

Content-based Information Retrieval
in Streaming Music*

Maria Kontaki, Ioannis Karydis and Yannis Manolopoulos

Data Engineering Lab, Aristotle University, 54124, Thessaloniki, Greece
{kontaki, karydis, manolopo}@csd.auth.gr

Abstract

In this paper we examine searching by content in broadcasted streams of musical data, where
the querier defines a set of preferred musical pieces and receives a list of broadcasting feeds
that contain music similar to the preferred set. Streaming environments impose challenging
requirements for content-based music information retrieval as memory limitations do not
allow for buffering, data accumulation “on-the-fly” makes pre & post processing not a
possibility while high response time is a necessity. To address these requirements we devise
an incremental version of an award winning feature extraction and similarity process and
propose a song boundary detection method in order to increase similarity accuracy and reduce
costly feature extraction and similarity calculations. Extensive experimental results verify our
claims and illustrate the superiority of the proposed method, over a baseline approach, as well
as the suitability of the method for the streaming environment.

Keywords: music information retrieval, content-based similarity, continuous querying, web
radio, music podcasting, incremental feature extraction, streaming data.

1. Introduction
Nowadays, WWW is developing as a key means of information dissemination, even
in daily routine activities. Most already existing forms of information in the “old”
world are attempting a transformation to the known forms of the webbed world while
in other cases, the developments of the web pioneer in launching brand new forms of
information. Accordingly, as their volume and usage increase, the necessity of their
management emerges as a prominent activity, especially for the new forms that
introduce new requirements.

Internet music broadcasting falls within both previously mentioned categories. On the
one hand, much like the traditional radio service, Internet radio is a broadcasting
service transmitted via the Internet in a 24-hour, 365 days per year manner,
suggesting a streaming media that delivers to listeners a continuous stream of audio,
by adopting an already existing technique, the webcasting. As with the traditional

* Research supported by the PAVET 2005 program, funded by the GSRT, Greece.

Even page header

2

radio, listeners have no control on the broadcasted media. On the other hand, the new
and trendy [PR Newswire (2006)] practice of podcasting refers to the release of a
digital recording of a radio broadcast or similar program, on the Internet for
downloading to a personal audio player. Podcasting’s initial appeal aimed at allowing
individuals to distribute own "radio shows", following the previously developed web
syndication techniques. Podcasts may be created and posted at any time and may be
as large in terms of number of musical pieces included as desired by the creator.
Nowadays, numerous websites exist enlisting tens of thousands of feeds [Directory of
55.000 radio stations (2006)] of Internet radio stations and several thousands of
podcasts [Podcast mvyradio's Blues@8 (2006)] (henceforth the term “feed” describes
both Internet radio stations and podcasts). Moreover, characteristics of radio such as
non stopping stream of songs mixed with other non musical content may appear as
well, though standard high-performance methodologies [Ajmera at. Al. (2003)] for
music-speech segmentation do exist.

It should be noted that, in this work, broadcasted data are confronted as streaming
data, where streaming data are time-series received from a feed. That is, data is
modelled best not as persistent relations but rather as transient data streams. In that
sense, broadcasted music shares a number of common characteristics with streaming
data such as being time ordered, data arriving in segments at an unknown incoming
rate and data storage/post-processing is not wanted/possible but instead an “on-the-
fly” processing is required. Thus, the method utilised for the similarity should be
incremental in order to deal with memory limitations as well as high response time
requirements. Moreover, streaming data methods are required in order to satisfy the
need to use continuous querying (cf. see Example scenario 2). Traditional content
based music information retrieval (CBMIR) persistent relation models do not require
a method for the identification of song boundaries, as each song’s boundaries are
clearly defined from a container file in the database used. Accordingly, if traditional
CBMIR methods are used in a data stream music model, search for similarity cannot
be stopped given that a song is early found to exceed similarity threshold as no means
of song ending is provided therein.

Example scenario 1. An example scenario of the key idea of this research includes a
website that contains a number of feeds and a user with a set of preferred songs. The
user activates a client-side program that implements the method proposed in this
paper, registers the preferred music and the URL of the website listing the feeds.
Accordingly, the user selects a monitoring period for the program to monitor a certain
number of feeds and receives back the feeds that for the monitoring period included
musical pieces similar to the user preferences.

