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ABSTRACT
In this paper we try to detect dissimilar images in image databases
without defining a similarity ranking function by capturing the in-
trinsic dissimilarities of image descriptor vectors. To this end, we ap-
ply the skyline operation using their multi-dimensional descriptor
vectors. We implemented a number of skyline methods, combined
with four hashing state-of-the-art algorithms for data partitioning
to create efficient indexing to secondary memory. We compared
and evaluated their results by using two real image datasets to
measure the performance and the effectiveness of the implemented
algorithms. Detailed results show the efficiency and effectiveness
of our approach.

CCS CONCEPTS
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KEYWORDS
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1 INTRODUCTION
Every minute more than 20 hours of video are uploaded to YouTube
and 100,000 photos to Facebook. Real-time methods are incapable to
manage such amounts of data. Therefore, researchers are focusing
in new representation and searching approaches in big datasets. In
content-based information retrieval (CBIR), a key query is: given
an object, to retrieve similar database objects. Seeking for similar
images is often raised and, thus, nearest neighbor finding could be
applied in a wide range of important applications [6].

An image database does not only store images at their source
format, but also with appropriate transformations in the form of a
multi-dimensional vector representation of the image characteris-
tics, which are called descriptor vectors and have a dimensionality
from a few tens up to a few thousands.

In this study, we seek for vectors not dominated by others, i.e.
vectors that belong in the skyline set. An object dominates another
one, when all its dimensions have better or equal value, whereas
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they have better values in at least one dimension. Important issues
for such an operation in a large image database are: (i) the method
efficiency, e.g. the required time, and (ii) the size of the skyline,
which should be moderate even in high-dimensional spaces.

By finding the skyline of an image high-dimensional dataset, we
can capture the intrinsic dissimilarities of images. In simple words,
by using the image descriptor vectors, we can detect dissimilar im-
ages without defining any similarity or distance ranking function.
Therefore, we can bypass any restrictions and distortions in the
similarity notion that distance functions can embed, as well as to
avoid complex indexing schemes and algorithms that are used on
specific distance functions. Moreover, a concrete application of our
approach is that the images found in the skyline can be used for
grouping or clustering the whole image database, e.g. to initialize
a clustering algorithm like k-means or as a cut-off parameter in a
hierarchical clustering algorithm. More concrete applications are:
clustering of visually similar images that can improve the efficiency
of content-based image search engines and information systems,
clustering of medical images for medical research, pattern recogni-
tion, face recognition and biometrics, automatic image tagging and
categorization, and many other applications.

The sequel of this paper is organized as follows. In Section 2 we
present the skyline ecosystem and how it is used to reach our aim:
to extract a set of dissimilar images from a large image database.
This ecosystem includes: the operation, the inherent dimensionality
and the proposed algorithms to implement the operation. Section
3 elaborates further in the implemented algorithms; in particular,
the hashing algorithm used for data partitioning in the branch-and-
bound skyline algorithm is introduced. In Section 4 we present
the experimental testbed (i.e. machine and datasets), as well as
we present results of exhaustive experiments by examining wide
ranges of all parameters. In addition, a visual evaluation of the
result is presented and discussed. Finally, Section 5 summarizes and
concludes this study.

2 SKYLINE ALGORITHMS
Assume a 2-dimensional dataset as depicted in Figure 1. Also assume
that the objects with lower values in both dimensions are preferred.
As mentioned before, the skyline set contains those objects that
are not dominated by others. More formally, an object dominates
another one if it has a better or equal value in all dimensions,
whereas in at least one dimension its value is strictly better [16]. In
our example, the skyline set comprises of the points a,b, e,h,o.

The skyline size mainly depends on the dataset nature. For a
dataset of N d-dimensional objects, we can approximate the di-
mension d0 from which on, all data items will be included in the
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Figure 1: Skyline of a dataset.

skyline, because no object will dominate any other. This dimension
is called eliminating dimension [15], and can be approximated by
the formula: d0 ≈ 2⌈lnN ⌉ + 2.

