�ts reaped due to caching can be limited [28], e.g., when Web
resources tend to change very frequently, resources cannot be cached (dynami-
cally generated Web documents), they contain cookies (this issue matters only
caching proxies), or when request streams do not exhibit high temporal locality.
The negative e�ects of the �rst problem can be partially alleviated by employing
some, costly though, cache consistency mechanism. The second problem could
be addressed by enhancing the cache with some of the respective server's query
processing capabilities, so as to perform the necessary processing on data [13].
The third and fourth problems seem that cannot be tackled by caching at all.

Web prefetching is the process of deducing client's future requests for Web
documents and getting that documents into the cache, in the background, be-
fore an explicit request is made for them. Prefetching capitalizes on the spatial
locality present in request streams, that is, correlated references for di�erent
documents, and exploits the client's idle time, i.e., the time between successive
requests. The main advantages of employing prefetching is that it prevents band-
width underutilization and hides part of the latency. However, an over-aggressive
scheme may cause excessive network traÆc. Additionally, without a carefully de-
signed prefetching scheme, several transferred documents may not be used by
the client at all, thus they waste bandwidth. We focus on predictive prefetch-
ing [18], since other categories, like informed prefetching [36], seem inapplicable
due to the client-server paradigm of computing the Web implements and its hy-
pertextual nature (i.e., a user in most cases does not know in advance his/her
future document requests).

Web prefetching acts complementary to caching, it can signi�cantly improve
cache performance and reduce the user-perceived latency [34]. However, there are
cases where a non-e�ective prefetching algorithm, presenting the aforementioned
drawbacks, can impact cache performance [25]. For instance, if the accuracy of
the prefetching algorithm is low, then several useful documents in the cache
may be evicted by prefetched documents that are not going to be referenced.
Therefore, there exists a requirement for both

{ accurate prefetching algorithms, and

{ caching schemes that will coordinate with prefetching.

In this paper we describe a scheme for: (a) E�ective prefetching, which ex-
ploits Web log mining, it is not a�ected by factors like noise (i.e., random docu-
ment requests) and high-order dependencies among document requests and thus,
can signi�cantly improve cache performance. (b) Coordination of caching and
prefetching, by storing in the cache the prefetched documents separately from
those which have been explicitly requested. The latter approach is based on
the one of [25], which dedicates part of the cache to separately accommodate
prefetched documents. However the scheme in [25] was designed for database
disk bu�er management. Therefore, it does not address the signi�cantly di�er-
ent requirements encountered in the case of Web caching. Experimental results
indicate that the proposed scheme outperforms existing ones in terms of im-
provement in cache performance.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 describes the prefetching algorithm, whereas in Section 4 the caching
scheme is presented. Section 5 provides the experimental results and �nally, Sec-
tion 6 contains the conclusions.

2 Related Work

Research on predictive Web prefetching has involved the signi�cant issue of
log �le processing and the determination of user transactions (sessions) from
it [17, 14]. However, the most important factor in Web prefetching is the pre-
diction algorithm. For the purpose of prediction, most of the Web prefetching
schemes rely on existing algorithms from the context of �le systems. This ap-
proach neglects issues that arise in the case of Web, and stem from both the
contents of Web documents in a site (which induce dependencies to their ref-
erences) and the site's structure, i.e., the links among documents (which a�ect
user's navigation).

The scheme described in [34] uses a prefetching algorithm proposed in the
context of �le systems. It constructs a data structure, called the Dependency

Graph (DG), which maintains the pattern of access to di�erent documents stored
at the server. As described above, the choice of forthcoming pages can depend,
in general, on a number of previously visited pages [20]. DG considers only �rst
order dependencies. Thus, if several previous visits have to be considered (i.e.,
high-order dependencies), DG does not take them into account. The work de-
scribed in [9] uses essentially the approach of dependency graph, but it makes
predictions by computing the transitive closure of this graph. This method was
tested and did not show signi�cantly better results compared to the simple de-
pendency graph.

The scheme described in [35, 22] also uses a prefetching algorithm from the
context of �le systems [18]. It is based on the notion of anm-order Prediction-by-
Partial-Match (PPM) predictor. An m-order PPM predictor maintains Markov
predictors of order j, for all 1 � j � m. This scheme is also called All-mth-Order

Markov model [20]. For a complete description of the scheme see [18, 35, 22]. Dur-
ing a session, although a user may navigate according to a pattern, s/he may
also randomly navigate to pages that do not belong to any pattern (and can be
modelled as noise). Hence, a session can both contain documents belonging to
patterns and others that do not, and these documents are interleaved. However,
PPM considers only subsequences of consecutive documents inside sessions, thus
it is a�ected by the existence of noise.1 Moreover, PPM uses a constant max-
imum value for the order. However, no method for the determination of this
value is provided in [35, 22]. A choice of a small maximum may have a similar
disadvantage as in the case of DG, whereas a choice of a large maximum may
lead to unnecessary computational cost, due to maintenance of a large number
of rules.

1 The use of thresholds for statistical signi�cance, e.g., support values [3], does not

address the intervening of random accesses within the patterns.