Example scenario 2. In a differentiated scenario, the implementation of the proposed
methodology could reside on a server-side program. That is, the user would visit a
website that hosts a number of feeds as well as a large collection of songs for the user
to define preferences. Accordingly, after selecting both possible feeds and preferences

Odd page header

3

the site could “on-the-fly” select the feed that for the current broadcast is most similar
to the user’s preferences and offer the possibility for on-line listening. As the user
listens, the site monitors the remaining feeds in order to ensure that no other feed is
more similar, in which case the user would be notified (continuous querying).

In this work, we focus on the example scenario 2. To our best knowledge, the
implementation of CBMIR in streaming musical data has not been attempted before
in the literature. Nevertheless, existing works, that follow similar research direction,
are neither considering the streaming character of data nor the necessity for
continuous querying [Velivelli et. Al. (2003)]. The contribution of this work is
summarised as follows:

• An incremental feature extraction process leading to significantly less processing
cost.

• A song boundary detection methodology which is used to avoid costly (a)
similarity distance calculations and (b) full feature extraction.

• The performance evaluation of the proposed method based on real-life data sets.

The rest of the paper is organised as follows. Section 2 describes background and
related work. Section 3 provides a complete account of the proposed method.
Subsequently, Section 4 presents and discusses the experimentation and results
obtained, while the paper is concluded in Section 5.

2. Background & Related Work

2.1 Content-based Music Information Retrieval

The field of music information retrieval has received increased attention during the
last decade. Numerous surveys examine the state of the art developments in the area
[Karydis et. Al. (2006); Typke et. Al. (2005)] while a litany of works spawns rapidly
in all directions of MIR. Most research on MIR is content based due to limitations
imposed by metadata approaches, such as: they are not always available, their use in
MIR requires knowledge for the query not provided by listening while their
descriptive capability lacks customisation as it relies on predefined descriptors.

Content-based approaches assume that documents are described by features extracted
directly from the content of musical documents. The selection of appropriate features
is very important in music information retrieval. In this work, we do not concentrate
on devising new features. Instead, we are interested in an incremental feature
extraction methodology in order to fulfil the requirements posed by the data stream
music model. Thus, we devise an incremental feature extraction process based on the
Single Gaussian Combined (G1C) [Pampalk (2006)] as submitted to the MIREX 2006
contest [MIREX (2006)] bearing in mind that it achieved the highest score.

Even page header

4

Initially, for each piece of music the Mel Frequency Cepstrum Coefficients (MFCCs)
are computed, the distribution of which is summarised using a single Gaussian (G1)
with full covariance matrix. The distance between two Gaussians is computed using a
symmetric version of the Kullback Leibler divergence. Then, the fluctuation patterns
(FPs) of each song are calculated. A FP describes the modulation of the loudness
amplitudes per frequency bands, while to some extent it can describe periodic beats.
All FPs computed for each window are combined by computing the median of all
patterns. Accordingly, two features are extracted from the FP of each song, the
“gravity” (FP.G) which is the centre of gravity of the FP along the modulation
frequency dimension and the “bass” (FP.B) which is computed as the fluctuation
strength of the lower frequency bands at higher modulation frequencies. For the four
distance values (G1, FP, FP.B and FP.G) the overall similarity of two pieces is
computed as a weighted linear combination (normalised in [0,1]) as described in
detail in [Pampalk (2006)].

2.2 Streams and Continuous Querying

Nowadays, a plethora of applications, as one would expect, produce data streams as
opposed to data sets: financial data, network monitoring, data feeds from sensor
applications, etc. The theme of this research considers in particular continuous
queries. Typical examples in financial applications include stock value monitoring
where continuous queries may be used to examine similarities between stocks and
trends.

Methodologies developed for content-based retrieval in streams are specific to the
nature of the data under examination and thus not directly applicable. The key
differentiation relies on the usage of metric distance similarities that take advantage
of the triangular inequality and perform early pruning, thus minimising the processing
cost of unwanted distance calculations [Gao et. Al. (2002); Kontaki et. Al. (2004)].
Typical such distance metrics are the Euclidean and Manhattan distance, which are
not suitable for musical data similarity [Berenzweig et. Al. (2004)].

3. The Proposed Method

3.1 System Architecture

Elaborating further on the example scenario 2, as discussed in Section 1, after the user
has decided the preferred songs on which to determine stream likeness and their
features have been extracted, the system must extract MFCCs of each broadcasted
feed, identify the parts that contain music, extract features, calculate similarities with
preferred songs and assign a score to each feed based on the each current playing
song. The scores are then presented to the user, while after the initial score

Odd page header

5

calculation, the system must continuously monitor the feeds and perform the same
procedures in order to determine if scores change as the feeds keep broadcasting. The
proposed architecture is depicted in Figure 1.