For large datasets, d0 takes relatively small values. For example,
for N = 105, 106, 107, 108 and 109, we derive 26, 30, 36, 40 and 44,
respectively. Thus, a dataset with N ≤ 109 objects and dimensional-
ity greater than 44, almost all its objects are included in the skyline.
However, vectors that describe images may reach a dimensionality
of a few thousand. One idea to address this problem is to keep only
K dimensions that contain the most information of the images.

Based on the above ideas, at a pre-processing step, we could ana-
lyze the dataset to select the K best dimensions having the highest
distinct value cardinality, i.e. the dimensions with the most distinct
values in the dataset. This way, the dimensions containing the most
information are exploited in a more efficient manner. Reference
[17] presents a content based image search method, which rear-
ranges the dimensions of the dataset according to their distinct
value cardinalities, using a hashing algorithm with multiple criteria
to increase the probability that two similar images might be at a
nearby storing space.

2.1 Skyline Calculation Algorithms
Until now many different methods have been suggested for skyline
calculation. A comprehensive survey has been presented in [16].
The skyline algorithms fall into two main categories: (i) without
indexing, and (ii) with indexing.

2.1.1 Without indexing. The first category includes the follow-
ing skyline algorithms: Block Nested Loop, Divide-and-Conquer
and Bitmap algorithms. It is noticed that these algorithms may gen-
erally perform well for medium size datasets and dimensionalities.

Block Nested Loop [1].
This method, which will be further elaborated below, is a variant
of the naive approach where all objects are compared to each other.
Each object is compared against all objects that are contained in a
particular block and, depending on the existing dominance relation,
these checked objects are added, removed or are subject to no
change.

Divide and Conquer [1].
All variants of this family first calculate the median in any dimen-
sion to divide the space into two partitions P1, P2. Then, to calculate

the skylines S1, S2 of P1, P2, recursively divide further the partitions
P1, P2 until only one object is left in each partition. Finally, the
global skyline is calculated by merging the partial skylines S1, S2
and removing the dominated objects.

Bitmap [14].
Each object is assigned to a binary vector of m bits, where m is
the sum of the numbers of distinct values in all dimension. For
example, if ki is the number of distinct values in dimension i then:
m =

∑d
i=1 ki . Suppose that there are ki distinct values in i-th

dimension and that it is sorted in ascending order. Then, the ji -th
smaller value will be represented by ki bits of which ki − ji + 1 bits
from the left will be 1, while the rest will be 0s. Finally, the skyline
is calculated by comparing the binary representation of the vectors.

2.1.2 With indexing. Skyline algorithms that use indices, even
if they do not fit in main memory, speed up the process by reducing
the number of domination comparisons and pruning dominated
objects and areas.

In [1], a B-tree based algorithm is presented for 2-d data. In
particular, each dimension is indexed by a B-tree. The algorithm
finds a superset of the skyline. This is done by adjusting the first step
A0 of the algorithm of Fagin with data that are read simultaneously
from the two B-trees until the first common object is found [4]. At
this point we can claim that this object is certainly included into the
skyline. The objects that have not appeared in all dimensions are
located at further positions in the B-trees, and do not belong into
the skyline. Finally, on the retrieved objects, an algorithm without
indexing is applied to decide whether these objects belong or not
into the skyline.

The first complete algorithm that uses spatial indices is the Near-
est Neighbor Skyline (NN Skyline) [11]. It is based on the Nearest
Neighbor Search (NN Search). Searching starts from the origin of
the axes and - based on a distance function - it finds the nearest
neighbor. The areas dominated by this object are rejected. The rest
areas of the site are placed in a list (to-do list) and are treated re-
cursively. This process ends when the list has no further areas to
examine.

