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ABSTRACT

Cost models are broadly used in query processing to drive
the query optimization process, accurately predict the query
execution time, schedule database query tasks, apply ad-
mission control and derive resource requirements to name a
few applications. The main role of cost models is to pro-
duce the time needed to run the query on a specific ma-
chine. In a multi-cloud environment, this is insufficient in
two aspects: firstly, the machines employed are not defined
a-priori, and secondly, time estimates need to be comple-
mented with monetary cost information, because both the
economic cost and the performance are of primary impor-
tance. This work addresses these two shortcomings and aims
to serve as the first proposal for a bi-objective query cost
model that is suitable for queries executed over resources
provided by potentially multiple cloud providers. Moreover,
our approach is applicable to more generic data flow graphs,
the execution plans of which do not necessarily comprise
relational operators.

1. INTRODUCTION

More and more companies and organizations consider mov-
ing their infrastructures and applications on the cloud, mo-
tivated by the promise of clouds to achieve economies of
scale. One of the most attractive features of cloud com-
puting is that it provides an alternative to the procurement
and management of expensive computing resources, which
are associated with high upfront investments and consider-
able human effort, respectively.

Cloud technology has evolved significantly and nowadays,
is considered as robust and trustworthy. It leverages several
traditional notions of distributed computing, such as the vir-
tualization of resources and the provision of virtual machines
(VMs), typically at a certain monetary cost. Cloud resources
are not limited to emulations of raw physical machines; they
can also cover provision of software middleware, databases
and specialized tools. The proliferation of cloud options has
raised the following problem faced by cloud users: which
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cloud providers to choose to execute a specific task on the
cloud? This issue is not only important but also complex,
especially when the requested resources can be offered by
multiple providers. A key point to answer this question is
to provide estimates of both the running time and the mon-
etary cost; this is exactly the topic of our work.

We focus on database queries and more generic data-
flow tasks that can be executed over remote resources pro-
vided by multiple providers [20, 18]. For example, assume
a database query that joins data from cloud-enabled data
stores, such as anonymized population census data and com-
mercial data offered by a set of providers. Or, analyzing
patient data using a series of specialized cloud-enabled ser-
vices, as described in [25]. In such scenarios, to be in a posi-
tion to take final allocation decisions, we need to be able to
accurately estimate the running time of the tasks on cloud
resources and the price to use such resources.

Estimating query execution time plays an important role
in several applications and processes, including query op-
timization, scheduling, admission control and allocation of
resources [23]. Typically, the query cost models are applied
to physical execution plans and assume that the physical re-
sources to be employed in query execution are predefined.
These cost models either encapsulate a component to esti-
mate the cardinalities of the data processed or accept such
cardinality statistics as input; in the output, they produce
an estimate of the query running time. Examples of such
cost models in a distributed environment are provided in
[11, 21]. In a multi-cloud environment, providing informa-
tion only about the running time for specific processors is in-
sufficient because (i) the machines employed are not defined
a-priori, and (ii) time estimates need to be complemented
with monetary cost information. This work addresses these
two shortcomings.

The main contribution of this work is the proposal of a
database query cost model that provides estimates of both
the expected running time and the economic cost associ-
ated with running a specific query over VMs provided by
one or more cloud providers. The cost model is modular
and can be applied to arbitrary DAG data flows apart from
simple query execution plans consisting of relational oper-
ators. It supports the main modes of fee charging to date,
which leverage the pay-as-you-go approach. Nevertheless,
the modularity of our proposal allows for easily plugging-in
further models for running time and cost estimates, while
the model is not tailored to any specific charging policy. In
this work, we show how our proposal can be used to de-
rive running time and monetary cost estimates through a



detailed example and a validation case study on a real cloud
infrastructure.

The remainder of this paper is structured as follows. In
the next section, we provide background material and dis-
cuss related work. In Section 3, we give the details of our
cost model. Section 4 deals with a validation case study. We
conclude in Section 5.