Recently, several algorithms have been proposed for mining patterns from
Web logs [14, 8, 17, 37, 32]. The Web prefetching strategy proposed in [29] de-
velops a specialized association rule mining algorithm to discover the prefetched
documents. It discovers dependencies between pairs of documents (association
rules with one item in the head and one item in the body). However, the scheme
in [29], similar to DG, considers only �rst order dependencies and, similar to
PPM, it considers only consecutive subsequences within sessions. Therefore, it
presents the de�ciencies of both approaches, as they are described above. The
improvement of the eÆciency of PPM is examined in [20], based on three pruning
criteria. These criteria are used in a post-processing step, on the set of discovered
rules, and can be applied to any prefetching scheme, thus they are orthogonal
issues to the subject examined in this paper. Finally, two variations of the PPM
prefetcher are described in [39, 40]. The �rst one is a subset of the PPM whereas
in the second one the selection of prefetching rules to activate is determined by
\weights" assigned on them.

Web caching has received signi�cant attention and several new algorithms
were proposed, ranging from extensions to traditional policies (like LRU, LFU,
etc.) to key-based policies [1] and more sophisticated function-based policies, such
as GD-Size [12], PSS [2]. Moreover, signi�cant results regarding optimal on-line
and o�-line caching policies for the Web were presented in [24].

Regarding the coordination of caching and prefetching, Jeon and Noh [25]
presented the W2R algorithm. Motivated by the 2Q algorithm [26], W2R di-
vides the available cache space into two partitions, called Weighing Room and
Waiting Room. Prefetched documents initially enter the Waiting Room, before
becoming \normal" cached documents in the Weighing Room. However, W2R
was designed for database disk bu�er management. It uses the One Block Looka-
head (OBL) prefetching algorithm, which prefetches only one page each time.
Moreover, all pages are of the same size. Web caching presents signi�cantly dif-
ferent requirements, since di�erent prefetching algorithms than the simple OBL
are used (several documents are allowed to be prefetched each time and thus
we must prioritize among them), and documents of di�erent sizes have to be
accommodated in the cache.

3 Prefetching algorithm

As described in Section 2, none of the existing prefetching algorithms addresses
at the same time both the factors of noise and high-order dependencies, that
may exist within transactions (i.e., user sessions). In this section we describe
an algorithm that addresses all the aforementioned factors. It uses the history
of user accesses, maintained in the Web server's log �le, to derive rules. Since
the rules, which are appropriate for the prefetching, should be based on the
navigation behaviour of the client2 (expressed as the process of visiting links)
we describe a pruning criterion that is based on the site structure. This pruning

2 These rules are not appropriate for the identi�cation of other types of usage patterns

(see also Section 3.2).

can signi�cantly reduce the computational overhead. On the other hand, it is
not adequate for other types of applications, such as recommendation systems.

3.1 Prefetching based on rules

Association rules [3] consider several orders of dependencies among items, and
the maximum order is derived from the data, i.e., it does not have to be an
arbitrary constant value as in PPM. For the support counting procedure, a
transaction T supports sequences that do not necessarily contain consecutive
documents in T . Thus, this procedure can e�ectively bypass random document
visits (i.e., noise) that may exist within transactions. However, the ordering of
documents inside a transaction is important for the purpose of prefetching but
it is ignored by association rules mining algorithms [3].

Therefore, a di�erent de�nition of the candidate generation procedure and
the containment criterion, for the support counting procedure, are required. At
the k-th phase, the candidates are derived from the self-join Lk�1 1 Lk�1 [3].
To take the ordering of documents into account, the joining is done as fol-
lows. Let two access sequences be S1 = hp1; : : : ; pk�1i and S2 = hq1; : : : ; qk�1i,
both in Lk�1. If p1 = q1; : : : ; pk�2 = qk�2, then they are combined to form
two candidate sequences, which are: c1 = hp1; : : : ; pk�2; pk�1; qk�1i and c2 =
hp1; : : : ; pk�2; qk�1; pk�1i (i.e., c1 and c2 are not considered as identical, as in [3]).
For instance, sequences hA;B;Ci and hA;B;Di are joined to produce hA;B;C;Di
and hA;B;D;Ci. The containment criterion is de�ned as follows:

De�nition 1 If T = hp1; : : : ; pni is a transaction, an access sequence S =
hp01; : : : ; p

0

mi is contained by T i�:

{ there exist integers 1 � i1 < : : : < im � n such that p0k = pik , for all k,

where 1 � k � m. 2

A sequence, S, of documents contained in a transaction, T , with respect to
De�nition 1 is called a subsequence of T and the containment is denoted as
S � T .

Based on a set of rules discovered with the approach described above (along
with the corresponding con�dence values), prefetching is performed with the
procedure depicted in Figure 1. In this algorithm, R denotes the current request
stream formed by the user and M is the maximum number of prefetched doc-
uments (user parameter). Also, we use an upper limit, called maxSize, in the
size of each prefetched document, since it is not desired to transfer very large
documents to avoid waste of bandwidth in case of an incorrect prediction.

Evidently, the fact that the ordering of documents within transactions is
preserved during the discovery of rules, impacts the complexity of candidate
generation and support counting procedures. For this reason, we present in the
following section a pruning criterion according to the site structure, that reduces
the overhead.

Finally, it has to be mentioned that, di�erently from [3], the approach in [14]
takes into account the ordering within access sequences. However, similar to

Procedure Prefetch(Array R, int M , oat maxSize)

//h; b are sequences of document ids

begin

1. prefetchSeq = ;
2. foreach rule h) b such that h � R

3. foreach d 2 b such that d.size < maxSize

4. prefetchSeq = prefetchSeq
S
d

5. endfor

6. endfor

7. sort documents in prefetchSeq in decreasing order of the con�dence

of the corresponding rule and keep the �rst M ones.

8. return prefetchSeq

end

Fig. 1. Prefetching algorithm.

