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ABSTRACT
We present a time-efficient approach to index objects mov-
ing on the plane to efficiently answer range queries about
their future positions. Each object is moving with non small
velocity u, meaning that the velocity value distribution is
skewed (Zipf) towards umin in some range [umin, umax],
where umin is a positive lower threshold. Our algorithm en-
hances a previously described solution [18] by accommodat-
ing the ISB-tree access method as presented in [6]. Exper-
imental evaluation shows the improved performance, scala-
bility and efficiency of the new algorithm.

Categories and Subject Descriptors
H.2 [Database Management]: [Emergent Systems]

General Terms
Algorithms, Data Structures and Indexing, Experimentation

Keywords
Spatio-Temporal and Multimedia Databases, Data and Knowl-
edge Management Systems

1. INTRODUCTION
This paper focuses on the problem of indexing mobile

objects in two dimensions and efficiently answering range
queries over the objects’ future locations. This problem is
motivated by a set of real-life applications such as intelli-
gent transportation systems, cellular communications, and
meteorology monitoring. The basic approach uses discrete
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movements, where the problem of dealing with a set of mov-
ing objects can be considered as equivalent to a sequence of
database snapshots of the object positions/extents taken at
time instants t1 < t2 < . . ., with each time instant denoting
the moment where a change took place. From this point of
view, the indexing problems in such environments can be
dealt with by suitably extending indexing techniques from
the area of spatio-temporal databases [4, 17]. In [10] it is
exposed how these indexing techniques can be generalized to
handle efficiently queries in a discrete spatiotemporal envi-
ronment. The common thrust behind these indexing struc-
tures lies in the idea of abstracting each object’s position as a
continuous function of time, f(t), and updating the database
whenever the function parameters change. Accordingly an
object is modeled as a pair consisting of its extent at a refer-
ence time (design parameter) and of its motion vector. One
categorization of the aforementioned structures is according
to the family of the underlying access method used. In par-
ticular, there are approaches based either on R-trees or on
Quadtrees as explained in [13, 14]. On the other hand, these
structures can be also partitioned into those that: (a) are
based on geometric duality and represent the stored objects
in the dual space [1, 7, 12], and (b) leave the original repre-
sentation intact by indexing data in their native dimensional
space [3, 11, 15, 16, 19]. The geometric duality transforma-
tion is a tool extensively used in the Computational Ge-
ometry literature, which maps hyper-planes in Rd to points
and vice-versa. In this paper we present and experimentally
evaluate techniques using the duality transform as in [7, 11]
to efficiently index future locations of moving points on the
plane. In the next section we present a brief overview of the
most basic practical methods. In Section 3 we give a formal
description of the problem. In Section 4 we introduce the
duality transform methods, in section 5 we briefly present
our main contribution whereas in section 6 we present the
ISBs access method that compares favorably with the solu-
tions of [7, 11], the TPR∗ index [19], the STRIPES index
[12] and the LBTs index [18] as well. In simple words, the
new solution is the most efficient in terms of update I/O
performance. Moreover, with respect to the query I/O per-
formance, solution of ISBs is 4 or 5 faster than LBTs method



and outperforms STRIPES (state of the art as of now) in
many settings. Section 7 presents a thorough experimental
evaluation, whereas Section 8 concludes the paper.

2. A BRIEF OVERVIEW OF THE RELEVANT
METHODS

The TPR tree [15] in essence is an R∗-tree generalization
to store and access linearly moving objects. The leaves of
the structure store pairs with the position of the moving
point and the moving point id, whereas internal nodes store
pointers to subtrees with associated rectangles that mini-
mally bound all moving points or other rectangles in the
subtree. The difference with respect to the classical R∗-tree
lies in the fact that the bounding rectangles are time pa-
rameterized (their coordinates are functions of time). It is
considered that a time parameterized rectangle bounds all
enclosed points or rectangles at all times not earlier than
current time. Search and update algorithms in the TPR
tree are straightforward generalizations of the respective al-
gorithms in the R∗-tree; moreover, the various kinds of spa-
tiotemporal queries can be handled uniformly in 1-, 2-, and
3-dimensional spaces.