2. BACKGROUND

Before delving into cost model’s details, we provide a brief
overview of the main pricing policies currently adopted by
cloud providers and are meant to be supported by our cost
model. We also discuss the main factors involved in the
cost of developing and maintaining a cloud infrastructure.
In the last part of this section, we present the currently
established cost models for distributed queries, which do not
consider economic costs. Finally, we show how our proposal
complements bi-objective optimizers that are suitable for
multi-cloud database queries.

2.1 Cloud Pricing Policies and Costs

Cloud providers offer VMs at a specific price. The price
depends on several factors including the computational char-
acteristics of the VM, the reservation time and mechanism,
and whether the VM comes with specific software installed
(e.g., as typically occurs in PaaS/SaaS settings) or not. The
price of VMs typically differs among providers, even when
the offered VMs share the same characteristics.

2.1.1 VM characteristics related to charging

A main characteristic that affects the charging fee is the
exact type and volume of computational resources that each
client requests. There is a significant deviation in the price
depending on CPU speed’, memory and storage space. Usu-
ally providers have some fixed combinations of the above
components, so that they offer complete pre-specified VM
options to users aiming to cover a broad range of needs.
In addition, some providers allow their customers to build
their own combination of resources, i.e., to customize their
VMs. Some examples are Amazon Web Services [1] and
CloudSigma [4], respectively. Finally, some providers, like
Amazon [3] and Rackspace [14] follow a hybrid approach
and offer additional storage space with extra cost on top of
pre-specified VM instances.

Installed software is equally important. The software that
is used (e.g., databases, operating systems etc) may be open-
source or commercial. Generally, VMs with pre-installed
open source software are less expensive than those with com-
mercial software due to licensing fees. The built-in sup-
port for or the existence of programming frameworks (e.g.
Apache Hadoop) increases the cost. The same holds for non-
functional features, such as monitoring services, security fea-
tures, ease of migration, and so on. Other price factors are
the data transfer and geographical position of VMs. Some
providers have additional charges for data transfer either
from or to their servers and also apply different rates de-
pending on the geographical location of the servers running
the VMs (e.g., [2, 15]).

A cost model needs to be VM-independent to be usable
in a multi-cloud environment. Our cost model is not tai-

LCPU power is often abstracted through the use of the so-
called ECU units.

lored to any specific hardware characteristics. Rather, it
provides generic formulas that can be calibrated according
to the specific VM types at the disposal of a cloud client.

2.1.2 Cloud Costs

The development and maintenance of cloud infrastructure
requires the investment of a big amount of money that is
amortized over a long time period. Except from the initial
purchase costs, a cloud data center is expensive to maintain
and run. The major development cost is the acquisition
of the raw servers and network infrastructure. In addition,
cloud data centers have high energy needs and require spe-
cial power and cooling infrastructure, which is an extra cost
[6]. Licenses for software, such as OS and virtualization soft-
ware, are an additional expense. Finally, there is the cost for
the real estate, where the data center will physically reside
[10]. The most important economic cost related to mainte-
nance cost is due to the significant power consumption. It
is usually the 15-20% of the total budget [6, 7]. Other costs
include the network expenses, which are the costs for com-
municating with the end users, and the salaries of the data
center technicians and the rest of employees.

The cost of running a cloud infrastructure directly im-
pacts on the charges requested by the end users for its usage.
However, in our cost model, we do not deal with the issue of
configuring the price of the VM options offered by the cloud
providers.

2.1.3 Charging Models

The charging models are orthogonal to the VM charac-
teristics and the costs for developing and running cloud in-
frastructures. Here, we review the most important charging
models, which are all supported by our cost model.

The most common charging model is the “Pay-as-you-go”
one, where the customer is charged for the actual period she
uses the infrastructure. The usage periods are monitored
in different granularities though; i.e., providers may have
different minimum time unit for charging. For example, one
provider’s minimum time unit may be 1 hour and another’s
5 minutes. So, if someone uses the former infrastructure for
1 hour and 23 minutes, she will be charged as if she used
the infrastructure for 2 hours, whereas, in the latter case the
price will be for 1 hour and 25 minutes. The “Pay-as-you-
go” charging model is encountered in three main forms in
Amazon EC2, but those forms are essentially generic to any
cloud provider:

e On-demand Instance, where the payment is done after
the use of infrastructure charging for as long as the
customer used it, without any other commitment, as
explained above.

e Reserved Instance, where the customer pays a small
fee upfront for a specific time (i.e. month, year) and
after that, she is charged like the on-demand policy
for the time using the infrastructure, but with a great
discount on the fee.

e Spot Instance, which is like an auction. The customer
bids whatever price is willing to pay for the infrastruc-
ture and, if the bid is above the current spot price, she
gets the VM and is charged for the actual usage period
but with a very lower price. The drawback is that, if
the spot price goes above the customers bid price, her
VM will be shut down.



