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Abstract This paper introduces the problem of discovering maximum-length repeat-
ing patterns in music objects. A novel algorithm is presented for the extraction of
this kind of patterns from a melody music object. The proposed algorithm discov-
ers all maximum-length repeating patterns using an “aggressive” accession during
searching, by avoiding costly repetition frequency calculation and by examining as
few as possible repeating patterns in order to reach the maximum-length repeating
pattern(s). Detailed experimental results illustrate the significant performance gains
due to the proposed algorithm, compared to an existing baseline algorithm.

Keywords Maximum-length repeating patterns · Data mining · Theme discovery ·
Music databases

1 Introduction

The continuously increasing spread of music on the Internet as well as in digital music
libraries expands the already immense interest of the public and the entertainment
industry in music databases. An account of research and development issues concern-
ing a variety of digital music libraries can be found in [4]. As the number of music
databases grows rapidly, so does their size, complexity, usage and accordingly the
need to provide flexible and efficient search and retrieval techniques. Music data, due
to their complex structure and their subjectivity to inaccuracies caused by perceptual
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and cognitive effects, introduce new challenges. Among the primary problems that
have been examined so far, lays the development of representation types that can
satisfy both semantic as well as efficiency requirements (since music objects exist in
different formats) for content-based information retrieval.

A characteristic representation type for music objects is based on the use of repeat-
ing patterns included in a music object, i.e., segments of the music object that appear
repeatedly (cf., Section 3). In this type, a repeating pattern corresponds to a motif,
that is, a minimum-length pattern which is meaningfully independent and complete
within a piece of music. Repeating patterns can constitute a useful representation
for a music object. Their use (through the notion of motifs) has been extensive
through out the history of music [5] as well as in modern music [3], since they
comprise a compact form for indexing the original formats (e.g., raw audio, MIDI,
etc.). This is because the total size of the collection of repeating patterns is smaller
than that of the music objects. Therefore, the repeating patterns meet both efficient
and semantic requirements for content-based music data retrieval [13, 19, 20]. For the
aforementioned reasons, repeating patterns have been used to index music sequences
for the purposes of music data retrieval [20]. In addition, they provide a reference
point for the discovery of music themes [28, 39]. A theme (especially in classical
music) is a melody that the composer uses as a starting point for development, which
may be repeated in the form of variations1 [39]. Finally, repeating patterns have been
considered as characteristic signatures of music objects, which have the notion of a
quantitative measure for music similarity [14].

For the problem of efficient discovery of repeating patterns, recent research
has employed data mining techniques [20, 25, 28, 39]. As the straightforward use
of repeating patterns may conceal numerous difficulties, mainly due to their large
number, focus has been given on non-trivial repeating patterns [20, 28]. Nevertheless,
the number of non-trivial patterns can still be large enough so as to burden their
examination by human analysts. For instance, music objects with size about 1,000
notes can include several tens non-trivial repeating patterns [20], whereas this
number increases for larger musical pieces. This can also impact the effectiveness
of non-trivial repeating patterns in yielding themes, as several of the former may be
spurious and unrelated to themes. Thus, existing research has identified that among
the collection of the non-trivial repeating patterns, the longest ones are those that
can be characterized as feature melody strings and are typically those that can yield
to themes [28]. This is further analyzed in [20], where it is indicated that the longest
repeating patterns (constrained by a maximum length value, e.g., 30) are most likely
those that themes are based upon. Following this direction, [39] proposes a theme
discovery method that is based on an initially computed collection of the longest
repeating patterns.2

A straightforward approach for the discovery of the longest repeating patterns
would include their selection in a post-processing step, following the mining of

1The variation extent and the repetition frequency of a theme can differ depending on the composer
and the type of music (e.g., classic versus popular music).
2It is worth noticing, that the longest patterns discovered should be examined against several
characteristics (e.g., frequency, duration, rhythmic consistency, position) [29] in order to effectively
lead to theme discovery. Nevertheless, similar to [20], our focus is on the process of identifying the
(longest) repeating patterns. Thus the examination of such factors is out of the scope of this paper.
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all (non-trivial) repeating patterns. However, the length of the longest repeating
patterns usually tends to be large (experiments in [20, 25] show that it can reach
several tens). Therefore, the straightforward approach becomes rather inefficient,
as a large number of intermediate repeating patterns (i.e., that are not the longest)
have to be examined before reaching the longest ones. What is, therefore, required
is the development of new algorithms that efficiently discover the longest repeating
patterns, while not having to undergo the discovery of many intermediate repeating
patterns.

As the number of these patterns can be up to several tens, efficiency issues require
the avoidance of costly mining calculations by examining as few as possible interme-
diate patterns in order to reach fast the set of maximum-length repeating patterns
(MLRPs). Interestingly enough, analogous reasoning has been followed in other data
mining fields, e.g., in the mining of the longest itemsets [7, 27, 43]. Nevertheless, there
are important differences (extensively discussed in Section 2.3) between the latter
problem and the mining of the longest repeating patterns. Briefly, the key points of
these differences are that approaches for long itemsets mining focus on large, disk-
resident itemset databases while for the discovery of the longest repeating patterns,
music sequences are main-memory resident and algorithms prioritise improved CPU
times. In addition, in the problem of finding MLRPs, algorithms have a repeating
pattern frequency threshold equal to one, while in mining itemsets algorithms such a
consideration would produce a large overhead.

Finally, any proposed algorithm should take care of the characteristics that result
from the nature of the examined problem, such as the ordering of notes or their
replication within music sequence, factors that do not appear in related fields works
like the frequent itemsets mining.