The TPR-tree served as the base structure for further de-
velopments in the area [16]. TPR∗-tree, an extension of
the TPR-tree, improves the latter in update operations [19].
The main improvement lies in the fact that local optimiza-
tion criteria (at each tree node) may degrade seriously the
performance of the structure and more particularly in the
use of update rules that are based on global optimization
criteria. Thus, the authors of [19] proposed a novel prob-
abilistic cost model to validate the performance of a spa-
tiotemporal index and analyze with this model the optimal
performance for any data-partition index.

The STRIPES index [12] is based on the application of the
duality transformation and employs disjoint regular space
partitions (disk based quadtrees [4]). Through the use of a
series of implementations, the authors claim that STRIPES
outperforms TPR∗-trees for both update and query opera-
tions.

Finally, the LBTs index [18] has the most efficient update
performance in all cases. Regarding the query performance,
LBTs method prevails as long as the query rectangle length
remains in realistic levels (by far superiority in comparison
to opponent methods). If the query rectangle length be-
comes huge in relation to the whole terrain, then STRIPES
is the best solution, however, only to a small margin in com-
parison to LBTs method.

3. DEFINITIONS AND PROBLEM DESCRIP-
TION

We consider a database that records the position of mov-
ing objects in two dimensions on a finite terrain. We assume
that objects move with a constant velocity vector starting
from a specific location at a specific time instant. Thus,
we can calculate the future object position, provided that
its motion characteristics remain the same. Velocities are
bounded by [umin, umax]. Objects update their motion in-
formation, when their speed or direction changes. The sys-
tem is dynamic, i.e. objects may be deleted or new objects
may be inserted.

Let Pz(t0) = [x0, y0] be the initial position at time t0 of
object z. If object z starts moving at time t > t0, its position

will be Pz(t) = [x(t), y(t)] = [x0 +ux(t− t0), y0 +uy(t− t0)],
where U = (ux, uy) is its velocity vector.

We would like to answer queries of the form: “Report the
objects located inside the rectangle [x1q , x2q ] × [y1q , y2q ] at
the time instants between t1q and t2q (where tnow ≤ t1q ≤
t2q ), given the current motion information of all objects.”

4. INDEXING MOBILE OBJECTS USING
DUALITY TRANSFORMATIONS

In general, the duality transform maps a hyper-plane h
from Rd to a point in Rd and vice-versa. One duality trans-
form for mapping the line with equation y(t) = ut + a to
a point in R2 is by using the dual plane, where one axis
represents the slope u of an object’s trajectory (i.e. veloc-
ity), whereas the other axis represents its intercept a. Thus
we get the dual point (u, a) (this is the so-called Hough-X
transform [7, 11]). By rewriting the equation y = ut + a as
t = 1

u
y− a

u
, we arrive to a different dual representation (the

so called Hough-Y transform in [7, 11]). The point in the
dual plane has coordinates (b, w), where b = − a

u
and w = 1

u
.

In [7, 11], motions with small velocities in the Hough-Y
approach are mapped into dual points (b, w) having large w
coordinates (w = 1/u). Thus, since few objects can have
small velocities, by storing the Hough-Y dual points in an
index such as an R∗-tree, Maximum Bounded Rectangles
(MBRs) with large extents are introduced, and the index
performance is severely affected. On the other hand, by
using a Hough-X for the small velocities’ partition, this effect
is eliminated, since the Hough-X dual transform maps an
object’s motion to the (u, a) dual point. The query area in
Hough-X plane is enlarged by the area E, which is easily
computed as EHough−X = (E1hough−X + E2hough−X). By
QHough−X we denote the actual area of the simplex query.
Similarly, on the dual Hough-Y plane, QHough−Y denotes
the actual area of the query, and EHough−Y denotes the
enlargement. According to these observations the solution
in [7, 11] proposes the choice of that transformation which

minimizes the criterion: c =
EHough−X

QHough−X
+

EHough−Y

QHough−Y
.

In order to build the index, we first decompose the 2-d
motion into two 1-d motions on the (t, x) and (t, y) planes
and then we build the corresponding index for each projec-
tion. Then we have to partition the objects according to
their velocity: Objects with small velocity are stored using
the Hough-X dual transform, whereas the rest are stored us-
ing the Hough-Y dual transform. Motion information about
the other projection is also included.