An additional charging model is the “Committed VM”. In
this model, the client rents the infrastructure for a prede-
fined time. This predefined time can be from one month
to a year, or even more in some cases. During this time,
the customer can use the infrastructure whenever she wants
without any extra cost (except maybe network traffic). Usu-
ally, it is less expensive than “Pay-as-you-go” when the usage
is high. An example of this model is GoGrid [5].

2.2 Existing Cost Models and Other Related
Work

Cost models for distributed queries do not consider the
economic cost associated and are limited to scenarios where
the physical resources are predefined. A typical approach is
presented in [11], where the query execution time is split into
the time needed to execute CPU tasks, retrieve and store
data to the disk and send data across hosts. [21] provides
more detailed cost functions but follows the same approach
as in [11]. More sophisticated approaches, such as [24, 16],
perform more efficient and dynamic cost function calibration
but still suffer from the main limitations mentioned above.

Finally, the work in [13] defines the tradeoff between per-
formance and cost, when running an application over a dif-
ferent number of VMs of the same type in the same data
center under volatile load. Our problem is different, since
we consider cases where the applications consist of several
subtasks that can run on different types of VMs, which are
possibly provided by multiple providers.

2.3 How can the cost model be used?

Our setting is depicted in Figure 1. We assume that there
exists a centralized optimizer that builds an execution plan
in the form of a query tree, that is, vertices correspond to
operators and data flows from bottom to top; the root node
produces the final query results. At this stage, there is no
locality information about which VM each operator is ex-
ecuted on. After that, the execution plan is decomposed
into smaller sub-queries, where each subquery corresponds
to an execution stage. Those stages will be referred to as
strides. Before a stride begins its execution, all the lower
strides must have been completed. In the figure, we provide
an example of a query plan decomposed in 4 strides.

Assume now that for each stride, each cloud provider is
capable of providing a bid as shown in the bottom right of
the figure. Each cloud provider can offer multiple combina-
tions of type and number of VMs at a different cost, and each

total cost-delay
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Figure 1: An analysis DAG (left) and example user
and provider cost-delay functions (right) [22].

such combination may result in different expected execution
time. In the generic case, the complete offer per provider
per stride is described by a continuous function. In addi-
tion, we assume that each user specifies her own function
that represents the worst acceptable trade-off. We further
assume that the total monetary cost of the query plan is
the sum of the cost of each stride; similarly, the total time
delay is the sum of the delays in each stride. The aim of
a multi-cloud optimizer is to derive an optimal assignment
of strides to VMs. This is equivalent of determining exactly
one bid point from each stride, so that the total monetary
cost maximizes the difference from the user-supplied func-
tion. We are interested in this difference, which is termed as
user satisfaction, because it captures the savings from the
worst acceptable payment.

The problem above involves the computation of the pareto
frontier and is NP-hard [12]. A simpler version of this prob-
lem has been investigated in the context of the Mariposa
distributed query processing system [20, 12], where the bid
of each provider for each stride is a single point rather than a
continuous function. The proposal in [22] generalizes the ini-
tial solutions allowing arbitrary non-increasing cloud provider
functions and guarantees optimal solutions with bounded
relative error in pseudo-polynomial time.

The main problem with the above multi-cloud optimizers
is that to date, there is no mechanism to provide the cloud
provider bids, which serve as their input. This work aims to
complement the proposals in [20, 12, 22] and provide such
a mechanism. So, apart from the fact that a bi-objective
cost model is significant in its own right, our proposal serves
a secondary purpose, namely to assist in rendering the ex-
isting approaches to multi-cloud optimization applicable in
practice.

