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Abstract 

In this paper we examine searching by content in broadcasted streams of musical data, where 
the querier defines a set of preferred musical pieces and receives a list of broadcasting feeds 
that contain music similar to the preferred set. Streaming environments impose challenging 
requirements for content-based music information retrieval as memory limitations do not 
allow for buffering, data accumulation “on-the-fly” makes pre & post processing not a 
possibility while high response time is a necessity. To address these requirements we devise 
an incremental version of an award winning feature extraction and similarity process and 
propose a song boundary detection method in order to increase similarity accuracy and reduce 
costly feature extraction and similarity calculations. Extensive experimental results verify our 
claims and illustrate the superiority of the proposed method, over a baseline approach, as well 
as the suitability of the method for the streaming environment. 
 
Keywords: music information retrieval, content-based similarity, continuous querying, web 
radio, music podcasting, incremental feature extraction, streaming data. 
 

1. Introduction 
Nowadays, WWW is developing as a key means of information dissemination, even 
in daily routine activities. Most already existing forms of information in the “old” 
world are attempting a transformation to the known forms of the webbed world while 
in other cases, the developments of the web pioneer in launching brand new forms of 
information. Accordingly, as their volume and usage increase, the necessity of their 
management emerges as a prominent activity, especially for the new forms that 
introduce new requirements.  

Internet music broadcasting falls within both previously mentioned categories. On the 
one hand, much like the traditional radio service, Internet radio is a broadcasting 
service transmitted via the Internet in a 24-hour, 365 days per year manner, 
suggesting a streaming media that delivers to listeners a continuous stream of audio, 
by adopting an already existing technique, the webcasting. As with the traditional 
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radio, listeners have no control on the broadcasted media. On the other hand, the new 
and trendy [PR Newswire (2006)] practice of podcasting refers to the release of a 
digital recording of a radio broadcast or similar program, on the Internet for 
downloading to a personal audio player. Podcasting’s initial appeal aimed at allowing 
individuals to distribute own "radio shows", following the previously developed web 
syndication techniques. Podcasts may be created and posted at any time and may be 
as large in terms of number of musical pieces included as desired by the creator. 
Nowadays, numerous websites exist enlisting tens of thousands of feeds [Directory of 
55.000 radio stations (2006)] of Internet radio stations and several thousands of 
podcasts [Podcast mvyradio's Blues@8 (2006)] (henceforth the term “feed” describes 
both Internet radio stations and podcasts). Moreover, characteristics of radio such as 
non stopping stream of songs mixed with other non musical content may appear as 
well, though standard high-performance methodologies [Ajmera at. Al. (2003)] for 
music-speech segmentation do exist. 

It should be noted that, in this work, broadcasted data are confronted as streaming 
data, where streaming data are time-series received from a feed. That is, data is 
modelled best not as persistent relations but rather as transient data streams. In that 
sense, broadcasted music shares a number of common characteristics with streaming 
data such as being time ordered, data arriving in segments at an unknown incoming 
rate and data storage/post-processing is not wanted/possible but instead an “on-the-
fly” processing is required. Thus, the method utilised for the similarity should be 
incremental in order to deal with memory limitations as well as high response time 
requirements. Moreover, streaming data methods are required in order to satisfy the 
need to use continuous querying (cf. see Example scenario 2). Traditional content 
based music information retrieval (CBMIR) persistent relation models do not require 
a method for the identification of song boundaries, as each song’s boundaries are 
clearly defined from a container file in the database used. Accordingly, if traditional 
CBMIR methods are used in a data stream music model, search for similarity cannot 
be stopped given that a song is early found to exceed similarity threshold as no means 
of song ending is provided therein. 

Example scenario 1. An example scenario of the key idea of this research includes a 
website that contains a number of feeds and a user with a set of preferred songs. The 
user activates a client-side program that implements the method proposed in this 
paper, registers the preferred music and the URL of the website listing the feeds. 
Accordingly, the user selects a monitoring period for the program to monitor a certain 
number of feeds and receives back the feeds that for the monitoring period included 
musical pieces similar to the user preferences. 