To answer the exact 2-d query we decompose the query
into two 1-d queries, for the (t, x) and (t, y) projection.
Then, for each projection, we get the dual-simplex query
and calculate the criterion c and choose the one (say p) that
minimizes it. We search in projection p the Hough-X or
Hough-Y partition and finally we perform a refinement or
filtering step ”on the fly”, by using the whole motion in-
formation. Thus, the result set contains only the objects
satisfying the query.

5. OUR CONTRIBUTION
We consider the case, where the objects are moving with

non small velocities u, meaning that the velocity value distri-
bution is skewed (Zipf) towards umin in some range [umin, umax]
and as a consequence the QHough−Y transformation is used
(denote that umin is a positive lower threshold). In [7, 11]



and [18], QHough−Y is computed by querying a B+-tree and
LBTs (Lazy B-trees) respectively, each of which indexes the
b parameters. Our construction is based on the use of the
ISB-tree [6] instead of the B+-tree or Lazy B-trees, achieving
optimal update performance and near-optimal query perfor-
mance. Next we describe the main characteristics of the
ISB-tree.

6. THE ISB-TREE
In the following, we give the required technical details of

the external memory Interpolation Search B-Tree (ISB-tree)
presented in [6]. First, we give some basic definitions about
regular and smooth input distributions.
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Figure 1: The ISB-tree Index

According to Willard [20], a probability density μ is regu-
lar if there are constants b1, b2, b3, b4 such that μ(x) = 0 for
x < b1 or x > b2, and μ(x) ≥ b3 > 0 and |μ′(x)| ≤ b4 for
b1 ≤ x ≤ b2. This has been further pursued by Mehlhorn
and Tsakalidis [9], who introduced the smooth input distri-
butions, a notion that was further generalized and refined
in [2]. Given two functions f1 and f2, a density function
μ = μ[a, b](x) is (f1, f2)-smooth [2] if there exists a constant
β, such that for all c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b, and all
integers n, it holds that∫ c2

c2− c3−c1
f1(n)

μ[c1, c3](x)dx ≤ β · f2(n)

n

where μ[c1, c3](x) = 0 for x < c1 or x > c3, and μ[c1, c3](x) =
μ(x)/p for c1 ≤ x ≤ c3 where p =

∫ c3
c1

μ(x)dx.

Intuitively, function f1 partitions an arbitrary subinterval
[c1, c3] ⊆ [a, b] into f1 equal parts, each of length c3−c1

f1
=

O( 1
f1

); that is, f1 measures how fine is the partitioning of
an arbitrary subinterval. Function f2 guarantees that no
part, of the f1 possible, gets more probability mass than
β·f2

n
; that is, f2 measures the sparseness of any subinterval

[c2− c3−c1
f1

, c2] ⊆ [c1, c3]. The class of (f1, f2)-smooth distri-

butions (for appropriate choices of f1 and f2) is a superset

of both regular and uniform classes of distributions, as well
as of several non-uniform classes [2, 5]. Actually, any proba-
bility distribution is (f1, Θ(n))-smooth, for a suitable choice
of β.

The ISB-tree is a two-level data structure (see Figure 1).
The upper level is a non-straightforward externalization of
the Static Interpolation Search Tree (SIST) presented in [5].
A static interpolation search tree (SIST) can be fully char-
acterized by three non-decreasing functions H(n), R(n) and
I(n), where H(n) denotes the tree height, R(n) denotes the
root fan-out and I(n) denotes how fine is the partition of the
set of elements. If in the basic searching routine presented in

Algorithm1, we set next←
⌊

x−S[left]
S[right]−S[left]

(right− left)
⌋
+

left we refer to an interpolation searching routine for which
time improvements can be obtained if certain classes of smooth
input distributions are considered. A natural extension is
to adapt interpolation search into dynamic data structures,
that is, the method above (the so-called Static Interpolation
Search Tree).