3. OUR COST MODEL

The model we are presenting is used for estimating the
time and the economic cost of a query plan executed on
cloud-based VMs. To achieve this, we have built on top of
the single-objective cost models described in [23] and [19].
However, our model can be applied to more generic data
flows that are still expressed as DAGs. For simplicity, we
start assuming that our process is a traditional query plan,
and at the end of this section, we generalize.

3.1 Assumptions

Before we describe the cost model’s rationale and func-
tions, we need to state the assumptions we make:

e The shape of the query plan and the operator ordering
have already been chosen by a centralized optimizer.

e There is a mechanism that decomposes the query plan
into strides in place.

e Every operator can be executed only on one node. The
number of VMs that will be used in every stride is
equal to the number of the query plan vertices that the
stride comprises. As such, there is no intra-operator
parallelism, where an operator runs on several proces-
Sors.

3.2 The Cost Model

Our cost model is modular and consists of components
that model the charging policies, the computational and



the communication execution time, respectively. Based on
those, the economic price is derived as explained below.

3.2.1 Modeling the charging policies and fees

In the first part, we model the charging policies described
in Section 2 and we map them to specific VM offers. The
notation is as follows:

e P2: Denotes the charging policies of the providers,
where:

— a: it denotes the type of charging policy:

* a=1: corresponds to On demand Instance;
* a=2: corresponds to Reserved Instance;

* a=3: corresponds to Committed VM,

* a=4: corresponds to Spot Instance;

— t: denotes the charging time unit of charging in
minutes, t € 1,5, 10,...,60.

o V Mj: it denotes the specific VM instance, where 1 <
k < |Available V Ms]|.

o Fpr(P#, VM) = (fa, fu): it denotes the price offer
from cloud provider pr for the VM instance VM ac-
cording to the pricing policy Pf. It consists of two
parts: fq corresponds to the amortized price per time
unit for the policies that involve an upfront fee pay-
ment (e.g., Reserved Instance), whereas it is normally
0 for the On demand Instance policy; f. corresponds
to the fee related to the actual VM usage, which is set
to 0 for the Committed VM policy. In policies where
the actual usage is not monitored, as may happen in
the Committed VM one, t is set to 1, to allow for more
detailed model estimates.

3.2.2 Estimation of Execution Time

To estimate the time that a query takes to be executed on
a specific VM, we use the following formula:

VM

VM ’
k—k
5,14 7...75 )

s,ms—j

TotalTime = Zn

max (S

where:

e n = the number of strides.

e m’® = the number of operators in the s-th stride.
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- T5,.5 = time to transfer the data produced
by operator i of the s-th stride, which runs on
VM, to node j, which runs on VM,,. Typically,
J belongs to the (s+1)-th stride, and the following
conditions hold:

¥ 1 <s<n,

x* 1 <i<m?®

* 1<j<mt,

* 1 < k <|Available VM s|

time to execute i-th operator of s stride

The rationale behind the TotalTime formula is that: (i)
all strides are executed sequentially, and (ii) all operators in
the same stride are executed in parallel.

To calculate O:/lA T we can employ the technique described
in [23] although our approach is orthogonal to the way O;/ZN T
is estimated. According to [23], the equation for calculating

the cost of an operator given a specific V My, is:
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cvmM, is a vector of statistical metadata for the instance
V Mj,. The values of ¢ depend only on the underlying hard-
ware and can be found through a simple calibration proce-
dure. This also means that the calibration of ¢ has to be
done only once for every system that we want to test, since
they are independent of specific queries.

n is a vector of statistics of the data processed by the
operator in the form of cardinalities. For estimating the
cardinalities n, Wu et al. in [23] propose a sampling-based
approach. These values depend only on the query plan and
not on the hardware that will be used to execute the query.
Since the query plan is only one and is known, it is possi-
ble to calculate the cardinalities with this method without
incurring big overhead.