Example scenario 2. In a differentiated scenario, the implementation of the proposed 
methodology could reside on a server-side program. That is, the user would visit a 
website that hosts a number of feeds as well as a large collection of songs for the user 
to define preferences. Accordingly, after selecting both possible feeds and preferences 
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the site could “on-the-fly” select the feed that for the current broadcast is most similar 
to the user’s preferences and offer the possibility for on-line listening. As the user 
listens, the site monitors the remaining feeds in order to ensure that no other feed is 
more similar, in which case the user would be notified (continuous querying). 

In this work, we focus on the example scenario 2. To our best knowledge, the 
implementation of CBMIR in streaming musical data has not been attempted before 
in the literature. Nevertheless, existing works, that follow similar research direction, 
are neither considering the streaming character of data nor the necessity for 
continuous querying [Velivelli et. Al. (2003)]. The contribution of this work is 
summarised as follows: 

• An incremental feature extraction process leading to significantly less processing 
cost. 

• A song boundary detection methodology which is used to avoid costly (a) 
similarity distance calculations and (b) full feature extraction. 

• The performance evaluation of the proposed method based on real-life data sets. 
 
The rest of the paper is organised as follows. Section 2 describes background and 
related work. Section 3 provides a complete account of the proposed method. 
Subsequently, Section 4 presents and discusses the experimentation and results 
obtained, while the paper is concluded in Section 5. 

2. Background & Related Work 

2.1 Content-based Music Information Retrieval 

The field of music information retrieval has received increased attention during the 
last decade. Numerous surveys examine the state of the art developments in the area 
[Karydis et. Al. (2006); Typke et. Al. (2005)] while a litany of works spawns rapidly 
in all directions of MIR. Most research on MIR is content based due to limitations 
imposed by metadata approaches, such as: they are not always available, their use in 
MIR requires knowledge for the query not provided by listening while their 
descriptive capability lacks customisation as it relies on predefined descriptors. 

Content-based approaches assume that documents are described by features extracted 
directly from the content of musical documents. The selection of appropriate features 
is very important in music information retrieval. In this work, we do not concentrate 
on devising new features. Instead, we are interested in an incremental feature 
extraction methodology in order to fulfil the requirements posed by the data stream 
music model. Thus, we devise an incremental feature extraction process based on the 
Single Gaussian Combined (G1C) [Pampalk (2006)] as submitted to the MIREX 2006 
contest [MIREX (2006)] bearing in mind that it achieved the highest score.  
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Initially, for each piece of music the Mel Frequency Cepstrum Coefficients (MFCCs) 
are computed, the distribution of which is summarised using a single Gaussian (G1) 
with full covariance matrix. The distance between two Gaussians is computed using a 
symmetric version of the Kullback Leibler divergence. Then, the fluctuation patterns 
(FPs) of each song are calculated. A FP describes the modulation of the loudness 
amplitudes per frequency bands, while to some extent it can describe periodic beats. 
All FPs computed for each window are combined by computing the median of all 
patterns. Accordingly, two features are extracted from the FP of each song, the 
“gravity” (FP.G) which is the centre of gravity of the FP along the modulation 
frequency dimension and the “bass” (FP.B) which is computed as the fluctuation 
strength of the lower frequency bands at higher modulation frequencies. For the four 
distance values (G1, FP, FP.B and FP.G) the overall similarity of two pieces is 
computed as a weighted linear combination (normalised in [0,1]) as described in 
detail in [Pampalk (2006)]. 

2.2 Streams and Continuous Querying 

Nowadays, a plethora of applications, as one would expect, produce data streams as 
opposed to data sets: financial data, network monitoring, data feeds from sensor 
applications, etc. The theme of this research considers in particular continuous 
queries. Typical examples in financial applications include stock value monitoring 
where continuous queries may be used to examine similarities between stocks and 
trends. 