Algorithm 1 Search(x,S)

1: left← 1
2: right← n
3: next← k ∈ [left, right]
4: while x <> S[next] and left < right do
5: if x ≤ S[next] then
6: right← next− 1
7: else
8: left← next + 1
9: next← k ∈ [left, right]

10: end if
11: end while
12: if x = S[next] then
13: print(′Success′)
14: else
15: print(′Fail′)
16: end if

The lower level of the ISB-tree is a forest of buckets, each
one implemented by a new variant of the classical B-tree,
the Lazy B-tree, introduced in [6] and used in [18]. Each
bucket contains a subset of the stored elements and is rep-
resented by a unique representative. The representatives of
the buckets as well as some additional elements are stored
in the upper level structure.The following theorem provides
the complexities of the Lazy B-tree:

Theorem 1. The Lazy B-Tree supports the search op-
eration in O(logB N) worst-case block transfers and update
operations in O(1) worst-case block transfers, provided that
the update position is given.

Proof. See [6, 18].
The upper level data structure is an external version T

of the static interpolation search tree (SIST) [5], with pa-
rameters R(s) = sδ, I(s) = s/(log log s)1+ε, where ε > 0,
δ = 1 − 1

B
, and s is the number of stored elements in

the tree. The specific choice of δ guarantees the desirable
O(logB log s) height of the upper level structure. For each

node that stores more than B1+ 1
B−1 elements in its sub-

tree, we represent its REP and ID arrays as static external
sorted arrays; otherwise, we store all the elements in a con-
stant number of disk blocks. In particular, let v be a node
and nv be the number of stored elements in its subtree,



with nv ≥ B1+ 1
B−1 . Node v is associated with two exter-

nal arrays EREPv and EIDv that represent the REPv and
IDv arrays of the original SIST structure. The EIDv array

uses O
(

I(nv)
B

)
contiguous blocks, the EREPv array uses

O
(

R(nv)
B

)
contiguous blocks, while an arbitrary element of

the arrays can be accessed with O(1) block transfers, given

its index. Moreover, the choice of the parameter B1+ 1
B−1

guarantees that each of the EREPv and EIDv arrays con-
tains at least B elements, and hence we do not waste space
(in terms of underfull blocks) in the external memory rep-
resentation.

To insert/delete an element, given the position (block)
of the update, we simply have to insert/delete the element
to/from the Lazy B-tree storing the elements of the corre-
sponding bucket. Note that the external SIST is not affected
by these updates. Each time the number of updates exceeds
cn0, where c is a predefined constant, the whole data struc-
ture is reconstructed.

The search procedure for locating a query element x can
be decomposed into two phases: (i) the traversal of internal
nodes of the external SIST to locate a bucket Bi, and (ii) the
search for x in the Lazy B-tree storing the elements of Bi.
For more technical details see [6]. Algorithms 2-5 provide
the description of ISB-tree’s basic operations in pseudocode.

Lemma 2: The traversal of internal nodes of the external
SIST requires O(logB log n) expected block transfers with
high probability.

Proof: See [6].
The insertions and deletions of elements into the ISB-tree

were simulated by a combinatorial game of balls and bins
described in [5] for an internal finger-search data structure.
In particular, balls correspond to elements and bins to buck-
ets. Insertions of elements into the ISB-tree were simulated
by the insertion of balls into bins according to an unknown
smooth probability density μ. Similarly, the deletion of an
element from the ISB-tree was simulated by the deletion of
an element from a bin uniformly at random. For this process
the following has been proven in [5].

Algorithm 2 Sist Search(x,SIST )

1: v ← root(SIST )
2: while (v <> leaf) do
3: i = � x−lv

uv−lv
R(nv)� {Let v be a node on the search path

for x, nv the number of leaves in its subtree, lv and
uv the minimum and maximum element respectively,
stored in Tv}

4: Retrieve the
⌈

i
B

⌉
-th block of the EIDv array

5: j = EIDv[i]
6: l =

⌈
j
B

⌉
7: repeat
8: l ← l + 1
9: until EREPv[l] ≤ x < EREPv[l + 1]

10: end while
11: follow the pointer from leaf v {Let Bini the correspond-

ing bin which is organized as a Lazy B-tree}

Theorem 2: Consider the combinatorial game of balls
and bins described in [5]. Then, the expected number of
balls in a bin is O(log n) with high probability.

The following lemma establishes the searching bound within
a bucket of the ISB-tree.