1.1 Contribution and outline

In this paper, we examine the problem of finding the maximum-length repeating
patterns in music databases. Based on prior work on repeating patterns, we focus on
note-sequences. The use of note-sequences for the extraction of repeating patterns
has also been adopted by several previous works, e.g., [20, 25], since it is by note-
sequences that music is composed and music semantics are conveyed to listeners.
We propose a novel algorithm that discovers all maximum-length repeating patterns
using a fast ascending, as far as the length of the patterns is concerned, during
searching so as to quickly reach these patterns. To achieve this, the proposed
algorithm avoids the examination of a large number of intermediate patterns (i.e., of
not maximum length) and only considers those patterns that are necessary in order
to reach the maximum-length pattern(s).

The technical contributions of this paper are summarized as follows:

• The introduction of the problem of discovering maximum-length patterns in
music objects. In the field of music databases, this problem poses significant
requirements due to the very large length such patterns may have (i.e., a large
search space).

• The development of a novel algorithm that efficiently discovers the maximum-
length patterns. The proposed algorithm addresses the characteristics that result
from the nature of the examined problem, i.e., factors like the ordering of notes
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or their replication within music sequence (such factors do not appear in work in
related fields like the frequent itemsets mining).

• The detailed experimental results which show the efficiency of the proposed
algorithm, and the performance gains compared to an existing baseline algo-
rithm [20].

The rest of the paper is organized as follows. Section 2 is devoted in related
research in terms of music databases, music pattern discovery, data mining and, in
particular, in long patterns and their unsuitability to be directly applicable. Section 3
discusses one of the most efficient approaches already researched and describes
the motivating issues for this research. Extending the idea proposed in Section 3,
Section 4 provides a complete account of the algorithm proposed in this paper
(supported by a running example). Subsequently, Section 5 presents and discusses
the experimentation and the results obtained. Finally, the paper is concluded by a
summary and possible future work in Section 6.

2 Related work

2.1 Work in music databases

Early works on music information retrieval date back on 1966 [24]. Despite this—
rather ahead of its time—work, very little was done for many years thereafter,
until lately an explosive interest on music IR arose. Many disciplines of music IR
have been researched including the types of queries allowable, similarity algorithms,
various mapping schemes for the music objects and a range of indexing techniques.

Based on the well-studied text, image and video data IR, music IR can be
performed using text (metadata) [2], pieces of structured or unstructured music
[6, 16, 23, 41], humming [6, 10, 15, 17, 31] or even classic western musical notation [32]
as queries.

Music is available in three basic representations: Audio, Time-stamped Events
and Common Music Notation [8]. To achieve semantic, efficiency as well as to
overcome data processing constraints, the previously mentioned basic representa-
tions require a mapping. The mapping process is influenced by music perception
and psychoacoustic issues. That is, a variety of alternatives exist with respect to
the characteristic of music that should be retained by the mapping. In [11, 36] the
retained characteristic of music is rhythm and the mapping used leads to rhythm
strings. In [10] music melody and contour are mapped.Chen H. and Chen A.L.P. [12]
focuses on properties such as pitch, duration and loudness, while [16, 23, 41] retain
the melody of the music object.

In the field of time-series analysis, several methods have been proposed for various
tasks, e.g., regression, classification, and similarity searching [18]. Nevertheless, the
particularities of music sequences and the different application requirements have
lead to the development of novel methods. For instance, the similarity of two mapped
music objects is addressed in numerous approaches in the literature [17, 29, 34, 40],
which mainly depend on the string matching core technique since, most usually, the
mapping procedure for a music object produces a string of a chosen characteristic.

A number of works [35, 38, 42] have utilised Hidden Markov Models (HMMs) in
order to represent music pieces in a database and the queries posed. In [35], Pikrakis,
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et al. present a method for automated search of predefined sound patterns within
a large number of sound files, using HMMs. In [38] the authors use a stochastic
representation of both music sequences in the system and the queries, with hidden
Markov models in order to handle queries that contain errors or key and tempo
changes. Velivelli et al. [42] utilise HMMs that can model predefined patterns
and simultaneously identify and match an audio segment for a given query. All
the aforementioned works have utilised HMMs for the purposes of musical query
retrieval, whereas the focus in the research field of theme discovery [20, 25] is to find
patterns within the music sequences.3

Managing the extracted features from the original music objects requires the
utilization of an index scheme in order to keep the retrieval time close to constant. A
number of alternatives have been proposed by [9, 11, 17] in order to manage different
features extracted from music data and support several search functions.

2.2 Mining repeating patterns and theme discovery

The process of mining repeating patterns is described in [20, 28], where two algo-
rithms are proposed for the discovery of non-trivial repeating patterns and feature
melody string. The first algorithm uses a correlative matrix for the extraction of
repeating patterns, while the second is based on a repeating string-join operation.
Experimental results in [20, 28] indicate the superiority of the latter algorithm in
comparison to the correlative matrix approach. More details for the string-join-
based method are given in Section 3.2 along with the motivation. Koh and Yu, [25]
presented a means of mining the maximum repeating patterns from the melody of
a music object using a bit index sequence as well as an extension for extraction
of frequent note sequences from a set of music objects. In the approach taken in
[25], all repeating patterns are found and verified by counting their frequency, while
redundancy examination is performed as a latter step, reaching the maximal repeat-
ing pattern set rather inefficiently. Rolland and Ganascia, [37], propose an approach
for approximate sequential pattern extraction in music data, which considers several
peculiarities of music objects and is based on the definition of a similarity function.