Methodologies developed for content-based retrieval in streams are specific to the 
nature of the data under examination and thus not directly applicable. The key 
differentiation relies on the usage of metric distance similarities that take advantage 
of the triangular inequality and perform early pruning, thus minimising the processing 
cost of unwanted distance calculations [Gao et. Al. (2002); Kontaki et. Al. (2004)]. 
Typical such distance metrics are the Euclidean and Manhattan distance, which are 
not suitable for musical data similarity [Berenzweig et. Al. (2004)]. 

3. The Proposed Method 

3.1 System Architecture  

Elaborating further on the example scenario 2, as discussed in Section 1, after the user 
has decided the preferred songs on which to determine stream likeness and their 
features have been extracted, the system must extract MFCCs of each broadcasted 
feed, identify the parts that contain music, extract features, calculate similarities with 
preferred songs and assign a score to each feed based on the each current playing 
song. The scores are then presented to the user, while after the initial score 
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calculation, the system must continuously monitor the feeds and perform the same 
procedures in order to determine if scores change as the feeds keep broadcasting. The 
proposed architecture is depicted in Figure 1. 

 
Figure 1. CQiSM architecture. 

Accordingly, the proposed system, the Continuous Querying in Streaming Music 
(CQiSM) can be divided into three subsections: the incremental feature extraction, the 
song boundary detection and the overall feed evaluation. The next sections provide 
details on each of them. 

3.2 Incremental Feature Extraction 

One of the “sine qua non” characteristics of streaming data is that in order to abide by 
the input rate time constrains all processes on data must be fully optimised. In other 
words, previously calculated results, that can be used in order to alleviate burden off 
next calculations, need be taken advantage of. Accordingly, as one of the most time 
consuming steps of the proposed method is the feature extraction process, this section 
details an incremental version of the G1C method by Pampalk [Pampalk (2006)]. It 
should be noted that the proposed incremental extraction solely refers to the 
extraction of the MFCCs. 

 

Figure 2. Song segmentation. 

Each song is divided into windows of N elements length, while each window is 
divided in segments of length S overlapping (hop) by K elements (see Figure 2). 
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Every K values received define a new segment while the first segment of the window 
is discarded, collectively henceforth “update”. For each new segment its MFCCs need 
be calculated to perform song boundary identification. The calculation of the MFCCs 
of the new segment comprises of applying Hann window operation over the segment 
values, Fast Fourrier Transform and numerous other static calculations. Then the 
results obtained are multiplied with triangular filters (Mel-filters) in order to 
transform the power spectrum to the Melscale using 34 (Mel-spaced) frequency 
bands.  

Under the assumption that the method is applied on the full window (non-incremental 
version), Mel-filters and the previous results are two-dimensional matrices. Bearing 
in mind that the multiplication of two matrices )( nmA × and )( znB ×  results in a 
matrix )( zmC × , we note that each column j of the matrix C is the result of a 
combination of all the elements of matrix A with the elements of the column j of the 
matrix B. In the incremental version, the result obtained is a one-dimensional matrix 
as it originates from one segment only. 

Finally, more static calculations occur to compute MFCCs of the new segment that 
later on are combined with the MFCCs of previous segments of the current window, 
in order to calculate the G1, FPs, FP.G and FP.B features. Thus, when an update 
occurs, we can calculate the MFCCs of the new segment only and combine them with 
the MFCCs of previous segments to form the MFCCs for the whole window, so the 
C1G method is implemented in an incremental manner.  

3.3 Song Boundary Detection 

The consideration of musical data in a continuous form (stream), which are at the 
same time additionally interleaved by other non musical data, introduces a twofold 
problem: the song boundary detection and the segmentation of music/speech. The 
later is required in order to avoid costly calculations in portions of the stream that will 
not contribute to the overall stream evaluation. Music/speech segmentation is a 
research direction of signal processing on its own, while high performance solutions 
already exist [Ajmera at. Al. (2003)]. As their performance would equally affect any 
compared methods, for simplicity we assume that the differentiation between speech 
and music is already known. 