Algorithm 3 ISB Search(x, ISB-tree)

1: Sist Search(x,SIST ) {Let Bini the corresponding Bin
of the static interpolation search tree SIST}

2: LazyTree Search(x,Bini) {search in the lazy B-tree was
implemented in [18]}

Lemma 3: Searching for an element in a bucket of the
ISB-tree takes O(logB log n) expected block transfers with
high probability.

Proof: This is an immediate result from Theorem 1 and
the size of each bucket, which is determined by Theorem 2.

The main theorem presented in [6] follows and holds for
the very broad class of (n/(log log n)1+ε, n1−δ)-smooth den-
sities, where δ = 1 − 1

B
and includes the uniform, regular,

bounded as well as several non-uniform distributions.

Algorithm 4 ISB Insert(x, ISB-tree)

1: Sist Search(x,SIST ) {Let Bini the corresponding Bin}
2: LazyTree Insert(x,Bini) {Bini is a lazy B-tree and its

insert operation was implemented in [18]}
3: numberofupdates← numberofupdates + 1
4: if numberofupdates = cn0 then
5: Rebuild(SIST ) {n0 is the total number of elements

stored in the initial ISB-tree}
6: end if

Algorithm 5 ISB Delete(x, ISB-tree)

1: Sist Search(x,SIST ) {Let Bini the corresponding Bin}
2: LazyTree Delete(x,Bini) {Bini is a lazy B-tree and its

delete operation was implemented in [18]}
3: numberofupdates← numberofupdates + 1
4: if numberofupdates = cn0 then
5: Rebuild(SIST ) {n0 is the total number of elements

stored in the ISB-tree at the initial state}
6: end if

Theorem 3: Suppose that the upper level of the ISB-tree
is an external static interpolation search tree with param-
eters R(s0) = sδ

0, I(s0) = s0/(log log s0)
1+ε, where ε > 0,

δ = 1− 1
B

, s0 = n0, n0 is the number of elements in the lat-
est reconstruction, and that the lower level is implemented
as a forest of Lazy B-trees. Then, the ISB-tree supports
search operations in O(logB log n) expected block transfers
with high probability, where n denotes the current number
of elements, and update operations in O(1) worst-case block
transfers, if the update position is given. The worst-case up-
date bound is O(logB n) block transfers, and the structure
occupies O(n/B) blocks.

Proof 1: From Lemmas 2 and 3, the searching operation
takes O(logB log n) expected number of block transfers with
high probability. Considering the update bound, between
reconstructions the block transfers for an update are clearly
O(1), since we only have to update the appropriate Lazy B-
tree which can be done in O(1) block transfers (see Theorem
1). The reconstructions can be easily handled by using the
technique of global rebuilding [8]. With this technique the
linear work spent during a global reconstruction of the upper
level structure may be spread out on the updates in such a

1We quote a brief description of the proof presented in [6]



way that a rebuilding cost of O(1) block transfers is spent
at each update.

7. EXPERIMENTAL EVALUATION
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Figure 2: qV len = 5, qT len = 50, qRlen = 100 (top),
qRlen = 1000 (bottom)
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Figure 3: qRlen = 2000, qV len = 5, qT len = 50

This section compares the query/update performance of
our solution with STRIPES as well as with those ones that
use B+-trees, Lazy B-trees (LBTs) and TPR∗-tree, as well.
We deploy spatio-temporal data that contain insertions at a

single timestamp 0. In particular, objects’ MBRs are taken
from the LA spatial dataset2. We want to simulate a sit-
uation where all objects move in a space with dimensions
100x100 kilometers. For this purpose each axis of the space
is normalized to [0,100000]. For the TPR∗-tree, each object
is associated with a VBR (Velocity Bounded Rectangle) such
that (a) the object does not change spatial extents during its
movement, and (b) the velocity value distribution is skewed
(Zipf) towards 30 in the range [30,50], and (c) the velocity
can be either positive or negative with equal probability.
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Figure 4: qV len = 10, qT len = 50, qRlen = 400 (top),
qRlen = 1000 (bottom)