2.2 The Block Nested Loop Algorithm
The Block Nested Loop algorithm is one of the simplest forms of
skyline calculation. This main memory algorithm uses only one
structure to store the skyline objects. Each object is read from the
file and it is compared with the objects already existing in the
skyline set. The comparison result can be one of the following: (i)
the new object is dominated by one or more of the current skyline
objects, (ii) the new object dominates one or more objects of the
current skyline, and (iii) none of the previous. In the first case,
the process continues without making any changes in the current
skyline. In the second case, the new object is added in the skyline
set, whereas the objects of this set that are dominated by the new
object are removed. Finally, in the third case, the new object is
added into the skyline set without making any other changes.

2.3 Branch and Bound Skyline
The Branch and Bound Skyline algorithm is based on the nearest
neighbors search by using an R-tree [13]. However, the same prin-
ciples can be applied with other data partitioning and indexing



techniques. The intermediate nodes e∗ of the R-tree are defined
by the MBR (Minimum Bounding Rectangle) of spatial regions,
whereas data at the lower level are organized into the tree leaves.
L1 is used as distance metric (i.e. the distance of a point from the
origin equals the sum of the values of its coordinates, whereas the
distance of a node equals the distance of the lower left point of its
MBR). The process starts from the tree root and inserts the root
information (mindist) into a min-heap. Then, the object with the
smallest distance is expanded and, thus, new elements are properly
entered into the min-heap.

The first object found in the min-heap (after expansion of the
top entry) is the object located closer to the beginning of the axes.
This object belongs into the skyline and is added into the list S
that keeps the skyline objects. The algorithm proceeds and checks
the subsequent objects and entries of the min-heap. It inserts into
the list S all objects that are not dominated by objects that already
exist in S . The algorithm visits the data entries in ascending order
according to their distance from the beginning of the axes. Each
object added to the set S during the execution of the algorithm is
guaranteed that will be included in the final skyline.

When dimensionality grows, hierarchical indexing structures do
not perform effectively due to the Curse of Dimensionality [2]. In
the next section the implementation of Branch and Bound Skyline
is described along with the use of hashing algorithms. Hash algo-
rithms can replace R-tree, since R-trees and hierarchical indexing
do not operate efficiently for high-dimensional data that are derived
from image descriptors vectors.

3 SKYLINE WITH HASH INDEXING
There are many hashing algorithms that can be used as indexing
methods. We selected four state-of-the-art hashing algorithms: Lo-
cality Sensitive Hashing (LSH) [8], Iterative Quantization (ITQ) [5],
Density Sensitive Hashing (DSH) [10], and Spherical Hashing (SpH)
[7]. Each one is tested and evaluated regarding its efficiency and
data distribution through the skyline retrieval process.

The aim of our study is to create a unified evaluation that could
find the skyline objects in a dataset of image high-dimensional
descriptor vectors. The evaluation enables the user to select the
proper method and find the skyline along with many other selective
parameters.

Two fundamental skyline strategies were implemented: one with-
out indexing (Block Nested Loop) and one with indexing (Branch
and Bound Skyline). Branch and Bound Skyline was selected be-
cause it is one of the most efficient algorithms as it can be executed
in secondary memory and is flexible regarding the data partitioning
and indexing methods that can be used (i.e. R-tree, LSH, and so
on). Block Nested Loop is a simple algorithm with performance
depending mainly on the dataset size and in many cases is slow.
However, it is easy to implement and we use it as reference.

In the course of this study, the libraries of Armadillo1 and Boost2

were helpful. Armadillo is a linear algebra library for C++, used to
implemented all hashing algorithms examined in this paper. It has

1http://arma.sourceforge.net/
2http://www.boost.org/

similar syntax with Matlab3 and Octave4. Boost is a collection of
general purpose libraries that extends C++ STL.