To calculate Ts‘fiﬁ’“ﬁk' we use, as our basis, the model
described in [19], along with the results of cardinality esti-
mation used for estimate the execution time of the operator
on the i-th node. With the cardinality estimation results,
we can calculate the size of produced data X, that will be
transferred over the network. We can employ different cost
estimation formulas depending on the physical position of
the nodes. The nodes i and j of the stride s and s+ 1 respec-
tively, can belong either to the same cluster or to a different
one. In the first case we have intra-cluster communication,
while in the second we have inter-cluster communication.
These cases are examined as follows.

e Intra-cluster communication: we have two subcases:

— Same VM instance (kK = k’). The j-th operator
will be executed on the same node as the i-th
operator executed. This means that the produced
data are already in the same VM. So we have:

Ts‘,/ilvlfy’%k =0
— Different VM instance (k # k). The j-th oper-
ator will be executed on a different VM instance
than the i-th operator, but in the same cluster u.
This means that data (X) has to be transferred
from node i to node j. In this case:

= O (X) = g X + B

where ay, ;s is the communication cost to transfer
one unit of data from node k to node k' and Bx
is the communication startup cost.

VM g
S,i—7J

e Inter-cluster communication. In this case, operator @
will be executed on a node in cluster u, while operator j
will be executed on a node in cluster v. So the transfer
time is estimated by the following formula.

VM

T, ;25 = Chig, (X) + Cyy g0 (X) + CF i (X)



where:

— Cy,,9, (X) is the communication cost for X amount
of data between cluster u and v through their
gateways g, and g, respectively.

- CiL,,,(X) is the transmission cost between node
k and the gateway node (g.) in cluster u.

— (4, ;(X) is the transmission cost between gate-
way node (g,) and node k' in cluster v.

3.2.3 Monetary Cost Estimation

The third part of our model is the estimation of the cost
of a query in monetary units. To estimate this, we need to
combine the pricing offers of the different providers with the
time estimation of our model. The total price depends on
the execution time of each operator and the associated fee:

S ST Price(SM By (PR VM), Fyr(PEL VM),

s,i—]

where Price, computes the fee for using a V M} for S time
based on the P charging policy and transferring data to

| VM | Providers | ECU | Memory | Storage |

VM AB 3 3.75 GiB | 1x48SSD
V My A 6.5 7.5 GiB [ 1x32SSD
V M3 B 6.5 15 GiB 1x 32 SSD
V My B 13 15 GiB 2 x 40 SSD
V Ms A 14 7.5 GiB | 2 x40 SSD

Table 1: Example of VM instances taken from AWS

| Pricing Policy | Charging Time Unit |

P Hour
Pl 5 Min
PZ Hour
P Month
P} 3 Month

Table 2: Pricing policies

VM | Pricing Policy | fa | fu | Description
- On-demand
Assume that F, (P, VM) = (fa, fu) and Fpr (P, V M)
(f4, fo)- Then Price is estimated as follows: Fa(Peo, VML) 0 5 53 /Hour
Fu(Pgy, V Ms) 0 17 17$/Hour
_ VMo y g ok Fp (P2, V Ms) 0 | 170 1.708/5Min
Price = (fa + fu) [ 1+ (fo + fu) [ =] Fo(PL, VM) 0 [ 480 1,808 /5Min
capturing the fact that data transfer results in concurrent Fa(Pio, VMs) 0 60 608/Hour
usage of both the sender and the receiver VMs. . Reserved Instance
It is worth noting that there are several alternatives when Fa(Peo, VM) 0.685 15 158 /Hour+5008/Month
defining f,, depending on the expected usage of the model. Fa(P,V M) 0.057 | 1.5 | 1.50$/5min+5008/Month
For example, if the user is not interested in the pre-paid Fa(PZ,VM,) 0.057 | 4.3 | 4.308/5min+5008/Month
amount, then f, can be set to zero for any charging pol- Fu(Pg,VMs) 0.685 [ 53 53%/Hour+500%/Month
icy. Also, if the cost estimation is used to decide whether to Committed VM
request further VMs in addition to those already reserved, Fa (Pl"7 VM) 0.1667 0 7300%/Month
then f, for the on-demand instances may include the amor- Fp(P?, VM) 0.1826 0 8000$/Month

tized cost of the reserved instances instead of being 0. The
formulas presented above are generic enough to support such
scenarios. Finally, it is straightforward to extend them to
support charges based on the volume of the data transferred
across the network.