As far as the use of repeating patterns in theme discovery is concerned, Smith
and Medina [39] proposed a pattern matching technique leading to theme discovery,
that is based on a collection of previously found longest repeating patterns. Meek
and Birmingham in [29] identify numerous features, that need to be extracted from
each music object for the discovery of themes. Among them, they considered as most
important the position of the theme (favoring the themes appearing earlier in the
music object). As described, such features can be used for the discovery of themes
from the repeating patterns found. Thus, both [39] and [29] can be considered as
complementary to the problem described in this paper. In addition, an interesting
web-based system for theme discovery is presented in [26].

Patterns may not only be in one voice (the case of polyphonic music), as a pattern
may be distributed across several simultaneously sounding voices. [21] and [22]
present a number of different algorithms for the discovery of such patterns, including
distributed pattern matching with at most k-differences (motif evolution).

3Regarding the related work on sequence mining (e.g., [1]), please read the corresponding descrip-
tion in Section 2.3.



54 Multimed Tools Appl (2007) 32:49–71

The previously mentioned works primarily address the problem of finding all
repeating patterns and generally are concerned with their relation with the set of
themes. In contrast, our work focuses on finding all MLRPs,4 a problem which, to
our knowledge, has not been examined so far in the context of musical data. At this
point the semantic value of MLRPs must be addressed. Existing results in [20, 28]
indicate that “many repeating patterns (at least for the longest ones) of a real music
object are intentionally created by its composer” [28]. Accordingly, the existence of
the MLRPs (i.e., the longest patterns) is intentional. Therefore, the need for their
discovery is evident, since it yields to information about the composer’s objective.

Moreover, as previously mentioned, MLRPs are themselves repeating patterns
(RPs) and additionally they “contain” all RPs that can be derived as their subse-
quences. Thus, MLRPs inherently carry the semantic value of the corresponding
RPs (the MLRPs themselves and the RPs that are their subsequences). The semantic
value of RPs is analyzed in [12, 20, 25, 28]. In particular, the experimental results in
[28] illustrate an 100% recall in extracting musical motives from repeating patterns
(i.e., a motive must always be a repeating feature). Results in [20, 28] show that
the clustering of music objects can effectively be done based on repeating patterns.
However, it should be made clear that MLRPs are patterns that are designated to
reveal a different, new aspect of the music objects. Since we are not interested in
finding all the existing repeating patterns, we do not focus on relating the proposed
type of patterns with the set of all motives.5

2.3 Mining long itemsets

In the field of itemsets mining, several methods have been proposed recently for the
discovery of the maximum-length frequent itemsets [7, 27, 43]. The focus of these
methods is to avoid the examination of all frequent itemsets, moving the search
towards the fast discovery of the itemsets having the maximum length or those being
the maximal (i.e., that have no superset that is also frequent). Obviously, there is
distinct analogy between the problem examined in [7, 27, 43] and the problem of
discovering MLRPs. However, the process of mining MLRPs presents important
differentiations due to which the aforementioned approaches cannot be directly
applied.

To begin with, the principal difference of the approaches for itemsets is their
focus on large, disk-resident itemset databases. Accordingly, the techniques involved
in [7, 27, 43] reduce the number of database scans while utilizing structures that are
optimized to address the volume of data. In contrast, for the problem of mining
repeating patterns and MLRPs, the music sequence is main-memory resident, and
the involved structures and techniques have the objective of performing fast opera-
tions to improve the CPU time. Therefore, the application of existing techniques for
itemsets would be inefficient in this domain, since the optimizations they consider

4C.f., MLRPs are the repeating patterns with the maximum length—see Definition 3.
5This is the reason why we did not explore a systematic comparison of our results against manual
references, e.g., [5], since it is out of the scope of the proposed work to relate with the identification
of all motives. Nevertheless, we found that for several classic music objects the discovered MLRPs
(or at least some of their subsequences) could identify some of the motives of the examined music
objects.
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mainly target the I/O cost. This is the reason why [20] did not consider the direct
use of a mining technique for sequence databases, like [1], for the problem of
mining repeating patterns in music sequences. Additionally, in the problem of mining
repeating patterns and MLRPs, a subsequence of the music sequence is a pattern if
its frequency is greater than 1. In contrast, the algorithms that mine itemsets consider
a much larger threshold for the frequency of patterns6 and, most importantly, they
are bound to have a large overhead should they consider the frequency threshold to
be equal to 1.

Based on the aforementioned works, we propose a novel method that targets the
specific application requirements, i.e., we consider optimizations for main-memory
resident music sequences and for patterns that can appear at minimum twice within
the sequence (frequency threshold to be equal to 1).

3 Background and motivation

3.1 Definitions

We consider a music sequence to be a sequence of symbols from an alphabet
containing discrete elements. In general, music is characterized by several features.
Among them, pitch, rhythm, timbre, and dynamics are considered to be the most
semantically important ones [8]. For western music in particular, the pitch carries the
highest relative weight of information [8]. In general, rhythm cannot be overlooked,
for easier presentation however, we focus on the pitch information. Notice that this
assumption has been followed in all related work on the discovery of repeating
patterns [20, 25, 39]. Nevertheless, it is easy to notice that the proposed methodology
can be easily applied to rhythm sequences. A more challenging task is to combine
both the important features (i.e., pitch and rhythm) in the discovered patterns. In
this case, though, slight variations in the themes will produce different combined
sequences. What is required, then, is the development of methods that will not be
sensitive to small variations so as not to loose many repeating patterns. For the above
reasons, this research direction will be addressed in future work.

Definition 1 (Repeating pattern [20]) Given a music sequence S, a repeating pattern
P is a subsequence of consecutive elements of S that appears at least twice in S.

Notice that for the MIDI representation, the size of the alphabet (number of
distinct elements) is equal to 128. The repeating frequency f req(P) (hereafter called
frequency) of a repeating pattern P is defined as the number of appearances of P in
S. The length |P| of a repeating pattern P is the number of notes in P.

