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Abstract. Discrete sequence modeling and prediction is a fundamental
goal and a challenge for location-aware computing. Mobile client’s data
request forecasting and location tracking in wireless cellular networks
are characteristic application areas of sequence prediction in pervasive
computing, where learning of sequential data could boost the underly-
ing network’s performance. Approaches inspired from information theory
comprise ideal solutions to the above problems, because several overheads
in the mobile computing paradigm can be attributed to the randomness
or uncertainty in a mobile client’s movement or data access. This arti-
cle presents a new information-theoretic technique for discrete sequence
prediction. It surveys the state-of-the-art solutions and provides a quali-
tative description of their strengths and weaknesses. Based on this anal-
ysis it proposes a new method, for which the preliminary experimental
results exhibit its efficiency and robustness.

1 Introduction

The new class of computing, termed location-aware computing, which emerged
due to the evolution of location sensing, wireless networking, and mobile com-
puting presents unique challenges and requires high performance solutions to
overcome the limitations of current wireless networks stemming from the scarcity
of wireless resources. A location-aware computing system must be cognizant of
its user’s state, and must modify its behavior according to this information. A
user’s state usually consists of its physical location and information needs. If a
human were given such context, s/he would make decisions in a proactive fash-
ion, anticipating mobile client’s user needs. In making these proactive decisions,
the system must be able, among other things, to deduce future data requests
and also to record and predict the positions of roaming clients.

The issues of data request prediction and location tracking/prediction, al-
though diverse in nature, are simply different facets of the same coin; they can
both be described in terms of a discrete sequence prediction problem formula-
tion. From a qualitative point of view, this problem can be described as follows:
given a history of events, forecast the next one to come.
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Drastic solutions to the aforementioned problems have direct impact on the
underlying wireless network performance. Accurate data request prediction re-
sults in effective data prefetching [18], which, combined with a caching mech-
anism [13], can reduce user-perceived latencies as well as server and network
loads. Also, effective solutions to the mobility tracking problem can reduce the
update and paging costs, freeing the network from excessive signaling traffic [4].

1.1 Motivation and Paper Contributions

The problem of discrete sequence prediction has received a lot of attention
in various fields of computer science; prediction techniques have been devel-
oped in the context of Web/database prefetching [5,7,9,15,19], computational
biology [1,3], mobile location tracking [4,8,17,21], machine learning [16,20]. All
these techniques are related to some lossless compression scheme, due to the
classical result about the duality between the lossless compression and the pre-
diction of discrete sequences [11]. These algorithms can be classified in four
families: a) the LZ78 family (acronym for Lempel-Ziv-78) comprised by the
works [4,7,8,15,17,21], b) the PPM family (Prediction by Partial Match) com-
prised by the works [5,7,9,19], c) the PST family (acronym for Probabilistic Suf-
fix Tree) comprised by the works [1,3,16,20], and d) the CTW family (acronym
for Context Tree Weighting) comprised by the works [24,23,22].

Each of these works has been developed in the context of a specific application
field (computational biology, Web, etc) and reflects the characteristic of this
field. The pervasive computing environment requires for the prediction method
to posses some very specific features. The prediction method

➣ should be online and need not rely on time-consuming preprocessing of the
available historical data in order to build a prediction model,

➣ should present low storage overhead,
➣ refrain from using administratively tunable or statistically estimated (from

historical data) parameters, because they are not reliable and/or they are
frequently changing.

The aforementioned prediction models do not posses all the above charac-
teristics, as it will become evident from the discussion on the relevant research
work (see Section 2). Table 1 summarizes the weaknesses of the relevant models
with respect to the requirements described earlier.

Therefore our motivation stems from seeking for an online, self-tuning and
with low storage requirements prediction model. Evidently, such a model should
be supported by an appropriate data structure.