On the other hand, the song boundary detection refers to a song that is immediately 
followed by another song in the stream, with no intermission in between. In these 
cases, when a new song from the feed is identified, it is compared with the user’s 
preferences and then no further similarity on this song need be done, as long as the 
beginning of the next song is identifiable. Thus, only a minimal feature extraction 
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process continues in order to be able to identify the song change, while both the rest 
feature extraction and similarity calculation are avoided.  

In order to decide the change of song event, we monitor the progression of values of 
the MFCCs and look for high changes. As songs finish, their overall energy tends to 
reduce, an effect clearly evident in the first coefficient of the MFCCs, which is 
proportional to the audio energy. Accordingly, as the next successive song begins, its 
signal power is significantly higher and thus the first MFCC coefficient is 
considerably increased. In order to detect high changes of values of the MFCCs, any 
well-known similarity metric can be applied. In our experiments the Euclidean 
distance is used due to its simplicity and popularity. Having identified the beginning 
of a new song, we only perform a minimal feature extraction including only the 
MFCCs of the song leaving out the G1, FPs as well as the FP.G and FP.B features, 
which add-up a significant amount of calculation.  

3.4 Overall Feed Evaluation 

As the feature extraction and similarity methods utilised herein were designed so as to 
provide one number, given any two songs without any further context, we propose 
two alternative strategies leading to the overall feed evaluation. 

Initially, in a quantitative approach, one could be interested in a dispersion or breadth 
of the similarity on a number of songs while not paying attention on the calculated 
similarity distance. Still, as feeds may contain different number of songs, 
normalisation is required in terms of the number of songs for which the result was 
obtained. A quantitative overall feed evaluation is given by Equation 1. That is, for 
every new song i in the feed, we may receive numerous matches j from the users’ 
preferences with similarity Tij. For every i and j we sum the corresponding similarity 
Tij and divide it with the number L of songs considered in the feed. 

L

T
i j

ij∑∑
                                                            (1) 

On the other hand, a qualitative approach would be concerned with the best match of 
each user’s preference while disregarding the remaining matches. Once again, in 
order to account for the different number of songs for which the result was obtained 
across feeds, normalisation is required (see Equation 2). In this case, for every new 
song i only the most similar result is considered for the evaluation of each feed. 

( )
L

T
i

ij∑max
                              (2) 
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4. Performance Evaluation  

All algorithms described have been implemented on a personal computer with 
3,06GHz Intel Pentium IV processor, 1 GByte RAM, MS Windows XP operating 
system while the developing package utilised was MATLAB version 6.5.  

The data sets employed for the experiments include real music objects. Each wav file 
was down-sampled at 11.025 Hz at 8 bits, mono channel. The music objects pertain to 
various genres such as Greek and English pop, rock as well as instrumental music. 
Each feed was created by concatenating 30 songs, while experiments assume 5 feeds 
unless otherwise stated. Each feed has been created by random selection of songs, 
while to examine exact matching capability, the user’s preferences have been 
included in the feeds in random locations. 

Table 1 summarises the default values that are used in all following experiments, 
unless otherwise stated. Due to space restrictions, we do not present results on the 
tuning of these parameters. In order to evaluate CQiSM, we utilised the method 
proposed by Pampalk [Pampalk (2006)] as a competitor (henceforth “baseline”), 
bearing in mind that although very efficient was not originally developed for 
streaming environments. To account for the continuous querying, we reapplied the 
baseline for each update. 

Table 1. Experimental parameters. 

Parameter Default value 
Window size 11,62 seconds (128128 stream elements) 
Segment size 256 stream elements 
Hop size 128 stream elements 
New song event threshold  10 
Similarity threshold 0,4 

In our first experiment (Figure 3) we have examined the execution time for varying 
window sizes for both CQiSM and baseline approaches. Notice that in Figure 3 the 
abbreviation A denotes the CQiSM, B denotes the baseline while the execution time 
is given in a logarithmic scale. For each window size two bars describe each 
approach: the overall time of execution and the time required for the extraction of the 
MFCCs per update. Accordingly, their difference accounts for similarity time 
calculation. It can be clearly seen that the proposed methodology outperforms the 
baseline approach. It should be noted that, for the baseline approach, computation 
times become prohibitive in order to keep up with input rate of feeds. 