PPM algorithm [35], it considers only subsequences with consecutive accesses
within transactions. The work described in [4, 30] examines the problem of min-
ing sequential patterns which consider ordering, as well. However, the algorithms
in [4, 30] do not take into account that user navigation is performed in a site
which has a structure determined by its linkage. Therefore, they do not address
the problem of dramatic increase in the number of candidates. Moreover, the
work in [30] seeks patterns in a single large sequence of events using a slid-
ing window over this sequence and thus it does not consider user sessions as is
our case. The scheme proposed in [23] uses a scheme that is called mining of
path fragments. It is based on discovering patterns containing regular expres-
sions with the � wild-card between accesses of a sequence. Although the use of
wild-cards presents di�erences in a semantic level (it may distinguishes the se-
quences that explicitly do not contain consecutive accesses), for the purpose of
Web-prefetching, the use of De�nition 1 assures the addressing of noise within
transactions without the need for wild-cards. Moreover, in the case of path frag-
ments, the candidate-trie [3] should store, additionally to ordinary candidates,
the ones containing wild-cards. Consequently, a signi�cant space and time over-
head (since the wild-cards may appear in a number of combinations that grows
rapidly with the size of candidates). However, [23] does not present any method
for the support counting phase to address the above issues, and no experimental
results are provided to examine its performance.

3.2 Pruning criterion

For the purposes of prefetching, we focus on the paradigm of traversal pat-
terns [14], which will be used for prediction, not on usage patterns. Based on
the assumption that navigation is performed by following the hypertext links,
the traversal patterns have to reect the way navigation is performed guided by

the site structure. Thus, we can apply pruning according to the structure of the
site. This is based on the approach in [32, 33]. The work in [23] also mentions
the possibility of taking into account the links between site documents but, dif-
ferently from [32, 33], it focuses only on the second phase of the algorithm. The
pruning based on the structure of the site results in a signi�cant reduction in the
number of candidates. Without pruning, due to the consideration of ordering a
large number of candidates would have been generated.

For instance, let three documents A;B and C for which the following link-
age exists: A ! B and A ! C. Assume a user-traversal T = hA;B;A;Ci,
and that the second request for A is due to the `back-button', which will be
probably serviced by the client-cache. Thus, the server encounters the traver-
sal T 0 = hA;B;Ci. T 0 may constitute a useful pattern for the description of
site-usage, since it indicates a correlation between the usage of documents A, B
and C. However, the objective of prefetching is to predict the forthcoming visits
within the user's traversal. Based on the assumption of navigation through the
hypertext links, let the corresponding traversal patterns will hA;Bi and hA;Ci.
Having visited document A, the prefetching of B and C can take place based on
these patterns. Thus, along the lines of [14]3, we do not focus on usage patterns
that indicate general correlation between document usage, as the correlation be-
tween the usage of A;B and C. In contrast, we are interested in the identifying
the traversal patterns, like hA;Bi and hA;Ci, in order to predict the forthcom-
ing visits that will be done at A by following the corresponding links. Evidently,
from the aspect of traversal patterns, the correlation between B and C exists
only due to their linkage with A, di�erently than the usage pattern of T 0 that
is based on the paradigm of association rules among basket data [3]. Thus, at
A only the two aforementioned patterns will be required in order to prefetch B

and C.
According to the proposed pruning criterion, an access sequence, and thus a

candidate, has to correspond to a path in this graph. The candidate generation
procedure and the apriori-pruning criterion [3] have to be modi�ed appropriately,
and the corresponding procedure is depicted in Figure 2 (for the generation of
candidates at phase k+1). Lk denotes the set of large sequences (i.e., frequent)
at phase k and G the graph, which corresponds to the site structure.

Example 1 Let a site with the structure depicted in Figure 3a and a collection
of transactions depicted in Figure 3b. Candidate hB;E;Ci corresponds to a path
in the graph. On the other hand, candidate hB;C;Ei does not, thus it can be
pruned. The reason of pruning the later candidate is that no user transaction will
contain hB;C;Ei, since there are no links to produce such an access sequence
that will contain (according to De�nition 1) this candidate and increase its sup-
port. For instance, candidate hB;E;Ci will have support equal to two (contained
in �rst and fourth transaction), whereas candidate hB;C;Ei is not supported by
any transaction. The same applies for candidates of length equal to two. Among
candidates hA;Bi and hB;Ai, the former can be pruned. Evidently, hB;Ai is

3 Please also notice that similar to [14] we consider maximum forward traversals, which

discard backward movements.

Procedure GenCandidates(Lk, G)

begin

1. candidate-trie = ;
2. foreach L = h`1; : : : ; `ki, L 2 Lk

3. N+(`k) = fvj9 arc `k ! v 2 Gg
4. foreach v 2 N+(`k)

5. /* apply the modi�ed apriori-pruning */

6. if v 62 L and L0 = h`2; : : : ; `k; vi 2 Lk

7. C = h`1; : : : ; `k; vi
8. if (8S � C) S 2 Lk, where jSj = k and S 6= L0)

9. insert C in the candidate-trie

10. endif

11. endif

12. endfor

13. endfor

14. return candidate-trie

end

Fig. 2. Candidate generation algorithm.

contained in three transactions, whereas hA;Bi in none. Containment is tested
with respect to De�nition 1. Thus, candidate hB;Ai is contained in the third
transaction, i.e., hB;D;Ai, although documents B and A are not consecutive in
the transaction. a

D

A C

B E

<B, E, C>

<D, B, A>

<B, D, A>

<D, B, E, C>

<B, A, C>

<D, A, C>

Database

a) b)

Fig. 3. a: An example of site structure. b: A database of access sequences.