3.3 An Example

To give a better view of our model, we will present a simple
example. Suppose we have query g that is executed in two
strides. It consists of two operators, one in each stride. For
simplicity we will assume that:

e The time to transfer the intermediate data from Stride
2 to Stride 1 is 1 hour (60 mins) if the VMs of each
stride are different, or O if it is the same VM.

e There is no charge for data transfer between the nodes
that execute the query. Usually this only happens
when the nodes are of the same provider.

e All the data that the query needs, including the initial
data and the intermediate data, fit completely in the
storage space provided by the specific instance. This
implies that we do not have any extra cost for storage
space.

We have two IaaS providers, A and B, with their provided
VMs presented in Table 1. The charging policies are in Table

Table 3: Pricing offers in the example

| [ VMi | VM, | VM | VMy | VM5 |
OY M 1 2000 sec | 1200 sec | 1200 sec | 620 sec | 600 sec
OY{W 1500 sec | 620 sec | 620 sec | 240 sec | 230 sec

Table 4: Example of estimated execution times

2. The pricing offers based on those charging policies can
be seen in Table 3 along with their respective f, and f,.
Finally, the estimated time to execute each operator on the
provided VMs (O:/LA ‘k) can be seen in Table 4.

In Figure 2, we present a diagram of the estimated execu-
tion times along with the estimated monetary costs for the
query q for every combination of VMs with On demand and
Reserved charging policies in Table 3. Black bullets repre-
sent the On-demand model, while the white ones correspond
to the Reserved Instance model. In general, the monetary
cost is inversely proportional to the execution time and Re-
served Instance pricing is less expensive than On demand.
In Figure 2, the rightmost combination (A) is to allocate
both operators to V M7, which is the less expensive albeit
the slowest VM, while combination C corresponds to the
mapping of the two query strides to VMs — V M4, which
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Figure 2: Time and monetary cost combinations for
the example query

are the faster and most expensive VMs.

It can be seen that some VM combinations dominate some
others, i.e., they are both more efficient in terms of execution
time and less expensive. This is attributed to the different
charging policies (e.g., charges for each hour or for each 5
min period of usage). One other factor is the fact that, in
some combinations, both operators are executed on the same
VM, and as such, there is no data transfer across the net-
work, which leads to reduced execution time and monetary
cost. For instance, for combination D on the diagram, V M5
is used for both operators. Due to the absence of intermedi-
ate data transfer, this combination has both lower cost (by
60$) and running time (by 60 mins) under the On demand
policy than combination B for example, where data has to
be transferred from VM4 to V M.

In this example, we do not have any extra cost for the
transfer of intermediate data between strides. If we had
such a cost, we could use the cardinality estimation to de-
termine the size of data transferred. Since we know the data
that to be transferred and the charging policies of the IaaS
providers, we are able to determine the cost for transfer-
ring data between strides. Also, in the example, we have
assumed that all the data, including initial and intermedi-
ate data, fits completely in the storage space. If this is not
the case, we can estimate the data volume that needs to be
stored based on the cardinality estimates, and then estimate
the monetary cost for using extra storage space.

3.4 Generalizations

The cost model described in this section can be generalized
in two main ways: to support arbitrary data analysis flows
and intra-operator parallelism.

Data analysis flows are typically represented as directed
acyclic graphs (DAGs), which can be naturally split in mul-
tiple stages, exactly as the query plans we consider do. The
main difference between arbitrary data flows and query plans
is that query execution plans consist of operators from the
extended relational algebra, whereas data flows also encom-
pass data and text analytics, machine learning operations,
and so on [18]. The implication in our cost model is in the
way O;/,sz is estimated. The approach in [23] cannot ap-
ply because it is specific to atomic query operators; so we
need to resort to micro-benchmarking solutions, e.g., as de-
scribed in [8, 17]. The rest of the cost model details remain
the same.