We will use a page size of 1 Kbyte so that the number
of index nodes simulates realistic situations. Also, for all
experiments, the key length is 8 bytes, whereas the pointer
length is 4 bytes. Thus, the maximum number of entries
(< x > or < y >, respectively) in both Lazy B-trees and
B+-trees is 1024/(8+4)=85. In the same way, the maximum
number of entries (2-d rectangles or < x1, y1, x2, y2 > tu-
ples) in TPR∗-tree is 1024/(4*8+4)=27. On the other hand,
the STRIPES index maps predicted positions to points in a
dual transformed space and indexes this space using a dis-
joint regular partitioning of space. Each of the two dual
planes, are equally partitioned into four quads. This parti-
tioning results in a total of 42 = 16 partitions, which we call
grids. Thus, the fan-out of each internal node is 16. The
ISB-tree has an exponentially decreased fan-out and 2 levels

2Downloaded 128.971 MBRs from http://www.census.
gov/geo/www/tiger/
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Figure 5: qV len = 5, qT len = 1, qRlen = 400 (top),
qRlen = 1000 (bottom)

at most (source code of ISB-tree access method is available
at http://www.ionio.gr/~ sioutas/New-Software.htm).

For each dataset, all indexes except for STRIPES and
ISBs have similar sizes. Specifically, for LA, each tree has
4 levels and around 6700 leaves with the exception of: (a)
the STRIPES index which has a maximum height of seven
and consumes about 2.4 times larger disk space, and (b)
the ISB index which has a maximum height of 2. Each
query q has three parameters: qRlen, qV len, and qT len,
such that: (a) its MBR qR is a square, with length qRlen,
uniformly generated in the data space, (b) its VBR is qV =
−qV len/2, qV len/2,−qV len/2, qV len/2, and (c) its query in-
terval is qT = [0, qT len]. The query cost is measured as the
average number of node accesses in executing a workload
of 200 queries with the same parameters. Implementations
were carried out in C++ including particular libraries from
SECONDARY LEDA v4.1.

7.1 Query cost comparison
We measure the performance of our technique described

previously (in particular one ISB-tree for each projection,
plus the query processing between the two answers), in com-
parison to that of the LBTs method [18], the traditional
technique presented in [7, 11], the TPR∗-tree [19] and the
STRIPES method [12], using the same query workload, af-
ter every 10000 updates. Figures 2-6 show the query cost
(for datasets generated from LA as described above) as a
function of the number of updates, using workloads with

different parameters. In these figures our solution is almost
4-5 times more efficient (in terms of the number of I/Os)
than the solution using LBTs and B+-trees. This fact is an
immediate result of the sublogarithmic I/O searching com-
plexity of ISB-tree in comparison to the logarithmic I/O
searching complexities of both structures B+-tree and Lazy
B-tree. In particular, we have to index the appropriate b
parameters in each projection and then to combine the two
answers by detecting and filtering all pair permutations. As
a consequence, the ISBs method is significantly faster than
LBTs and traditional B+-trees methods.

Figure 2 depicts the efficiency of our solution in compar-
ison to that of the TPR∗-tree and STRIPES. In the top
figure, where the length of the query rectangle is 100 and
as a consequence the query’s surface is equal to 10000m2

or 1 hectare (the surface of the whole spatial terrain is 106

hectares) the ISBs method is consistently about 53 times
faster than the STRIPES method, 212 times faster than the
TPR∗-tree, 7.5 times faster than the B+-trees method and 2
times faster than the LBTs method. The superiority of our
solution decreases as the query rectangle length grows from
100 to 1000. Thus, in the bottom figure, where the spatial
query’s surface is equal to 100 hectares, again our method is
faster about 2.2 times with respect to the STRIPES method,
8.3 times wrt the TPR∗-tree, 1.25 times wrt the B+-trees
methods and 1.05 times wrt the LBTs method.
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Figure 6: qRlen = 400, qV len = 5, qT len = 100