With the procedure described in Figure 2, candidate generation is performed
by extending candidates according to their outgoing edges in the graph. Conse-
quently, the ordering is preserved and only paths in the graph are considered.
Additionally, the apriori-pruning criterion of [3] is modi�ed, since, for a given
candidate, only its subsequences have to be tested and not any arbitrary sub-

set of documents (step 8), as in [3]. Candidates are stored in a trie structure.
Each transaction that is read from the database is decomposed into the paths
it contains and each one of them is examined against the trie, thus updating
the support of the corresponding candidates. Procedure GenCandidates aims at
improving the eÆciency of candidate generation. For this reason, step 3 deter-
mines the set N+ of nodes that are linked by the last element of the candidate.
This way, in step 6 the trie is probed only by the corresponding L0 sequences.
In contrast, if N+ is not determined (because one may consider that the arc
lk ! v will be examined during the probing of the trie for the L

0 sequences
that are members of Lk), the formation of L0 sequences would �rst require the
consideration of any possible element to be appended at the end of L and then
the probing of the trie for all possible L0 (since no combination can be discarded
without having �rst to look-up in the trie). Evidently, the cost for the separate
determination of N+ pays o� in the former case due to the much smaller number
of trie look-ups.

Although several heuristics have been proposed for the reduction of the num-
ber of candidates for the Apriori algorithm, they involve basket data. The prun-
ing with respect to the site structure is required for the particular problem, due
to the large increase in the number of candidates that is the result of preserving
ordering. The pruning criterion does not have the objective of addressing the
noise that may occur within user transactions. This is addressed by the contain-
ment criterion given in De�nition 1. In contrast, it opts for a reduction in the
number of candidates, since the latter signi�cantly a�ects the overall execution
time required for the candidate generation and support counting procedures [3].
Hence their eÆciency is improved by this pruning criterion. The e�ectiveness of
pruning is veri�ed by experimental results in Section 5. More details can be found
in [32, 33], whereas a further examination of the generalization of the described
prefetching algorithm compared to existing ones, can be found in [31]. Finally,
it worths mentioning that the proposed pruning criterion is used in combination
with the support-pruning criterion. However, the modi�ed-apriori criterion is
applied (steps 6{9 of the GenCandidates procedure), which examines only the
subpaths of a sequence and not any arbitrary subsequence.

4 Caching Policy

Based on the idea in [25], we describe a caching scheme PECache, which divides
the cache into a Weighing Room (with LRU as the replacement policy) and a
Waiting Room (using the FIFO policy). This partitioning of the cache space
aims at isolating the e�ect of document mispredictions or the e�ect of aggressive
prefetching. It achieves this by dedicating part of the cache space to exploit the
temporal locality of the request stream (on-demand requests) and the rest of
the cache space is dedicated to exploit the spatial locality (prefetch requests).
The relative size of the partitions should reect the \amount" and type of the
locality of the request stream.

The caching procedure PECache (Prefetch Enhanced Cache), given in Fig-
ure 4, has as input the requested document (d) and the current request stream
of the user (R).

Procedure PECache(Array R, Document d)

begin

1. R = R
S
d

2. if not (d in Weighing Room or d in Waiting Room)

2. put d at head of the LRU list of the Weighing Room

3. prefetchSeq = Prefetch(R, M , maxSize)

4. foreach p in prefetchSeq

5. append p at the end of Waiting Room queue

6. endfor

7. else if d in Waiting Room

8. remove d from Waiting Room

9. put d at head of the LRU list of the Weighing Room

10. else if d in Weighing Room

11. put d at head of the LRU list of the Weighing Room

12. endif

end

Fig. 4. The caching procedure.

The PECache procedure uses the prefetching algorithm (step 3) that may
return several documents, whereas W2R uses the OBL prefetching algorithm,
which always prefetches one document. Therefore, di�erently from the W2R
algorithm, the set of prefetched documents are inserted in the FIFO structure
of the Waiting Room according to the corresponding con�dence values (this is
performed at step 5 of the PECache procedure). It is assumed that at steps 4{5
of the PECache procedure the prefetched documents enter the FIFO structure
in the exact order they were requested, i.e., the caching mechanism resolves the
issues of identifying the documents that belong to the same prefetchSeq and
sorting them according to the requested order. Moreover, di�erently from W2R,
the PECache procedure does not perform prefetching in the case the requested
document d, is contained in the Waiting Room (step 7). Otherwise, this would
result in excessive network traÆc and bandwidth consumption (notice that W2R
is designed for bu�er management in a DBMS).

It should be mentioned that the replacement policy used in the Weighing
Room can be selected independently. For instance, the 2Q algorithm can be
used, as described in [25] or some other policy more appropriate for the Web, as
in [6]. For simplicity and based on [25], we assume in the following that the LRU
policy is used. FIFO seems the most appropriate policy for the Waiting Room,
since it gives

4.1 The cooperative caching and prefetching mechanism

The caching scheme is applied at the client-side. Prefetching can be either client
or server initiated. However, Web servers are in better position in making pre-
dictions about future references, since they log a signi�cant4 part of requests by
all Internet clients for the resources they own. Moreover, the pruning criterion
described in Section 3.2 can be easily applied in this case, since the site structure
is available to the Web server.