Regarding intra-operator parallelism, the extensions are
more straightforward. We can assume that, if we fix the de-
gree of intra-operator parallelism, then we modify the query

oy, v (ms/bytes) Br (ms)

=1 K =2 K=3
k=1 - 6.29e-05 | 5.54e-05 | 8.61e02
k=2 | 6.60e-05 - 6.39e-05 | 9.05e02
k=3 | 5.67e-05 | 6.09e-05 - 1.08e03

Table 5: Network o and [ parameters

execution plan, so that each instance of a partitioned oper-
ator appears as a separate query plan vertex. Then, we can
apply the cost model without any modifications.

Finally, a shortcoming of the monetary cost estimation in
Section 3.2.3 is that a VM that receives data from a remote
host is activated and, if it does not start processing its re-
sults immediately, it may not be de-activated. The formula
presented does not capture this, but it is straightforward to
devise more sophisticated formulas that keep track of the
first time a VM is activated until it finishes the execution of
all the tasks allocated to it.

4. VALIDATION CASE STUDY

In this section, we demonstrate how exactly the cost model
is used in a real multi-cloud environment. The first part
shows how the cost model is calibrated, while the second
part shows how we derive time estimates. Monetary cost
estimates are covered by the example in Section 3.3.

4.1 Experimental Setting and Model Calibra-
tion
For our experiments we used okeanos. okeanos is a laaS
platform for the Greek Academic and Research Community
[9]. More specifically, we used 3 VMs with the following
hardware configurations:

e 2 VMs (VM; and VMs) : 60GB Disk, 4GB Ram, 1-
core x 2.1GHz

e 1 VM (VM;): 40GB Disk, 2GB Ram, 1-core x 2.1GHz

Our software setup includes the installation of PostgreSQL
9.1.11 on Linux Kernel 3.2.0-58-generic. The data we used
come from the TPC-H decision support benchmark and the
database size is 26GB.

To use the cost model, we need to parameterize the time
estimates for data transfer, writing (resp. reading) raw data
to (resp. from) disk and for the relational operators. For the
calculation of the network speed, our case is that the VMs
belong to the the same cluster. So the network formula is
given by:

VM
Ts,iﬁj

= Ciow(X) = ap X + B

where oy, 5/ is the communication cost to transfer one unit
of data from node k to node k' and By is the startup cost.
To find « and B, we conducted two experiments with dif-
ferent X for every combination of VMs. We used the com-
mand dd of unix to produce two files and the command scp
to transfer these files between servers and measure the net-
work performance. We repeated this experiment 10 times
for each X value and then calculated the mean time. Since
we have a linear function, we can calculate a and  with
simple maths. The results are presented in the Table 5.
Next, to estimate the query time correctly, we need to
know the read and write speed of the disk of every VM. We



V M, VM | VM3
291.60 | 255.30 | 43.88
100.83 | 106.20 | 96.39

Read Speed (MB/s)
Write Speed (MB/s)

Table 6: Disk Performance in MB/s

| Optimizer Parameter (ms) | V M, | V M> |
seq_page_cost 2.16e-02 | 3.21e-02
cpu_tuple_cost 3.76e-04 | 3.48e-04
cpu_operator_cost 2.17e-04 | 2.48e-04

Table 7: Cost units of our VMs

measure the sequential speed using the dd unix tool while
we set the block size to 4096 bytes. Again, we repeated the
measurements 10 times and we calculated the mean values.
The results are presented in Table 6.

Finally, to estimate the execution time O;/,sz of relational
operators executed by postgreSQL, we need both cost units
c and cardinalities n. For cardinalities n, we assume that
they can be calculated with the method described in [23] and
thus are accurately known. To calculate c, we have used the
calibration queries from [23]. We have calculated only the
cost units that are involved in the experiments in the next
part; the results are in Table 7. The queries are:

e SELECT * FROM R
R is memory resident. This query is used to find
cpu_tuple_cost.

e SELECT COUNT(*) FROM R
R is memory resident. This query along with the pre-
vious are used to find cpu_operator_cost.

e SELECT * FROM R
R does not fit in memory. With the help of the first
query, this query is used to find seq_page_cost.

where seq_page_cost gives the time cost to sequentially per-
form an I/O operation accessing a disk page. cpu_tuple_cost
is the time to retrieve and process a tuple. cpu_operator_cost
captures the extra cost of applying a hash or an aggregate

function to a tuple (that cost is not covered by cpu_tuple_cost).