The present paper’s purpose is to introduce the ideas of a novel prediction
scheme and not to perform an exhaustive performance evaluation. In this con-
text, it makes the following contributions. Firstly, it presents a classification
of the state-of-the-art prediction methods into families and gives a qualitative
comparison of their characteristics. It describes a new method for discrete se-
quence prediction, which meets the requirements set by the pervasive computing



A Suffix Tree Based Prediction Scheme 269

Table 1. A qualitative comparison of discrete sequence prediction models

Prediction Overheads

Family Model Training Parameterization Storage

LZ78
[7] on-line moderate moderate
[4] on-line moderate moderate
[21] on-line moderate moderate

PPM

[5] off-line heavy large
[7] on-line moderate large
[9] off-line heavy large
[19] off-line moderate large

PST

[1] off-line heavy low
[3] off-line heavy low
[16] off-line heavy low
[20] off-line heavy low

CTW
[24,23] on-line moderate large
[22] on-line moderate large

environement. This method is based on the ideas described in [10]. Finally, it
presents a preliminary performance evaluation of the proposed method to prove
its effectiveness and robustness without delving into an exhaustive comparison
with all the competing techniques.

2 Relevant Work on Discrete Sequence Prediction

All the predictors, we present in the sequel, are based on the assumption that the
next event to come depends on a number of previous (seen in the past) events.
The “size” of the past (i.e., number of preceding events) defines the “order” of
the context or the order of the predictor. Ideally, we would like to have predictors
that do not impose any constraint on the order, but such a constraint helps the
current predictors to reduce the storage requirements of the underlying data
structure, which supports their operation. Suppose that the following sequence
has been seen abcdefgabcdklmabcdexabcd; we will show the prediction models
constructed by each predictor.

2.1 The PPM Predictor

The most famous predictor is based on the PPM compression algorithm [6]. The
algorithm requires an upper bound on the number of consecutive events it will
model. Suppose that this bound is 3, then the maximum context that PPM can
model consists of 3 events/symbols. The predictor is supported by a trie and its
content is illustrated in Figure 1 for our sample sequence. The trie is constructed
by sliding (symbol by symbol) a window of size equal to the maximum context
upon the sequence, and recording the substring inside this window in the trie.

Apparently, the need of a predetermined maximum context size is a drawback
and if the sequence of events contains dependencies of larger size, then they
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cannot be modeled. The numbers beside each symbol record its frequency of
occurrence with respect to its context. Apart from this basic PPM scheme
several variants of it have appeared in the literature. The work in [9] presented
some selective PPM models that prune some states of the predictor in case they
do not appear very frequently. Similar in spirit is the work of [5]. For instance,
a frequency-pruned PPM model [9] with frequency threshold equal to 1

10 is
illustrated in Figure 2.
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Fig. 1. The PPM predictor for the sequence abcdefgabcdklmabcdexabcd
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Fig. 2. The frequency-pruned PPM predictor with frequency threshold equal to 1
10

for the sequence abcdefgabcdklmabcdexabcd

2.2 The LZ78 Predictor

Another popular predictor is the LZ78 predictor [7], which parses the input se-
quence into distinct substrings, such that, for all substrings, the prefix of each
substring (i.e., all characters but the last one) is equal to some substring al-
ready encounter and stored into the trie that supports the LZ78 predictor.
Therefore the sample sequence will be parsed into the following substrings:
a, b, c, d, e, f, g, ab, cd, k, l, m, abc, de, x, abcd. The contents of the corresponding
trie are illustrated in Figure 3.
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Fig. 3. The LZ78 predictor for the sequence abcdefgabcdklmabcdexabcd

The drawback of this predictor is that the “decorrelation” process it uses
constructs patterns only if it see them at least twice. For instance, only after
seeing three times the ab pattern it is able to predict that with high probability
it will be followed by a c character. This has a direct impact on the confidence it
pays to some patterns. For instance, the confidence of the pattern de is only 1

4 ,
instead of the value of 2

4 assigned by PPM . Although, for very large training se-
quences this problem will not affect the prediction quality significantly, for short
training sequences the LZ78 will yield sparse and noisy statistics [2]. Compared
with the original PPM predictor, the branches of the LZ78 predictor are not of
the same length, which in general is a desirable characteristic of the predictor,
and also it does not use any predetermined parameters for the maximum length
of the context it models.

An enhancement to the original LZ78 method is proposed in [4,8,21], where
the trie is augmented with every prefix of every suffix of a newly recorded pat-
tern, but this enhancement is still not enough to compensate for the drawbacks
mentioned above.