The prediction engine can be implemented by exchange of messages between
the server and clients, having the server piggybacking information about the
predicted resources onto regular response messages, avoiding establishment of
any new TCP connections [16]. Such a mechanism has been implemented in [16,
21] and seems the most appropriate, since it requires relatively few enhancements
to the current request-response protocol and no changes to HTTP 1.1 protocol.

Therefore, we assume that there is a system implementing a server-based
predictive prefetcher, which applies the Prefetch procedure of Section 3.1. The
server piggybacks its predictions to the clients only as hints (in this case, the
prefetchSeq in Prefetch procedure comprises these hints, i.e., ID numbers of the
documents \to be prefetched"). The client receives these hints and discards all
those which correspond to documents found in its cache. Then, in a second
stage, prefetching takes place requesting the predicted documents. The caching
of the requested documents (on-demand and prefetched) is performed with the
PECache procedure.

Figure 5 illustrates how such an enhanced Web server could cooperate with
a prefetch engine to disseminate hints every time a client requests a document
of the server.

request

response

Web
Client

document request

response document

+ prefetching hints

I N
 T

 E
 R

 N
 E

 T

Request
servicing
module

predictions Prediction
engine

Web server
log files

logging

read

Enhanced Web server system

Fig. 5. Proposed architecture of a prediction-enabled Web server.

5 Performance Results

This section presents the experimental results. The cache performance is exam-
ined against the factors of high-order dependencies, amount of noise and cache

4 They only miss the requests satis�ed by browser or proxy caches.

size. The performance measure is the hit ratio achieved by the cache. We ex-
amine the performance of the proposed caching policy, presented in Section 4,
in coordination with the prefetching algorithm, presented in Section 3. The pro-
posed method is denoted as PEC (Prefetch Enhanced Cache). For the purposes
of comparison, we also examine the cache performance in the case of using the
DG, PPM, and LBOT5 prefetching algorithms in coordination with the caching
policy of Section 4, so as to clearly identify the advantages of the proposed
prefetching algorithm.

Additionally, we examine the performance of the plain LRU caching policy
(i.e., when no prefetching is performed and only one cache partition is used),
so as to identify the advantages of the proposed caching policy. In the case
where one cache partition is used, its size is equal to the sum of sizes of the two
partitions (i.e., Weighing and Waiting rooms) of the proposed caching policy. We
separately examine the impact of the proposed pruning criterion (Section 3.2) on
the reduction of the number of candidates during the generation of prefetching
rules for the PEC method.

5.1 Generation of Synthetic Workloads

In order to evaluate the performance of the algorithms over a large range of
data characteristics, we generated synthetic workloads. Each workload is a set
of transactions. Our data generator implements a model for the documents and
the linkage of the Web site, as well as a model for user transactions.

We choose so that all site documents have links to other documents, that
is, they correspond to HTML documents. The fanout of each node, that is,
the number of its outgoing links to other nodes of the same site, is a random
variable uniformly distributed in the interval [1..NFanout], where NFanout is a
parameter for the model. The target nodes of these links are uniformly selected
from the site nodes. If some nodes have no incoming links after the termination
of the procedure, then they are linked to the node with the greatest fanout.
With respect to document sizes, following the model proposed in [7], we set
the maximum size equal to 133KB and assign sizes drawn from a lognormal
distribution6 with mean value equal to 9.357KB and variance equal to 1.318KB.

In simulating user transactions, we generated a pool of P paths (\pattern
paths", in the sequel). Each path is a sequence of linked in the site and pairwise
distinct Web server documents, and will be used as \seeds" for generating the
transactions. Each of these paths is comprised of 4 nodes (documents), simulating
the minimum length of a transaction (clearly, for very small transactions i.e.,
of length two or three, the e�ect of prefetching is not signi�cant, since user's
interaction in this case does not allow for e�ective prediction of forthcoming
requests). The paths are created in groups. Each group comprises a tree. The
paths are actually the full length paths found in these trees. The fanout of the

5 In the experiments, the algorithm proposed in [29] will be referenced as LBOT.
6 Without loss of generality, we assume that HTML �les are small �les. Thus, according

to [7] their sizes follow a lognormal distribution.

internal tree nodes is controlled by the parameter bf . Varying this parameter
we are able to control the `interweaving' of the paths. The nodes of these trees
are selected using either the 80-20 fractal law or from the nodes that were used
in the trees created so far. The percentage of these nodes is controlled by the
parameter order, which determines the percentage of node dependencies that
are non-�rst order dependencies. For example, 60% order means that 60% of the
dependencies are non-�rst order dependencies. Thus, varying this parameter, we
can control the order of the dependencies between the nodes in the path. The
use of the fractal law results in some nodes to be selected more frequently than
others. This fact reects the di�erent popularity of the site documents, creating
the so-called \hot" documents.

In order to create the transactions, we �rst associate a weight with each
path in the pool. This weight corresponds to the probability that this path
will be picked as the \seed" for a transaction. This weight is picked from an
exponential distribution with unit mean, and is then normalized so that the
sum of the weights for all the paths equals 1. A transaction is created as follows.
First, we pick a path, say hA;B;C; xi, tossing a P -sided weighted coin, where
the weight for a side is the probability of picking the associated path. Then,
starting from node A we try to �nd a path leading to node B or with probability
corProb to node C, whose length is determined by a random variable, following
a lognormal distribution, whose mean and variance are parameters of the model.
This procedure is repeated for every node of the initial path except from those
that, with probability corProb, were excluded from the path. The mean and
variance of the lognormal distribution determine the \noise" inserted in each
transaction. Low values for mean and variance leave the transaction practically
unchanged with respect to its pattern path, whereas larger values increase its
length with respect to the pattern path. Table 1 summarizes the parameters of
the generator.