Algorithm 1: Hash Branch and Bound Skyline.
Input:

i: input file, K : number of dimensions with highest
distinct value cardinality, e: encoding length

Output:
the skyline items

if K > 0 then
value_cardinalities← find the distinct value cardinality
of each dimension

SORT cardinalities in descending order
dimension_mapping← map the top K dimensions of
value_cardinalities to the actual data

end
hash← initialize selected hash algorithm with training set
and encoding length e

while not EOF input file do
if option K is set then

v← read vector based on dimension_mapping
else

v← read vector form file
end
binary_code← hash vector v and generate binary code
data_point← create object data_point with id, distance
and binary_code

buckets[binary_code]← data_point
end
SORT each bucket IN buckets BY distance in asc. order
foreach b IN buckets do

INSERT only b INTO the heap
end
while heap size > 0 do

c← pop the top item of the heap
if c is type of bucket then

expand c and re-insert items to the heap
else

if c is not dominated by any other item in the skyline
then INSERT c into skyline

end
end

First, a pre-processing step (see Figure 2) is executed to derive the
number of the distinct value cardinalities for each dimension. Then,
it creates a mapping structure which selects only the K dimensions
with the highest distinct value cardinalities and reads the input file
by using this map. If K is not defined, then all available dimensions
will be used in the skyline calculation without any pre-processing
step.

3https://www.mathworks.com/products/matlab.html
4https://www.gnu.org/software/octave/
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Figure 2: Preprocessing data.

The application starts reading the input file and passes each
vector through the selected hash function, which results into a
binary code used as a hash key to store objects with the same key
in the same bucket. The buckets are sorted based on their distance
from the axes origins in ascending order. The next step is to find
the skyline. The process starts by inserting all bucket pointers with
their corresponding distances into a min-heap. Then, if the top item
of the min-heap is a bucket, it is expanded and all contained items
are re-inserted into the min-heap. If the top item is a vector, then it
is checked if it is dominated by a skyline item. Figure 3 shows the
complete process.
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Figure 3: The complete process.

4 EXPERIMENTAL EVALUATION
Two real datasets were used for experiments and evaluation:
• The ImageCLEF5 dataset which contains a collection of 237,424
images. Along with the actual image files, the corresponding

5http://imageclef.org/wikidata

descriptors of the images are included in the form of vec-
tors in various formats. From these descriptors we selected
CIME, CEDD, TLEP which have 64, 144, 576 dimensions,
respectively.
• The ANN_SIFT1M6 dataset [9] which is a large dataset with
1,000,000 SIFT image descriptor vectors of 128 dimensions
without the corresponding actual images.

All experiments were conducted on a desktop PC with the fol-
lowing configuration: CPU: Intel Core i7 - 860 @ 2.8GHz, RAM:
12GByte, Disk: 256GB SSD.

4.1 Time Performance
In the first group of the experiments we test the performance of
hashing algorithms. Experiments were conducted for different cod-
ing rates (-e parameter). In each run the following times were
recorded: training time, hashing time and total time. All calculated
results are averages from ten runs. In particular, the ANN_SIFT1M
dataset was used in full dimensionality (without setting K). Com-
paring the performance of the hashing algorithms used in Branch
and Bound Skyline, in most cases LSH was the faster algorithm.
Figure 4 illustrates the hashing time for various encoding lengths.
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6http://corpus-texmex.irisa.fr
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Figure 5: Data distribution for 4,8,12 bit encoding length.

4.2 Data Distribution
In the second group of experiments we recorded the data distribu-
tion through the hashing algorithms for various encoding lengths

(more specifically, for e = 4, 8, 12, 16). In particular, we can monitor
how the data objects are hashed and distributed in the 2e hash-
buckets. The results show that SpH spreads the data more evenly.
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Figure 6: Data distribution for 16 bit encoding length.

Figures 5 and 6 depict the number of items in each bucket for en-
coding length 4, 8, 12 and 16 bits. All four hashing algorithms were
evaluated for the ANN_SIFT1M dataset.

4.3 Evaluation of the Skyline Calculation
Performance

In the third group of experiments we measure the execution times
of the whole process for different values of K (mapping to the top-
K dimensions with the highest distinct value cardinality). Both
datasets were used for this evaluation of Block Nested Loop and
Branch and Bound Skyline. Specifically, we used the following
datasets: SIFT-1M (128 dimensions), ImageCLEF-237K with CEDD
descriptor (144 dimensions), ImageCLEF-237K with CIME descrip-
tor (64 dimensions), ImageCLEF-237K with TLEP descriptor (576
dimensions).