Definition 2 (Maximal repeating pattern [25]) A repeating pattern X is a maximal
repeating pattern in a music sequence S, if X is a repeating pattern in S and there
does not exist another repeating pattern X ′ in S such that: (1) X is a subsequence of
X ′, and (2) the f req(X) = f req(X ′).

6Even small percentages of frequency thresholds, e.g., 0.1%, correspond to a much larger value than
the absolute value of 1.
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Definition 3 (Maximum length repeating pattern) A repeating pattern X is a maxi-
mum length repeating pattern in a music sequence S if: (1) X is a maximal repeating
pattern of S, and (2) there does not exist another repeating pattern X ′ in M for which
|X ′| > |X|.

The above definition initially requires for a repeating pattern X, in order to be
a maximum length repeating pattern, not to be a subsequence of another repeating
pattern X ′, with which they have the same frequency, in which case X ′ would be the
maximal. In addition the definition requires that X has the biggest length of any other
repeating pattern X ′. For example, in a sequence S = EABCDEBCABCDBCA,
there exist 13 repeating patterns, of which {ABCD} is the maximum-length repeating
pattern (since it is maximal and there does not exist another repeating pattern X ′ in
S for which |X ′| > |X|) , {A, BC, BCD, BCA} are maximal while the rest are trivial.

Finally, the definition of the problem examined in this paper is as follows: given a
music sequence S, find all (if any) MLRPs.

3.2 The HLC algorithm—our baseline competitor

As already discussed in Section 2, Hsu et al. [20] proposed two different techniques
for the discovery of non-trivial repeating patterns. Herein, we focus on the string-join
approach, which is denoted as HLC (from the initials of the authors’ names). HLC
will be epigrammatically considered (through a concise example), so as to describe
its suitability as a baseline algorithm for the extraction of MLRPs (cf. Section 3.3).

HLC utilizes {X, freq(X), (pos1, pos2, . . .)} to represent a repeating pattern
found in a music sequence S, where X is the repeating pattern, f req(X) is the
repeating frequency of X and each posi, 1 ≤ i ≤ f req(X), is a starting posi-
tion of X in S. According to [20] the string-join operation is defined as fol-
lows: assume that {α1α2 . . . αm, f req(α1α2 . . . αm), (p1, p2, . . . , pi)} and {β1β2 . . . βn,

f req(β1β2 . . . βn), (q1, q2, . . . , q j)} are two repeating patterns in the music feature
string of a music object. We define order-k string-join (k ≥ 0) of the two repeating
patterns as follows:

{
α1α2 . . . αm, freq(α1α2 . . . αm), (p1, p2, . . . , pi)

} ��k
{
β1β2 . . . βn, freq(β1β2 . . . βn),

(q1, q2, . . . , q j)
} = {

γ1γ2 . . . γl, freq(γ1γ2 . . . γl), (o1, o2, . . . , oh)
}

where

• i = freq(α1α2 . . . αm), j = freq(β1β2 . . . βn), h = f req(γ1γ2 . . . γl),
• γt = αt for 1 ≤ t ≤ m, γt = βt−m+k for m + 1 ≤ t ≤ l = m + n − k,
• ot = x = y − m + k, where x ∈ {p1, p2 . . . , pi} and y ∈ {q1, q2 . . . , q j},7

• ot < ot+1, for 1 ≤ t ≤ h − 1,
• if k > 0, αm−k+s = βs, for 1 ≤ s ≤ k.

HLC develops in two stages: in the first stage, repeating patterns of length 2k

(initially, k = 0) are found, while repeating patterns of length 2k+1 are then found
by joining repeating patterns of length 2k. The search, during the first stage, proceeds

7This condition refers to how the position of elements in sequence γ relates to the positions of
appearance of the sequences α and β.
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EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

BCDE,2,(2,18)

Fig. 1 The complete graph for the running example of the HLC

until a kl is reached for which no repeating pattern exists. At this point, HLC has
to determine the length L of the longest repeating pattern, which is unknown in
advance. Though, the length of the maximum repeating pattern L is known to be
between 2kl−1 ≤ L < 2kl . Therefore, HLC performs a binary search of the patterns
the length of which is in the range [2kl−1 , 2kl ). At the end of the first stage, the HLC has
determined the L and the corresponding maximum-length patterns. Proceeding to
the second stage, in order to ensure that all repeating patterns found in the previous
step are non-trivial, a tree structure called RP-Tree is introduced, each node of
which represents a repeating pattern found. After the removal of all trivial repeating
patterns, a refining procedure identifies all repeating patterns the length of which is
not a power of two (if any). The resulting repeating patterns of the refining process
are added to the RP-Tree. Finally, all trivial repeating patterns are discarded, leaving
the RP-Tree to contain only the maximum and the non-trivial repeating patterns,
completing thus the second stage of HLC.

To clarify the understanding of HLC, we exemplify its execution over an example
music sequence (that will be used as the running example throughout this paper).
Let S be a music sequence, where S = EBCDEHGABFJDEHGJEBCDEABFJ.
Following the previously discussion, the repeating patterns of length 1, 2, 4 do exist,
though RP[8]=∅, where RP[x] denotes the set of repeating patterns with length equal
to x. To determine L (and the corresponding maximum-length repeating patterns),
we consider that kl = 3, since 8 = 23; whereas kl−1 = 2, since 4 = 22 and RP[4] is
the last length containing repeating patterns. Therefore, the algorithm searches the
intermediate values of length 5, 6 and 7 discovering RP[5]={EBCDE,2,(1,8)} RP[6] =
∅ and RP[7] = ∅. Thus, L = 5 and the set of MLRPs is RP[5]={EBCDE,2,(1,8)}
(i.e., RP[5] contains only one such pattern). The result of the first stage of HLC is
illustrated in Fig. 1, where the MLRP is depicted at the root. (In Fig. 1, the non
trivial repeating patterns are depicted with bold line.) The following stage of the
HLC algorithm is of no interest to this research since it focuses on MLRPs (which
are identified in the first stage), thus for brevity, the steps performed by the second
stage of HLC are omitted.