N Number of site nodes

NFanout Max num of nodes' links

T Number of transactions

P Number of pattern paths

bf Branching factor of the trees

order Order of the dependencies

noiseMean Mean value of the noise

noiseV ar Variance of the noise

corProb Prob. excluding a node

Table 1. The parameters for the generator.

5.2 Results on cache performance

In order to carry out the experiments we generated a number of workloads. Each
workload consisted of T=100,000 transactions. From these, 30,000 transactions
were used to train the algorithms and the rest to evaluate their performance. The
number of documents of the site for all workloads was �xed to N=1000 and the
maximum fanout to NFanout=100, so as to simulate a dense site. The branching
factor was set to bf=4 to simulate relatively low correlation between the paths.
The number of paths of the pool for all workloads was �xed to P=1000. With
several experiments, not shown in this report, it was found that varying the
values of the parameters P and N does not a�ect the relative performance of
the considered algorithms. For all the experiments presented here, the order of
the PPM algorithm was set equal to 5, so as to capture both low and higher
order dependencies. The default value for the mean transaction size was set to
10. Throughout the experiments, the range of cache size was selected to be in
the range of few hundred KB, to simulate the fact that not all, but only a small
part of the Web client's cache is \dedicated" to the documents of a particular
Web server.

The con�dence threshold was tuned separately for each algorithm, so as to
derive the same network traÆc overhead, which is de�ned to be the number of
documents that the client gets when prefetching is used divided by the one when
prefetching is not used. The examined network traÆc was 150%. This is also the
value of the average network byte overhead. This means that for each byte the
user requested, the prefetchers fetched another 0.5 byte that the user never
requested. This is a relatively conservative approach considering that existing
techniques and implementations incur a much larger overhead (250% overhead
by [27], 412% by [15]).

First, we evaluated the impact of varying order on the hit ratio (Notice that
the order of dependencies varies with the type of the site [10]). The mean noise
value was set to 1.0. The total cache size was set to 150 KB and 50 KB of this
total size were dedicated to the Waiting Room (this does not apply for the case of
plain LRU). The results of this set of experiments are reported in Figure 6a. As
illustrated, PEC is not a�ected by increasing order. This is in accordance to what
expected from the discussion in Section 3. PEC clearly outperforms all other
methods, achieving the highest hit ratio in all cases. PPM, as expected, is not
heavily a�ected by increasing order and presents the second best performance.
Focusing on DG, the impact of order in this case is noticeable. The hit ratio
when DG is used as the prefetching algorithm, is reduced signi�cantly with
increasing order. This veri�es the discussion on DG given in Section 2. In the
case of LBOT, the hit ratio is also reduced with increasing order, however the
reduction is much smaller than that of DG. Nevertheless, DG outperforms LBOT
for smaller order values, whereas they present comparable performance for larger
ones. Finally, the plain LRU caching policy presents the worst performance, in
all cases. This veri�es the advantages of exploiting prefetching and using the
cooperative caching mechanism presented in Section 4.

Next, we assessed the impact of noise on the hit ratio. The order value was

0.15

0.2

0.25

0.3

0.35

0.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h
it

ra
tio

higher order percentage

PEC
DG

PPM
LBOT

LRU

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.5 1 1.5 2 2.5

h
it

ra
tio

mean noise

PEC
DG

PPM
LBOT

LRU

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

100 150 200 250 300

h
it

ra
tio

cache size (in KB)

PEC
DG

PPM
LBOT

LRU

Fig. 6. Results on hit ratio w.r.t.: (a) order, (b) noise, and (c) cache size (from
top to bottom, respectively).

set to 0.5. The results of this set of experiments are reported in Figure 6b. As
shown, the performance of all methods reduces with increasing noise, since noise
alters transactions and reduces the number of discovered patterns. However,
PEC clearly is much less a�ected by increasing noise, and it achieves the highest
hit ratio in all cases. This veri�es the discussion in Section 3. In contrast, PPM
is signi�cantly a�ected by noise. As depicted, its performance downgrades with
increasing noise, and although it outperforms DG and LBOT for low mean noise
values, it performs much worse for larger ones. This is in accordance with what
expected from the description of Section 2. As in the previous experiment, LRU
presents the worst performance in all cases.

We measured the impact of cache size. We kept the Waiting Room size equal
to 50 KB and varied the total cache size (which includes the size of the Waiting
Room, besides the case of plain LRU caching policy). The mean noise value
was set to 1.5 and the order was set to 0.5. Figure 6c illustrates the results for
all methods. As depicted, the hit ratio increases linearly with increasing cache
size. PEC presents the best performance in all cases, whereas PPM the second
best. As in the previous cases, plain LRU presents the worst hit ratio among all
methods.

To examine the impact of the size of the Waiting Room, we conducted a
separate experiment. The total cache size was set to 200 KB and we varied
the Waiting Room size. The results for the hit ratio of the PEC method are
given in Figure 7 (We focus on PEC since this experiment concerns the tuning
of the Waiting Room size and the performance of the remaining methods is
analogous). For very small and large Waiting Room sizes, the hit ratio has lower
values, compared to the case where it takes the maximum value (at the examined
case, this value was 50 KB). This can be explained with the help of the notion
of temporal and spatial locality [5]. When the size of the Waiting Room is very
small, then only a relatively small percentage of the prefetched documents remain
enough time in the cache, so as to get referenced and contribute to the hit ratio.
Thus, the bene�ts of prefetching {even in the case of very accurate prefetching
{ are very limited. On the other hand, when the size of the Waiting Room
is relatively large (compared to the total cache size), then the Waiting Room
\steals" useful space from the Weighing Room and the cache is not capable of
exploiting the temporal locality of the request stream. The tradeo� associated
with the relative sizes of the Weighing and Waiting Rooms is obvious. For every
request stream, depending on the \amount" of temporal and spatial locality (and
of course, on the document sizes), there is an optimal value for the relative sizes
of the two partitions. In our case, this value equals 50 KB.