In the next experiment (Figure 4), we tested the execution time for the two 
approaches for different values of the new song event detection threshold. To begin 
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with, the overall execution time and MFCC extraction time for the baseline approach 
is fixed due to the fact that it is not affected by the examined parameter. It is 
presented here for comparison reasons. The key observation is the confirmation of our 
claim for song boundary identification aiming at saving costly similarity calculations. 
In detail, for new song event detection threshold equal to zero, the difference between 
overall and MFCC extraction execution times is equal to the similarity calculations 
that the baseline performs (not clear due to logarithmic scale). Accordingly, the use of 
the new song event detection drastically reduces similarity calculations at the cost of 
potential lost song identifications. As the baseline method proves clearly not suitable 
for the examined framework, it is not examined further in the experimentation. 

 
In our next experiment, Figure 5, memory requirements for different number of feeds 
and varying window sizes have been put to examination. Initially it should be noted 
that the memory requirements mainly depend on the size of the utilised window. The 
attitude of the CQiSM is linear for both the window size and number of feeds. 

In the sequel, Figure 6 shows the achieved accuracy of CQiSM for different window 
sizes over the similarity threshold. In this case, the accuracy refers to exact matches 
identified in the feeds, in other words the ratio of exact matches found over the 
correct exact matches included in the feed. In this experiment the similarity threshold 
greater than zero is used for exact matching for the following two reasons: (a) 
comparison between windows might not reveal matching due to shifting and (b) the 
use of the hop size introduces areas from which features might not be extracted. 
Nevertheless, as it can be clearly seen, CQiSM attains over 89% accuracy in all cases. 
It is obvious that for increasing similarity threshold, the accuracy ameliorates as more 
matches accumulate. For varying window sizes the performance of the method is 
quite similar, while small changes appear due to the shifting effect introduced during 
window selection. 
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The following experiment (Table 2) studied the qualitative attributes of CQiSM. In 
this experiment for the running value of new song event detection threshold we 
examine the recall percentage accounting for the number of songs identified over the 
correct number of the received songs. The recall achieved by the CQiSM reaches 
96,667%, which corresponds to one missed song. The next parameter pertains to the 
number of false alarms introduced with respect to the total number of updates, which 
would be the number of calculations processed by the baseline approach. The last 
parameter shows the number of new song events detected with respect to the total 
number of updates. It is obvious that CQiSM achieves high recall rates, despite the 
fact that our song detection approach prunes approximately 99,95% of the candidates, 
thus the savings produced in similarity calculations overwhelm the false alarm ratio. 

 

In our final experiment (Table 3) we have tested the suitability of CQiSM to operate 
in a streaming environment. The results in Table 3 show that our proposed method 
manages to identify an exact match shortly after 7 seconds (on average) it has arrived. 
This means that even before the smallest window buffer has accumulated the next 
window data, results can be obtained and the user notified.  

5. Conclusions  

This paper deals with the development of methods for searching by content in 
broadcasted streams of musical data, where the querier defines a set of preferred 

Parameter Value % 
Recall 96,667 

False alarms 0,0507 
New song events 0,0555 

Table 3. Exact match average delay. Table 2. Qualitative attributes of 
CQiSM 
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musical pieces and receives a list of broadcasting feeds that contain music similar to 
the preferred set. Notice that to our best knowledge, the implementation of CBMIR in 
streaming musical data has not been attempted before in the literature. 

To address the requirements posed by the streaming environments, we propose the 
incremental version of an award winning feature extraction & similarity process and a 
song boundary detection in the stream in order to increase similarity accuracy and 
reduce costly feature extraction and similarity calculations. The aforementioned 
claims are verified through extensive experimental results. 
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