2.3 The PST Predictor

The PST predictor is very similar to PPM but it attempts to construct the
best possible prediction model given a specific maximum context length. For
this purpose it maintain in total five user defined parameters (including the con-
text length), whose tuning is quite difficult and application-specific. Specifically,
it maintains a) the threshold Pmin, which defines the minimum occurence proba-
bility of a subsequence in order to be included into the PST tree, i.e., no symbol
occurring with probability less than Pmin can be encoded into the PST , b) r,
which is a simple measure of the difference between the prediction of the candi-
date (to be included into the PST tree) and its direct father node, c) γmin the
smoothing factor, d) a, a parameter that together with the smooting probability
defines the significance threshold for a conditional appearance of a symbol.
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The PST for our sample sequence, assuming that the maximum represented
sequence length is L = 3, Pmin = 1

12 , r = 1, γmin = 0.0001, a = 0, is shown in
Figure 4. This value for the threshold Pmin means that only substrings consisting
of symbols appearing at least twice in the original sequence will be encoded into
the PST tree. Note that we do not draw the probability vector corresponding
to each node.
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Fig. 4. The PST predictor for the sequence abcdefgabcdklmabcdexabcd

It should be noted that PST differ from the classical suffix tree [12], which
contains all the suffixes of a given string. The two data structures have the
following relation: the skeleton (nodes, edges and labels) of a PST for a given
input string is simply a subtree of the suffix tree associated with the reverse of
that string.

2.4 The CTW Predictor

This prediction technique was initially introduced for binary alphabets [24,23]
and thus is not very popular in the applications’s domain. Some efforts to extend
it for multi-symbol alphabets [22] suffer from exponentially-growing computa-
tional cost and, in addition (as reported in chap. 4 of [22]), they perform poorly.
Thus, we do not examine it further here.

3 The STP Prediction Method

Before proceeding to describe the proposed prediction algorithm, we provide a
formal definition of the discrete sequence prediction problem.

Definition 1 (Discrete Sequence Prediction problem). Let us assume
that a sequence sn

1 = s1, s2, . . . , sn of events is given. Each symbol of sn
1 be-

longs to a finite alphabet. Given this sequence, the goal is to predict the next
event to come, i.e., the ŝn+1.

The algorithm works as follows: a) It finds the largest suffix of sn
1 , call it

ssn
i , whose copy appears somewhere inside sn

1 . Then, it takes a suffix of ssn
i (the



A Suffix Tree Based Prediction Scheme 273

Table 2. The STP algorithm

Algorithm STP
// Current sequence is sn

1 = s1, s2, . . . , sn.
// Predict the symbol after sn.
begin
STEP 1.

Find the largest suffix of sn
1 , whose copy appears somewhere inside sn

1 .

Let this suffix be named ssl
1. Its length is l and starts at

the position i in sn
1 , i.e.,

ssl
1 = (sn−l+1, sn−l+2, . . . , sn) = (sn−i−l+1, sn−i−l+2, . . . , sn−i).

STEP 2.
Take a suffix of ssl

1 of length k with k = �α ∗ l�, where α is a parameter.

Let this suffix be named sssk
1 , where sssk

1 = (sn−k+1, sn−k+2, . . . , sn).

Suppose that ssl
1 appears m times inside sn

1 .
Each such occurence defines a marker and the m positions after

each market are called marked positions.
STEP 3.

The predicted symbol is the symbol that appears
the most times in the marked positions.
(In case of ties, the prediction consists of multiple symbols.)

end

length of this suffix is a parameter of the algorithm) and locates its appearances
inside sn

1 . The symbols that appear after the appearances of it are the candidate
predictions of the algorithm. The final outcome of the prediction algorithms is
the symbol which appears most times. In pseudocode language, this is expressed
as follows:

To explain how STP algorithm works, we present a simple example in the
sequel.

Example 1. Suppose that the sequence of symbols seen so far is the following:
s24
1 = abcdefgabcdklmabcdexabcd. The largest suffix of s24

1 which appears some-
where in s24

1 is the ss4
1 = abcd. Let α = 0.5. Then sss12 = cd. The appearances

of cd inside s24
1 are located at the positions 3, 10, 17, 23. Therefore, the marked

positions are the 5, 12, 19, 25. Obviously the last one is not null, since it “con-
tains” the symbol we want to predict. In the general case, all marked positions
will contain some valid symbol. Thus, the sequence of candidate predicted sym-
bols is e, k, e. Since the symbol that appears most of the times in this sequence is
the e, the output of the STP algorithm, i.e., the predicted symbol at this stage,
is e.