5.3 Evaluation of pruning criterion

Finally, we examined the e�ectiveness of the proposed pruning criterion. We
used a synthetic dataset with the same characteristics as the ones used in the
experiments of Section 5.2. This experiment compares the PEC algorithm with
a version that does not use pruning with respect to the site structure and is
denoted as PECnp (no pruning). It has to be noticed that the SP algorithm [4]

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

25 50 75 100 125

h
it

ra
tio

waiting room size (in KB)

PEC

Fig. 7. Hit ratio w.r.t. Waiting Room size.

generates candidates without taking into account the site structure. Moreover,
SP also considers the ordering between items (for instance, in the second phase
of SP, which is the bottleneck due to the very large number of candidates, let two
large items A and B for which only the link A! B exists; however, SP generates
both hA;Bi and hB;Ai as candidates whereas the latter can be pruned). Thus,
for the same support threshold, the number of candidates produced by PECnp

corresponds to the one produced by SP.

Figure 8 illustrates the number of candidates for these methods with respect
to the support threshold (given as a percentage). As it is depicted, PEC with
pruning criterion signi�cantly outperforms PECnp, both for low and high sup-
port thresholds.

The number of candidates signi�cantly impacts the performance of this type
of algorithms. This is in accordance with related work on association rule min-
ing [3]. Therefore, the eÆciency of PEC is improved by the proposed pruning.
Detailed experimental results on execution time for the case of pruning according
to the graph structure can be found in [33].

6 Conclusions

We considered the problem of enhancing Web caching with the technique of
predictive Web prefetching, that is, of deriving users' future requests for Web
documents based on their previous requests. We also examined the problem of
the coordination between Web caching and prefetching.

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+006

1.1e+006

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

n
u
m

b
e
r

o
f
ca

n
d
id

a
te

s

support threshold (percentage)

PEC
PECnp

Fig. 8. Number of candidates w.r.t. support threshold

We proposed a new algorithm called PEC, which focuses both on attaining
accurate prefetching and using cooperative caching so as to e�ectively accommo-
date the prefetched documents with the normal cached ones (i.e., the ones cached
after an explicit user request). For the former factor, we described a prefetching
algorithm, which exploits Web log mining techniques. To address the problem
of large computational overhead for the rule generation phase, we described a
pruning criterion that is based on the site structure. For the latter factor, based
on the approach of [25], we presented an algorithm which uses a small part of
the cache so as to separately store the prefetched documents. We addressed the
new requirements due to the particularities of the Web, compared to the case of
DBMS bu�er management, as examined in [25].

Experimental results illustrated the superiority of PEC. In contrast to exist-
ing methods, PEC is not a�ected by factors like high-order dependencies among
document references, or the existence of noise within user transactions. Also,
experimental results showed the e�ectiveness of the pruning criterion.

Future work includes:

{ The examination of other caching policies within the framework of PEC.

{ The development of dynamic methods for the tuning of the Waiting Room
size.

References

1. M. Abrams, C.R. Standridge, G. Abdulla, E.A. Fox, and S. Williams. Removal
policies in network caches for World-Wide Web documents. In Proceedings of the

ACM Conference on Applications, Technologies, Architectures and Protocols for

Computer Communication (ACM SIGCOMM'96), pages 293{305, 1996.

2. C. Aggarwal, J. Wolf, and P.S. Yu. Caching on the World Wide Web. IEEE

Transactions on Knowledge and Data Engineering, 11(1):95{107, 1999.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-

ceedings of the 20
th

Conference on Very Large Data Bases (VLDB'94), pages 487{
499, 1994.

4. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the

IEEE Conference on Data Engineering (ICDE'95), pages 3{14, 1995.

5. V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Characterizing refer-
ence locality in the WWW. In Proceedings of the IEEE Conference on Parallel

and Distributed Information Systems (IEEE PDIS'96), pages 92{103, 1996.

6. M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Evaluating content
management techniques for Web proxy caches. ACM SIGMETRICS Performance

Evaluation Review, 27(4):3{11, 2000.

7. P. Barford and M. Crovella. Generating representative Web workloads for network
and server performance evaluation. In Proceedings of the ACM Conference on

Measurement and Modeling of Computer Systems, (ACM SIGMETRICS'98), pages
151{160, 1998.

8. B. Berendt and M. Spiliopoulou. Analysis of navigation behavior in Web sites
integrating multiple information systems. The VLDB Journal, 9(1):56{75, 2000.

9. A. Bestavros. Speculative data dissemination and service to reduce server load,
network traÆc and service time. In Proceedings of the IEEE Conference on Data

Engineering (ICDE'96), pages 180{189, 1996.

10. J. Borges and M. Levene. Data mining of user navigation patterns. In Proceedings

of the Workshop on Web Usage Analysis and User Pro�ling (WEBKDD'99), pages
92{111, 1999.