3.3 Motivation

Based on the above discussion, it should be noted that, among the other non-trivial
repeating patterns, HLC discovers the set of all MLRPs. Evidently, this is done in a
quite efficient way, due to the following reasons: (1) Only a logarithmic number of
intermediate lengths are considered to discover the MLRPs (lengths of the form of
2k are examined until kl is found and, then, a binary search is followed in the range
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[2kl−1 , 2kl )), whereas a straightforward approach would check all possible lengths
between 1 and L. (2) Through our experimental measurements we have found that
the most time consuming stage of the HLC is the second stage, where the building
of the RP-Tree and the elimination of the non-trivial patterns occur; in contrast,
should the focus be only in finding the MLRPs (and not the set of all repeating
patterns), then the second stage can be entirely omitted.

For the above mentioned reasons, a modified version of HLC (that consists only
of its first stage) can be considered as a good baseline algorithm for comparison
purposes, since it significantly outperforms the straightforward approach. Never-
theless, it must be mentioned that HLC was not designed to discover only the
MLRPs. Although it approaches the set of MLRPs through a logarithmic number
of intermediate levels, at each such examined level it has to identify all the repeating
patterns of that level. As the maximum length can reach the order of several tens or
even few hundreds, HLC has to join and count the frequency of a large number
of repeating patterns. This is mostly evident during the initial steps, when the
number of repeating patterns of relatively small lengths is very large, due to the
anti-monotonicity property.8 Therefore, a new approach is required that will avoid
as much as possible the cost to examine (i.e., counting the frequency) intermediate
patterns.

Finally, it should be taken into account that Koh and Yu [25] proposed a different
approach for the discovery of repeating patterns. Their method utilizes a bit-index
table and identifies all repeating patterns using a unit length increment. Therefore,
the method [25] reaches the level of MLRPs by considering all intermediate lengths,
and not a logarithmic number of levels as HLC does. Moreover, similarly to
HLC, at each examined level, the method of [25] considers all repeating patterns.
Experimental results in [25] indicate an improvement of the overall execution time
compared to the HLC algorithm. Nevertheless, these results assumed the problem
of finding all repeating patterns, where HLC had to undergo the expensive second
stage. Therefore, the modified HLC is considered much more efficient than the
method of [25], for the problem of discovering only the MLRPs. Thus, we select
the (modified) HLC algorithm as the baseline method that we use for comparison
purposes.

4 The proposed method

4.1 Outline of the approach

In this section we describe the proposed algorithm, which is denoted as M2P (Mining
Maximum-length Patterns). The outline of the approach taken by M2P is as follows.
Let S = 〈s1, . . . , sn〉 be a music sequence of length n. Assume that we have identified
all repeating patterns of length two, which is denoted as RP[2] = {〈si, s j〉 : si, s j ∈ S,

freq(〈si, s j〉) ≥ 2}. The elements of S and of RP[2] form a directed graph G(V, E),
where the set of vertices V(G) corresponds to the set of all elements of S and the set

8According to the property of anti-monotonicity, a subsequence X of S cannot be a repeating
pattern unless all the subsequences of X are also repeating patterns (we are not interested about
the distinction between trivial and non-trivial patterns, since MLRPs are by definition non-trivial).
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of all edges E(G) to the set of all elements of RP[2] (i.e., a directed edge 〈si → s j〉 in
the graph corresponds to the member 〈si, s j〉 of RP[2]).

Each path P in G can be considered as a possible repeating pattern, since all its
subpaths of length two (i.e., the directed edges) are repeating patterns. Therefore,
the set of all possible paths of G forms the search space of the examined problem, as
the MLRPs are also repeating patterns and, thus, correspond to paths of G. A naive
approach would consider the complete graph, where each possible pair of elements of
S would form an edge. However, this approach would lead to an excessive number
of possible paths, whereas (due to the anti-monotonicity property) this number is
drastically pruned, due to the fact that edges correspond only to members of RP[2].

The objective of M2P is to identify in the aforesaid search space those paths that
have maximum length and correspond to a repeating pattern. To attain this, M2P
traverses G by searching for the paths that originate from any of its vertices. While
encountering paths, M2P is concerned in identifying only these, which are candidates
to become a MLRP (i.e., not only repeating patterns). During the traversal, it
keeps track of the path C that has already been visited and: (1) has, so far, the
maximum length, and (2) corresponds to a repeating pattern (i.e., its frequency has
been counted and found to be larger than two).9 The pruning of the search space
is accomplished by discarding the extensions (i.e., appending of vertices and edges
during the traversal) of paths that their frequency has been counted and they were
not found to be repeating patterns, as none of their extensions can lead to an MLRP
(due to anti-monotonicity, since an MLRP is a repeating pattern). Therefore, while
advancing the traversal of G, three cases need be considered:

Case 1: if the currently visited path P has length smaller than |C|, then counting its
frequency can be avoided (since it will definitely not be an MLRP).

Case 2: if |P| > |C|, then the frequency of the corresponding pattern in S is
calculated, and if found to be a repeating one, then C is set to be equal
to P. Otherwise, if not a repeating pattern, then (as already explained) the
traversal does not have to follow any path containing P.