4.2 Running time estimates

In our experiments, we tried to validate whether our cost
model can predict with adequate precision the execution
time of a query. We used postgreSQL database only for
the operators of the bottom strides. All the other operators
are implemented with unix scripts. The cost units c were
used only to predict the running time of the postgreSQL
operators. To calculate the time of operators implemented
with scripts, we treated them as black boxes, we executed
them with different inputs and measured their performance.

Experiment 1

The query of the first experiment is:

SELECT c_nationkey, count (*)
FROM customer
GROUP BY c_nationkey

The corresponding plan is presented in Figure 3 on the left.
For the execution of the above query, we use two VMs

(VMi and V Ma2). V My is used for stride 1, while V M> runs

stride 2. The execution is split in three steps as follows:
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Figure 3: Plans of the experiments.
Estimated Values (ms) | Actual Values (ms)
Exp. 1 15531 16172
Exp. 2 3131 3285

Table 8: Results of actual execution time and esti-
mated time

1. SCAN, PROJECT and SAVEL are executed on V M,
with as single SQL sub-query submitted to the post-
geSQL database.

2. TRANSFER is performed using the unix scp com-
mand.

3. LOAD1, GROUP BY and SAVE2 is implemented as a
single unix script running on VM.

We sum the execution time of each of the above steps to
calculate the total actual execution time of the query. Our
experiments were repeated 10 times, and their mean value
is in the Actual Values column of Table 8.

To find the estimated execution time, we used the actual
cardinality. For the calibration of the execution time of the
GroupBy operator, we first applied this operator on a set
of 1 million random numbers for 10 different times. Again,
the total time is given by the sum of the times of the three
steps and the results are in Table 8 (see the Estimated Times
column). From the table, we can observe that the deviation
between the actual and the estimated times in that experi-
ment is less than 4%.

Experiment 2

The query of the second experiment is:

SELECT nation.n_name, count(*)

FROM customer, nation

WHERE customer.c_nationkey = nation.n_nationkey
GROUP BY nation.n_nationkey

The detailed execution plan can be seen in Figure 3 on the
right. We can observe that the database optimizer has per-
formed an optimization, which pushes the group-by under
the join yielding significantly lower execution times.

For the execution of this query, we use three VMs. V M,
and V Mz, which have both postgreSQL database installed,
are used for the bottom stride, while V' M3 executes the first
stride. The execution consists of three sequential steps:



1. SubQueryl and SubQuery2 are executed in parallel on
V M; and V M>, respectively.

2. The intermediate data is transferred with the help of
scp as previously.

3. SubQuery3 is implemented as unix script (using join
command) that runs on V Ms.

The total time is estimated by adding the maximum esti-
mated time of subqueries 1 and 2 in Stride 2 along with the
data transfer from the first stride to the second one. Then
we add the estimated time of subquery3. The average re-
sults of the 10 runs are in Table 8. Again, the deviation of
the estimates from the actual running times is low (4.69%).
It is important to clarify that the VMs used were not in-
stalled on dedicated machines. On the contrary, the cloud
infrastructure in our experiments is heavily used by a big
community that shares the physical resources provided.

S. CONCLUSIONS

In this work, we presented a bi-objective cost model that
provides time and monetary cost estimates of query plans
running on VMs from multiple cloud providers. Our cost
model extends existing approaches that focus on time esti-
mates when tasks run on predefined machines and is tailored
to a multi-cloud environment. The cost model is also ap-
plicable to generic data flow tasks, and through a detailed
example and a validation case study, we show how it can
be employed in practice. There are several avenues to ex-
tend our work, since providing time and cost estimates is a
complex issue. Two of the most important directions are to
devise cost models that map tasks to the amortized cost of
using the infrastructure (rather than the price charged) and
to perform more thorough validation.
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