11. S. Brin and L. Page. The anatomy of large-scale hypertextual Web search engine.
In Proceedings of the World Wide Web Conference (WWW'98), pages 107{117,
1998.

12. P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings

USENIX Symposium on Internet Technology and Systems (USITS'97), pages 193{
206, 1997.

13. P. Cao, J. Zhang, and K. Beach. Active Cache: Caching dynamic contents on the
Web. In Proceedings of the IFIP Conference on Distributed Systems Platforms and

Open Distributed Processing (Middleware'98), pages 373{388, 1998.

14. M.S. Chen, J.S. Park, and P.S. Yu. EÆcient data mining for path traversal pat-
terns. IEEE Transactions on Knowledge and Data Engineering, 10(2):209{221,
1998.

15. K. Chinen and S. Yamaguchi. An interactive prefetching proxy server for improve-
ment of WWW latency. In Proceedings of the INET Conference, 1997.

16. E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-end performance
of the Web using server volumes and proxy �lters. In Proceedings of the ACM

Conference on Applications, Technologies, Architectures and Protocols for Com-

puter Communication (ACM SIGCOMM'98), pages 241{253, 1998.

17. R. Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining World
Wide Web browsing patterns. Knowledge and Information Systems, 1(1):5{32,
1999.

18. K.M. Curewitz, P. Krishnan, and J.S. Vitter. Practical prefetching via data com-
pression. In Proceedings of the ACM Conference on Management of Data (ACM

SIGMOD'93), pages 257{266, 1993.

19. J. Dean and M. Henzinger. Finding related pages in the World Wide Web. In
Proceedings of the World Wide Web Conference (WWW'99), pages 1467{1479,
1999.

20. M. Deshpande and G. Karypis. Selective Markov models for predicting Web page
accesses. In Proceedings of the SIAM Conference on Data Mining (SDM'01), 2001.

21. D. Duchamp. Prefetching hyperlinks. In Proceedings of the USENIX Symposium

on Internet Technologies and Systems (USITS'99), 1999.
22. L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching between low-

bandwidth clients and proxies: Potential and performance. In Proceedings of the

ACM Conference on Measurement and Modeling of Computer Systems (ACM SIG-

METRICS'99), pages 178{187, 1999.
23. W. Gaul and L. Schmidt-Thieme. Mining Web navigation path fragments. In

Proceedings of the Workshop on Web Usage Analysis and User Pro�ling (WE-

BKDD'00), 2000.
24. S. Hosseini-Khayat. On optimal replacement of nonuniform cache objects. IEEE

Transactions on Computers, 49(8):769{778, 2000.
25. H.S. Jeon and S.H. Noh. A database disk bu�er management algorithm based on

prefetching. In Proceedings of the ACM Conference in Information and Knowledge

Management (ACM CIKM'98), pages 167{174, 1998.
26. T. Johnson and D. Shasha. 2Q: A low overhead high performance bu�er manage-

ment replacement algorithm. In Proceedings of the 20
th

Conference on Very Large

Data Bases (VLDB'94), pages 439{450, 1994.
27. R. Klemm. WebCompanion: A friendly client-side Web prefetching agent. IEEE

Transactions on Knowledge and Data Engineering, 11(4):577{594, 1999.
28. T. Kroeger, D.E. Long, and J. Mogul. Exploring the bounds of Web latency re-

duction from caching and prefetching. In Proceedings of the USENIX Symposium

on Internet Technologies and Systems (USITS'97), pages 13{22, 1997.
29. B. Lan, S. Bressan, B.S. Ooi, and Y. Tay. Making Web servers pushier. In Proceed-

ings of the Workshop on Web Usage Analysis and User Pro�ling (WEBKDD'99),
1999.

30. H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259{289, 1997.

31. A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data mining algorithm for
generalized Web prefetching. IEEE Transactions on Knowledge and Data Engi-

neering, 2002. to appear.
32. A. Nanopoulos and Y. Manolopoulos. Finding generalized path patterns for Web

log data mining. In Proceedings of the East-European Conference on Advances in

Databases and Information Systems (ADBIS-DASFA'00), pages 215{228, 2000.
33. A. Nanopoulos and Y. Manolopoulos. Mining patterns from graph traversals. Data

and Knowledge Engineering (DKE), 37(3):243{266, 2001.
34. V. Padmanabhan and J. Mogul. Using predictive prefetching to improve World

Wide Web latency. ACM SIGCOMM Computer Communications Review, 26(3),
1996.

35. T. Palpanas and A. Mendelzon. Web prefetching using partial match prediction.
In Proceedings of the 4

th
Web Caching Workshop, 1999.

36. H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed
prefetching and caching. In Proceedings of the ACM Symposium on Operating

Systems Principles (ACM SOSP'95), pages 79{95, 1995.
37. J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining access patterns eÆciently

from Web logs. In Proceedings of the Paci�c-Asia Conference on Knowledge Dis-

covery and Data Mining (PAKDD'00), 2000.
38. P. Pirolli, H. Pitkow, and R. Rao. Silk from a sow's ear: Extracting usable struc-

tures from the Web. In Proceedings of the ACM Conference on Human Factors

and Computing Systems (ACM CHI '96), pages 118{125, 1996.
39. J. Pitkow and P. Pirolli. Mining longest repeating subsequences to predict World

Wide Web sur�ng. In Proceedings of the USENIX Symposium on Internet Tech-

nologies and Systems (USITS'99), 1999.
40. R. Sarukkai. Link prediction and path analysis using Markov chains. Computer

Networks, 33(1{6):377{386, 2000.