Case 3: finally, if P’s length is equal to |C|, then the calculation of its frequency is
avoided, at this point. Instead, we maintain a list and link it to C. If after
the end of G’s traversal no other repeating pattern has been found with
length greater than |C|, all such paths linked to C are also candidates to
be repeating patterns (C has been identified as an MLRP, because it was
the first path of its length that was considered during the traversal, so its
frequency has been counted due to case 1).

Following the previously discussed approach, M2P calculates the frequency of a
path only if its length is such that it can possibly become an MLRP. For this reason, it
postpones as much as possible the costly operation of frequency calculation, aiming
at finding new candidates with larger length. The result is that M2P, unlike HLC,
avoids calculating the frequency of all paths of a certain length. Instead, it only de-
termines the frequency of paths of a given length, until the first path corresponding to
a repeating pattern is found. Finally, when finished with the traversal, all candidates
that are linked to the initially found MLRP (i.e., those with length equal to the found

9Initially, any edge of G can be selected as such path.
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maximum found length for |C|) are examined so as to find all MLRPs, as there may
be more than one. It should be noted that the frequency counting in M2P is done by
using a string matching algorithm,10 since the frequency of a path P is equal to the
number of appearances of P (i.e., of the sub-sequence corresponding to P) in S.

4.2 The M2P algorithm

In this section we describe the algorithmic form of M2P, which is depicted in
Fig. 2. The input data of M2P is the music sequence. Initially, M2P calculates all
repeating patterns of length 2 and stores them in the RP[2] set. This is done as an
initialization step through a two dimensional array M, the size of which for the MIDI
representation is 128 × 128. The graph G is constructed based on the adjacency
matrix representation of M. Next, M2P performs a traversal of G during which it
examines the paths P originating from the vertices of G (the traversal visits the
vertices in a depth-first manner).

Within the graph traversal procedure, the length of the current path P is compared
against the Current Maximum Length path, which is denoted as CML (initially, it is
set to 2, since M2P has already determined the RP[2] set). If P’s length is greater
than CML, then M2P counts the frequency of P and, in case it is greater than 2, P
is stored (as the only element) in the Maximum Length Queue (denoted as MLQ),
whereas CML is set equal to the length of P. In contrast, if P’s length is equal to
CML, then P is added to MLQ without counting its frequency. Finally, if the search
for paths containing P has not been pruned (pruning occurs when P’s frequency is
counted and found less than two), the traversal continues further by visiting nodes
adjacent to the last node v of P.

After the traversal of G has ended, M2P has established (if any) one MLRP (the
first element in MLQ). Therefore, it continues by calculating the frequency of all
remaining members (if any) in the MLQ, to find the set of all MLRPs.

The correctness of M2P can easily be deduced as follows. Assume that PM is a
MLRP whose length is M and its elements are 〈p1, . . . , pM〉. Since PM is a MLPR,
its frequency is equal or greater than 2. Therefore, each consecutive pair 〈pi, pi+1〉 of
PM’s elements belongs to RP[2] and has a corresponding edge in G. Accordingly, PM

will be examined by M2P during the traversal of G, following the edges 〈pi, pi+1〉 for
1 ≤ i < M. If PM is the first path with length M that is examined, then its frequency
will be counted and PM will constitute the first element of MLQ (by deleting any
prior entries corresponding to candidates of smaller length). Otherwise, if other paths
of length M have already been included in MLQ, since no other repeating pattern
P′ exists with |P′| > M, PM will be examined in the step after the traversal has
terminated, while counting the frequencies of all elements of MLQ. Thus, in either
case, PM will be included in MLQ and will be included to the output of M2P.

4.3 Example

To clarify the description of M2P, we give an example of its execution following the
running example of the paper. For this example, S = EBCDEHGABFJDEHGJE

10For simplicity, in our implementation we used the Knuth–Morris–Pratt algorithm.
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Procedure M2P(MusicSequence S)
begin
1. RP[2] = Find all rp with length 2
2. Construct G(RP[2])
3. CML := 2
4. MLQ := ∅
5. for each v ∈ V(G)

6. Traverse(G, v, 〈v〉, CML, MLQ)
7. endfor
8. for each P ∈ MLQ
9. if (CountFreq(q)≥ 2)
10. Output(P)
11. endif
12. endfor
end

Procedure Traverse(Graph G, Vertex v, Path P, int CML, Queue MLQ)
begin
1. bool prune := false
2. Append(P, v)
3. if Length(P) > CML
4. if CountFreq(P ≥ 2)

5. MLQ := P
6. CML = Length(P)
7. else
8. prune := true
9. endif
7. else if length(P) = CML)
8. Enqueue(MLQ, P)
9. endif
10. if not prune
11. for each u ∈ V(G) and 〈v → u〉 ∈ E(G)

12. Traverse(G, u, P, CML, MLQ)
13. endfor
14. endif
end

Fig. 2 The MLRP algorithm

BCDEABFJ, its RP[2] set and the corresponding graph G are illustrated in Fig. 3.
Assume (without loss of generality) that the M2P begins its traversal from the paths
emanating from vertex A and from edge AB in particular. Initially, path ABC is
visited (Fig. 4a). Since its length is 3 > CML = 2, its frequency is counted for and
found equal to 0. Therefore, M2P does not continue the traversal following the path
ABC. Then, it continues by examining ABF, whose frequency is counted equal to 2.
Accordingly, CML is set to 3 and ABF is inserted in MLQ. The traversal continues
further with this path, moving on to ABFJ, whose frequency is counted and found
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Fig. 3 The example graph G
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equal to 2. Similarly, CML is set to 4 and MLQ={ABFJ}. Furthermore, the path
ABFJH is considered, but its frequency is counted to be equal to 0. Therefore, we
avoid the examination of further paths that contain it.