Theorem 1. The PST algorithm is generalization of both PPM and LZ78 with
respect to the patterns it can discover.

Proof. For a proof see [14].

Implementation Details. The implementation of the algorithm requires an ap-
propriate data structure to support its basic operations, which are the following:
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a) determination of the maximal suffix (at step 1) and, b) substring matching
(at steps 1 and 2). These two operations can be “optimally” supported by a
suffix tree [12]. The suffix tree of a string x1, x2, . . . , xn is a trie built from all
suffixes of x1, x2, . . . , xn$, where mathdollar is a special symbol not belonging
to the alphabet. External nodes of a suffix tree contain information about the
suffix positions in the original string and the substring itself that leads to that
node (or a pair of indexes to the original string, in order to keep the storage
requirement linear in the string length). It is a well known result that the suffix
tree can be built in linear (optimal) time (in the string length), and can support
substring finding in this string also in linear (optimal) time (in the length of the
substring). Therefore, the substring searching operation of our algorithm can be
optimally be implemented. As for the maximal suffix determination operation,
if we keep pointers to those external nodes that contain suffixes ending with the
$ symbol (since on of them will be the longest suffix we are looking for), then
we can very efficiently support this operation, as well.

From the above discussion, we conclude the following: a) the STP algorithm
is online; it needs no training or preprocessing of the historical data, b) the stor-
age overhead of the algorithm is low, since it is implemented upon the suffix
tree and finally, c) it has only one tunable parameter, α, which fine-tunes the
algorithm’s accuracy. Therefore, it meets all the requirements we set in Subsec-
tion 1.1 for the features of a good predictor for pervasive environments.

4 Performance Evaluation of STP

We conducted some preliminary performance evaluation tests in order to ex-
amine the prediction capabilities of the STP method. At this stage we are not
interested in its comparison with other competing algorithms. We simply aimed
at examining its prediction accuracy and the impact of the α parameter on its
performance. We are currently implementing all the competing approaches to
perform an exhaustive comparison. At this paragraph we will present only one
experiment with real data as proof of concept of the algorithm and its ability to
carry out prediction.

We examined the prediction performance of the algorithm using a real web
server trace, namely the ClarkNet, available from the site http://ita.ee.lbl.gov/h-
tml/traces.html. We used both weeks of requests and we cleansed the log (e.g.,
by removing CGI scripts, staled requests, etc). The user session time was set to 6
hours. As performance measures we used the prediction precision and overhead,
which are defined as follows:

Definition 2. The ratio of symbols returned by the predictor that indeed match
with the next event/symbol in the sequence, divided by the total number of symbols
return by the predictor defines the prediction precision.

Definition 3. The total number of symbols return by the predictor divided by the
total number of events/symbols of the sequence defines the prediction overhead.
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Fig. 5. Performance of the STP method. Prediction precision.

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pr
ed

ic
tio

n 
ov

er
he

ad
 (

pe
rc

en
t)

fraction of maximal suffix

Prediction overhead vs. a

Fig. 6. Performance of the STP method. Prediction overhead.

The results are illustrated in Figures 5 and 6. Apparently, larger values for α
increase the precision of the algorithm, since the predictor makes use of longer,
and thus of more selective, context.

5 Future Work

This paper presents only the basic idea of the STP algorithm. Currently, we
elaborate on it by developing some truncated versions of it, in order to reduce
its size and to exploit any changing patterns in the client’s behavior. For instance,
by expelling some suffixes (e.g., the longer ones) from the suffix tree we can take
advantage of a user whose data interests or habits (trajectories) evolve over time.
Additionally, we are implementing all the state-of-the-art prediction algorithms
in order to perform an exhaustive performance comparison to draw important
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conclusions under what cases each algorithm performs the best and also to verify
in practice the validity of Theorem 1.

6 Concluding Remarks

Discrete sequence prediction is an effective means to reduce access latencies
and location uncertainty in wireless networking applications. Due to the unique
features of the corresponding mobile applications, the employed prediction
scheme should be online, lightweight and accurate; though the existing pre-
diction schemes do not satisfy all these requirements. To address all of them,
we presented a new prediction scheme, named STP . This new scheme is based
on the suffix tree data structure, which guarantees low storage overhead, fast
and online construction. We showed the viability of the method through some
preliminary experimental results.
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