SIFT-1M K=15 K=16 K=17 K=18 K=19
LSH 6.04 8.37 16.48 34.24 45.90
ITQ 6.05 8.36 17.03 32.43 47.79
DSH 6.03 8.33 15.81 32.39 47.48
SPH 7.49 9.74 17.11 34.10 49.55
BNL 33.04 79.33 337.14 633.65 947.82

Table 1: Calculation time (sec) for the SIFT descriptor.

CEDD K=15 K=16 K=17 K=18 K=55
LSH 1.35 1.26 1.34 1.35 12.26
ITQ 1.31 1.32 1.68 1.61 12.02
DSH 1.24 1.50 1.76 1.51 13.48
SPH 2.21 2.34 2.52 2.39 13.67
BNL 0.54 0.53 0.61 0.66 247.53

Table 2: Calculation time (sec) for the CEDD descriptor.

Tables 1-4 present the calculation time recorded for each image
descriptor. Branch and Bound Skyline was faster than Block Nested
Loop in general, except for CIME and CEDD image descriptors
of the ImageCLEF dataset in which Block Nested Loop was faster
for some encoding lengths. This happens because objects with

CIME K=15 K=16 K=17 K=18 K=64
LSH 1.24 1.27 1.39 1.32 2.17
ITQ 1.25 1.39 1.40 1.37 2.23
DSH 1.32 1.33 1.45 1.48 2.33
SPH 1.81 1.86 1.99 1.94 3.10
BNL 0.43 0.41 0.52 0.51 1.08

Table 3: Calculation time (sec) for the CIME descriptor.

TLEP K=15 K=16 K=17 K=18
LSH 2.79 2.99 3.54 3.54
ITQ 2.93 3.04 3.68 3.62
DSH 2.83 3.12 3.66 3.70
SPH 3.65 3.75 4.48 4.46
BNL 19.30 19.52 61.44 62.19

Table 4: Calculation time (sec) for the TLEP descriptor.

small distance from the axes origin are very early inserted into
the skyline. Therefore, almost all subsequent inserted objects are
dominated from the existing ones. The main difference between
the two skyline algorithms is the training/initialization times that
the hashing process requires. Regarding the hashing methods, all
four methods have about the same performance. SpH is the slowest
of the four, whereas most of the times LSH is the fastest. Except for
the execution time, the number of the objects in the skyline was
recorded for every dataset and for every K (see Table 5).

SIFT-1M CEDD CIME TLEP
K=15 556 15 12 2646
K=16 3024 16 12 2658
K=17 5577 17 12 2776
K=18 10255 18 13 2778
K=19 13731 - - -
K=22 474555 - - -
K=55 - 7458 - -
K=64 - - 38 -

Table 5: Number of skyline items.



# Image ID Distance

1 4401 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 31063 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

3 49869 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 53442 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

5 229255 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 201996 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 201998 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 195376 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

9 38909 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 42426 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

11 7773 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

12 28901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

13 23420 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 114651 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 20650 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 58914 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 66501 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 104742 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 101102 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 72751 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 33696 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 19648 3 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 63189 4 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 241433 5 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0

25 112374 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 211443 7 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 214726 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0

28 207058 7 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 56111 7 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 205105 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 136104 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0

32 67766 10 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 77616 11 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0

34 11401 11 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0

35 209798 16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 7 4 2 0 0 0

36 140748 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 5 3 6 0 0 0

37 144565 17 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 5 3 0 0 0 0

38 80472 18 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 6 3 2 0 0 0

Figure 7: Skyline items from the visual evaluation experiment.