Next, the traversal moves on to vertex B (Fig. 4b) and the edge BC in particular.
To begin with, path BCD is examined, the length of which is less than CML, and
thus its frequency is not counted. However, the traversal continues following paths
containing BCD, since it cannot be discarded as not being a repeating pattern (i.e.,
we have not counted its frequency). Thus, path BCDE is next examined, whose
length is equal to CML. Thus, BCDE is added to MLQ and MLQ becomes equal
to {ABFJ,BDCE}.

Following a similar approach, paths emanating from vertex C (Fig. 4c) do no
change CML or MLQ, while the paths resulting from vertex D (Fig. 4d) add DEHG
to MLQ (since |DEHG| = CML = 4, its frequency is not calculated), while MLQ
becomes equal to {ABFJ,BDCE,DEHG}. Moving on to vertex E (Fig. 4e), the
path EBCD is added to the MLQ (MLQ={ABFJ,BDCE,DEHG,EBCD}). Next,
path EBCDE is examined, and its frequency is counted (since its length is larger
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than MLQ) and found equal to 2. Therefore, CML is set to 5, whereas the current
elements of MLQ are removed and EBCDE is inserted in it (since a larger CML
value has been found). Finally, all other vertices (F, G, H and J) offer no change.
Thus, as no other candidates exist in the MLQ the set of found MLRPs is equal to
{EBCDE}.

4.4 Developing optimizations

The efficiency of the M2P algorithm rests with its two main features, the ability to
avoid, as already described above, the calculation of the repeating frequency of the
candidates (except for the first one found for each length) the length of which is
equal to the CML, and the ability to avoid completely any measurement concerning
candidates with length smaller than the CML. To improve further its efficiency, we
describe two techniques that were used to enhance the basic form of M2P.

As indicated in [20], the number of repeating patterns with small length is much
higher than the number of repeating patterns with large length. For this reason,
we would like M2P (during the traversal) to reduce the number of examined paths
with small length. This is attained in a preprocessing step. Let � be the length of
repeating patterns that we are interested in reducing their number. M2P reads the
music sequence S and hashes subsequences of length � into a hash table, whose
bins are integer counters (initially set to 0). During the traversal, when a path P
of length � is examined, M2P checks the corresponding bin and if its counter is
less than 2, it prunes the traversal for extensions of P as P cannot possibly be a
repeating pattern. However, if the value of the counter is larger than (or equal to)
2, P may not necessarily be a repeating pattern, due to possible hash collisions in
the corresponding bin. Therefore, hashing can only provide a filter to reduce the
number of examined paths of length �. It should be noticed that an analogous hashing
technique has been used in the case of mining itemsets [33]. As the hashing technique
performs satisfactory only for paths with small length, in our implementation we
consider the value of � to be equal to 3 and 4 (a separate hash table is maintained
for each considered value of �).

The second technique considers the impact of cycles within the graph G. Ev-
idently, the elements of repeating patterns and MLRPs may not be distinct, thus
vertices and/or edges of G may be visited more than once for the currently examined
path (within the traversal procedure). Let us assume that a path P is a repeating
pattern but its length is less than CML. Then, if P contains a cycle, by using the
vertices and edges in the cycle for an appropriate number of times (i.e., to follow the
cycle as many times as needed), P can be extended so as the length of this extension
to become equal to CML. Moreover, due to Case 3 (described in Section 4.1), a large
number of paths can be inserted in MLQ. For this reason, we enhance the basic form
of M2P previously described, in order to locate the existence of a cycle within the
currently visited path and, when Case 3 holds for a path containing cycles, we first
count its frequency before appending it to MLQ. Despite the fact that this technique
may increase the number of intermediate paths the frequency of which is counted,
it also prevents the excessive increase of the members of MLQ (frequency of which
will have to be calculated at the end of the traversal procedure).



64 Multimed Tools Appl (2007) 32:49–71

The two aforementioned optimizations have been found to improve substantially
the performance of M2P. For this reason, they have been incorporated to the basic
form that was described earlier and are being used henceforth.

5 Performance evaluation

In support of the efficiency of the proposed algorithm, this section presents a number
of experiments that have been performed. A concise description of the experimenta-
tion platform and data sets is also given followed by a performance analysis based on
experimental comparison of the baseline approach, i.e., the modified HLC, and the
proposed approach, M2P.

5.1 Experimental set-up

All algorithms described have been implemented and performed on a personal
computer with 933 MHz Intel Pentium III processor, 512 MB RAM, operating
system MS Windows 2000, while the developing package utilized was MS Visual C++.
The performance measure was the wall-clock time measured in milliseconds.

The data sets employed for the experiments include real as well as synthetic
music objects. The real music objects originated from MIDI files acquired from
the World Wide Web, converted from the MIDI format to melody strings by
retaining only the pitch information. These music objects include classical works
(The Four Seasons—Concerto 1 “Spring/La Primavera”—Allegro composed by A.
Vivaldi and “Toreador” composed by G.Bizet) as well as modern pieces (“Tears in
heaven” composed by E. Clapton), since different kinds of music contain different
characteristics and lead to varying lengths of MLRPs. The object size of “Spring/La
Primavera,” “Toreador” and “Tears in heaven” is 8.292, 22.898, 5.786, respectively,
and denotes the length of each note sequence. The note count of an object is the
number of discrete notes the melody string contains and for the previously mentioned
music objects the note count is respectively 50, 72 and 40. As far as the synthetic
music object is concerned, following [20], they were generated with uniform note
distribution, object size 1,000 notes, while the note count is variable.