In real GIS applications, for a vast spatial terrain of 106

hectares, e.g. the road network of a big town where each
road square covers no more than 1 hectare (or 10.000m2)
the most frequent queries consider spatial query’s surface
no more than 100 road squares (or 100 hectares) and fu-
ture time interval no larger than 100 seconds. However,
to test the methods’ performance in extreme cases we con-
ducted the following experiment. When the query rectangle
length or equivalently the query surface becomes extremely
large (e.g. 2000, or equivalently 400 hectares), then the
STRIPES index shows better performance as depicted in
Figure 3. In particular, our method is still 1.9 times faster
than the TPR∗-tree, however, the STRIPES method is twice
faster than our one. The apparent explanation is that as the
surface of the query rectangle grows, the answer size in each
projection grows as well, thus the performance of the ISBs
method that combines and filters the two answers becomes
less attractive. However, we do not consider such extreme



case as realistic scenarios. Figure 4 depicts the performance
of all methods for a growing velocity vector. In particu-
lar, in the top figure the ISBs method consistently prevails
about 33 times in comparison to the STRIPES method, 137
times in comparison to the TPR∗-tree, 5 times in compari-
son to the B+-trees and 2 times in comparison to the LBTs
method. The superiority of our solution becomes less strong
as the query rectangle length grows from 400 (16 hectares
of query surface) to 1000 (100 hectares of query surface).
However, notably even in the latter case (see bottom of the
figure), our method is about 2.7 times faster with respect
to the STRIPES method, 8.3 times wrt the TPR∗-tree, 1.3
times wrt the B+-trees and 1.06 times wrt the LBTs method.
Obviously, the velocity factor is very important for TPR-
like solutions, but not for the other methods, for LBTs and
ISBs in particular, which depend exclusively on the query
surface. Figure 5 depicts the performance of all methods
when the time interval length approaches the 1 value. How-
ever, notably even in this case (see top of the figure), the
ISBs method is about 1.6 times faster with respect to the
STRIPES method, 4.6 times faster wrt the TPR∗-tree, 1.3
times faster wrt the B+-trees and 1.2 times faster wrt the
LBTs method. As query rectangle length grows from 400 to
1000, the ISBs method advantage decreases; from the bot-
tom figure, we remark that STRIPES is about 3 times faster,
whereas our method is 1.03 times faster than the TPR∗-tree,
1.07 times faster than the B+-trees and 1.03 times faster
than the LBTs method. Figure 6 depicts the efficiency of our
solution in comparison to that of TPR∗-trees and STRIPES
when the time interval length reaches the value of 100. In
particular, the ISBs method is consistently about 10 times
faster than STRIPES, 37 times faster than TPR∗-tree, 3.5
times faster than the B+-trees and 2 times faster than the
LBTs method. As required in practice, the query surface
remains in realistic levels (16 hectares).
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Figure 7: Update Cost Comparison

7.2 Scalability and update cost comparison
Figure 7 compares the average cost (amortized over inser-

tions and deletions) as a function of the number of updates.
ISBs and LBTs methods have optimal update performance
and consistently outperform the TPR∗-tree by a wide mar-
gin as well as the STRIPES index by a narrow margin. In
particular, ISBs and LBTs methods require a constant num-
ber of 4 and 6 block transfers respectively(3 and 2 block

transfers respectively for each projection, for details see [6])
and this update performance is independent of the dataset
size. On the other hand, the other 3 solutions do not have
constant update performance; instead their performance de-
pends on the dataset size even if as in the experiment of
Figure 7 B+-trees and STRIPES reach the optimal perfor-
mance of ISBs and LBTs methods requiring 8 and 7 block
transfers respectively (TPR∗-tree requires 35 block transfers
in average). The experiments above show that ISBs method
achieves a near optimal performance for the most cases. This
stems from the fact that the MBRs’ projections from the LA
spatial datasets follow an almost uniform (the most popular
density of smooth family) distribution, due to the almost
uniform decomposition of spatial maps. In particular, LA
dataset constitutes a dense spatial map and hence the de-
rived one-dimensional data produce densely populated ele-
ments. Thus, the interpolation technique of ISBs method
works very well and its expected excellent behavior follows
with high probability.

8. CONCLUSIONS
We have used a new access method for indexing mov-

ing objects on the plane to efficiently answer range queries
about their future location. Its update performance is the
most efficient in all cases with no exception. Regarding
the query performance, the superiority of our structure has
been shown as long as the query rectangle length remains
in realistic levels, thus by far outperforming the opponent
methods. If the query rectangle length becomes extremely
huge in relation to the whole terrain (which apparently is
a non-practical instance), then the STRIPES method is the
best solution, however, only to a small margin in compari-
son to our method. We anticipate that for synthetic gigantic
datasets the ISBs method will be superior in any case.
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