4.4 Visual Evaluation of the Skyline Images
In this last group of experiments we visually tested the differences
in the actual retrieved images in the skyline and the degree of the
intrinsic differences of their descriptor vectors. For this evaluation
we used the ImageCLEF dataset and CEDD descriptors, which com-
bine color and texture information of the images. We used this
dataset since, along with the descriptor vectors of the images, the
actual corresponding images are also available. Due to the lack
of space, we present in this paper one of the most representative
experiments for this evaluation, which was carried out with the
following parameters: “skyline.exe -i cedd.bin -k 36 -e 4
-h sph -mem 1". The outcome was a skyline with 38 images, each of
which had a dominant color. Some of the retrieved skyline images
are displayed in Figure 8, whereas a list with all resulted images
with their corresponding CEDD descriptor vectors is presented in
Figure 7.

Fundamental differences were detected among the retrieved im-
ages through a visual inspection/checking. These images are in-
evitably very different, due to the fact that they belong to the skyline.
This result of existence of very different actual images in the sky-
line of the high-dimensional space that their descriptor vectors
define is significant. It is significant, as it shows that without any
similarity/distance ranking function, any distance-based indexing,
or any complex indexing algorithm, we can select different images
very fast even in large image databases, by taking advantage of
the intrinsic differences that are included into the descriptor vector
representations of the images.

Figure 8: Images from the visual evaluation.

5 CONCLUSIONS
This paper presents a first ever study, to the best of our knowl-
edge, on how the intrinsic dissimilarities of images included in
their descriptor vectors affect the actual image differences, through
skylines in the high-dimensional spaces defined from their descrip-
tor vectors. The reason of using skylines was that fast retrieval of
different images is facilitated, even in large databases, without defin-
ing any similarity/distance ranking function, any distance-based



indexing, or any complex indexing algorithm, taking advantage of
the intrinsic differences that are included into the source descriptor
vectors of the images. We assume that the used descriptor vectors
are representative for describing the images (like: CIME, CEDD,
TLEP, SIFT, SURF, etc., or combinations of them).

To retrieve efficiently the skyline in such high-dimensional spaces,
a key point of this study was the combination of basic skyline meth-
ods with four hashing state-of-the-art algorithms to create efficient
indexing and scalability support in large image databases. Finding
the skyline in high dimensionality data results that a large part of
the dataset, or even the whole dataset, is included in the skyline,
which is an undesirable fact. Therefore, to reduce the dimension-
ality we selected the dimensions with the higher distinct value
cardinality as they hold the most included information in the de-
scriptor vectors, a method that was suggested as a prior step to
processing a dataset for content based image retrieval [17].

We compared and evaluated the results of different hashing al-
gorithms and skylines by using two real image datasets, measuring
the performance and the effectiveness of the skyline retrieval pro-
cess. We concluded that calculating methods of skyline through
indexing structures combined with the use of hash algorithms are
much faster than methods of skyline without index or methods
with hierarchical indexing structures for high dimensional datasets
and large groups of objects.

Moreover, we performed a visual evaluation of the images found
in the skyline to observe the actual differences that the images have,
and their relationship to the type of descriptors. We concluded that
the images found in the skyline have actual different characteris-
tics, which depend on the type of the descriptor. This is a strong
indication that the skyline objects can be used as base items for
future grouping or clustering of the whole image database, which
is a concrete byproduct application of this study, e.g. to initialize
a clustering algorithm like k-means or as a cut-off parameter in a
hierarchical clustering algorithm.

Finally, an extension of this work could be the evaluation of
other segmentation methods in conjunction with the Branch and
Bound Skyline algorithm, the implementation of additional methods
that return only a part of the skyline or search for the skyline in
a part only of the whole dataset, and further exploration of the
relationship of the skyline objects with clustering methods.

Another future research topic would be to compare the result-
ing skyline set with results of algorithms for furthest neighbor
searching [12], the opposite problem of nearest neighbor searching.
Although from the efficiency point of view, skyline processing is
prevailing, it would be interesting to have a deeper knowledge
about the effectiveness of the proposed method in selecting dis-
similar images from a large image database. In addition, another
problem relevant to ours is that of diversification [3]; comparison
of the two approaches could provide interesting results.
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