5.2 Results

Initially, we considered real music objects and we focused on classic ones. Herein,
we present results for the “Spring/La Primavera” music object with respect to its
size (i.e., by varying the size of the object that we take into account each time [20]).
The results on execution time are illustrated in Fig. 5a. Moreover, Fig. 5b depicts the
length of the discovered MLRPs with respect to the object’s size.

As expected, the execution time of both algorithms increases with increasing
object sizes. This is due to two reasons. During the increase of the length of the
MLRP (see Fig. 5b), both algorithms examine more levels, thus the cost increases.
When the length of MLRP remains constant for increasing object size (e.g., for
size larger than 800), although HLC and M2P do not examine more levels, the
processing within the levels becomes more costly (due to the increase in the number
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Fig. 5 Results for the classic music object: a execution time vs. object length; b length of MLRPs vs.
object length

of intermediate repeating patterns). Nevertheless, M2P clearly outperforms HLC by
a factor of more than two in the case of larger object sizes.

In our next experiment we considered modern music objects. Herein, we present
results from “Tears in heaven,” which are depicted in Fig. 6. Particularly, Fig. 6a
demonstrates the execution time for varying object size, whereas Fig. 6b the length
of the discovered MLRPs again with respect to the object’s size. Similarly to the case
of classic music object, execution time for both algorithms increases with increasing
object size. It worths noticing that the lengths of the discovered MLRPs (Fig. 6b)
are relatively reduced compared to the case of the classic music object, supporting
thus, the previously stated argument that different kinds of music contain different
characteristics. Nevertheless, execution time shows no relative reduction (in the case
of HLC it increases slightly), due to the increased number of intermediate repeating
patterns (which is not shown). As in the previous experiment, M2P compares
favorably with HLC and presents an improvement for a factor up to 4 (for larger
object sizes).

In order to examine the scalability of our method, we considered the “Toreador”
music object, which is the largest among the music objects we considered. We varied
the object size we considered each time and the largest size we examined was 20,000
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Fig. 7 Results for execution
time (s) vs. object size
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(close to the actual object’s size). The results (in seconds) are illustrated in Fig. 7. As
depicted, M2P compares favorably to HLC.

We now move on to more clearly examine the impact of the length of discovered
MLRPs on execution time. We used “Toreador” and varied its size so as to identify
the points where an increase in the object’s size leads to an increase in the length of
discovered MLRP. Therefore, for the points found (expressed by the corresponding
length of the discovered MLRPs) we measured the execution, and the results are
depicted in Fig. 8a. As shown, the performance of M2P is significantly better than the
HLC, especially as the length of the MLRP increases. This fact illustrates that M2P
exhibits good scalability with respect to long patterns.

Next, we measured the impact of the note count. For this reason, we used synthetic
music objects. The length of the objects was set to 1,000 notes and we varied the
number of distinct notes (note count). The results with respect to the note count are
presented in Fig. 8b. As expected, the execution time for both algorithm reduces for
increasing note count. This is mainly due to the fact that the length of the repeating
patterns and MLRPs tends to decrease as the note count increases for this type of
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Fig. 9 Results for execution
time vs. number of repeating
patterns
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music objects [20]. However, M2P clearly outperforms HLC in all cases, verifying
the results presented for real objects.

To further understand the behavior of M2P, we examined its performance against
the number of repeating patterns. As described, for a higher number of repeating
patterns, HLC may require higher computation cost, since it has to examine more
intermediate patterns before reaching the longest ones. Therefore, the number of
repeating patterns in the music sequence can affect the performance difference
between HLC and M2P. Thus, for the sake of convenience and to easily control
the number of repeating patterns within the same music sequence, we varied the
frequency threshold. As expected, an increase in the frequency threshold results
to less repeating patterns. In our measurement we used “Toreador” with length
equal to 5,000 and varied the threshold in the range 1–10. The results are depicted
in Fig. 9, where the x-axis illustrates the number of repeating patterns resulting
from each frequency threshold (notice that the values are in inverse order, i.e., the
lower numbers correspond to highest threshold values). As shown, as the number

Fig. 10 Results for execution
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of repeating patterns increases, the performance difference between HLC and M2P
clearly increases. This is in accordance with the earlier described expectation.

Finally, we tested another factor that affects the performance of M2P, the size of
the hash tables that are used to optimize its performance. We used the “Spring/La
Primavera” music object with length equal to 2,000 and varied the hash-tables sizes
(i.e., the number of elements stored for each hash table). The results are given in
Fig. 10. As expected, smaller hash-tables sizes result to less pruning and, thus, to
higher execution times. On the other hand, there is a point up to which a further
increase does not lead to adequate pruning, and the execution time does not decrease
any further.

6 Conclusions

In this paper we introduced the problem of finding the maximum-length repeating
patterns (MLRPs). This type of patterns helps in addressing the possible large
number of plain repeating patterns in large music objects, and can be useful in
discovering more sophisticated characteristics like music themes.

We present an efficient, novel algorithm, M2P, for the extraction of MLRPs from
music sequences comprising of pitch information. The efficiency of M2P lays on
the technique employed, which avoids costly repetition of frequency calculations
by examining as few as possible intermediate repeating patterns, and aiming at fast
reaching of MLRP set.

We have performed detailed experiments and measured several factors, such as
the music object’s size, the length of MLRP, the note count,the number of repeating
patterns and hash-table size. The results indicate significant performance gains (up
to a factor of four) compared to a prior method that was modified so as to constitute
an efficient baseline algorithm.

As far as the possible future work is concerned, we will further consider the
correspondence between repeating patterns, MLRPs, and themes. Moreover, as
motives may contain a degree of variation within a single music piece, methods are
required that will allow the discovery of music patterns in a more approximate way
(i.e., not necessarily consecutive subsequences) [30].
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