Figure 1. CQiSM architecture.

Accordingly, the proposed system, the Continuous Querying in Streaming Music
(CQiSM) can be divided into three subsections: the incremental feature extraction, the
song boundary detection and the overall feed evaluation. The next sections provide
details on each of them.

3.2 Incremental Feature Extraction

One of the “sine qua non” characteristics of streaming data is that in order to abide by
the input rate time constrains all processes on data must be fully optimised. In other
words, previously calculated results, that can be used in order to alleviate burden off
next calculations, need be taken advantage of. Accordingly, as one of the most time
consuming steps of the proposed method is the feature extraction process, this section
details an incremental version of the G1C method by Pampalk [Pampalk (2006)]. It
should be noted that the proposed incremental extraction solely refers to the
extraction of the MFCCs.

Figure 2. Song segmentation.

Each song is divided into windows of N elements length, while each window is
divided in segments of length S overlapping (hop) by K elements (see Figure 2).

Even page header

6

Every K values received define a new segment while the first segment of the window
is discarded, collectively henceforth “update”. For each new segment its MFCCs need
be calculated to perform song boundary identification. The calculation of the MFCCs
of the new segment comprises of applying Hann window operation over the segment
values, Fast Fourrier Transform and numerous other static calculations. Then the
results obtained are multiplied with triangular filters (Mel-filters) in order to
transform the power spectrum to the Melscale using 34 (Mel-spaced) frequency
bands.

Under the assumption that the method is applied on the full window (non-incremental
version), Mel-filters and the previous results are two-dimensional matrices. Bearing
in mind that the multiplication of two matrices)(nmA × and)(znB × results in a
matrix)(zmC × , we note that each column j of the matrix C is the result of a
combination of all the elements of matrix A with the elements of the column j of the
matrix B. In the incremental version, the result obtained is a one-dimensional matrix
as it originates from one segment only.

Finally, more static calculations occur to compute MFCCs of the new segment that
later on are combined with the MFCCs of previous segments of the current window,
in order to calculate the G1, FPs, FP.G and FP.B features. Thus, when an update
occurs, we can calculate the MFCCs of the new segment only and combine them with
the MFCCs of previous segments to form the MFCCs for the whole window, so the
C1G method is implemented in an incremental manner.

3.3 Song Boundary Detection

The consideration of musical data in a continuous form (stream), which are at the
same time additionally interleaved by other non musical data, introduces a twofold
problem: the song boundary detection and the segmentation of music/speech. The
later is required in order to avoid costly calculations in portions of the stream that will
not contribute to the overall stream evaluation. Music/speech segmentation is a
research direction of signal processing on its own, while high performance solutions
already exist [Ajmera at. Al. (2003)]. As their performance would equally affect any
compared methods, for simplicity we assume that the differentiation between speech
and music is already known.

On the other hand, the song boundary detection refers to a song that is immediately
followed by another song in the stream, with no intermission in between. In these
cases, when a new song from the feed is identified, it is compared with the user’s
preferences and then no further similarity on this song need be done, as long as the
beginning of the next song is identifiable. Thus, only a minimal feature extraction

Odd page header

7

process continues in order to be able to identify the song change, while both the rest
feature extraction and similarity calculation are avoided.

In order to decide the change of song event, we monitor the progression of values of
the MFCCs and look for high changes. As songs finish, their overall energy tends to
reduce, an effect clearly evident in the first coefficient of the MFCCs, which is
proportional to the audio energy. Accordingly, as the next successive song begins, its
signal power is significantly higher and thus the first MFCC coefficient is
considerably increased. In order to detect high changes of values of the MFCCs, any
well-known similarity metric can be applied. In our experiments the Euclidean
distance is used due to its simplicity and popularity. Having identified the beginning
of a new song, we only perform a minimal feature extraction including only the
MFCCs of the song leaving out the G1, FPs as well as the FP.G and FP.B features,
which add-up a significant amount of calculation.

3.4 Overall Feed Evaluation

As the feature extraction and similarity methods utilised herein were designed so as to
provide one number, given any two songs without any further context, we propose
two alternative strategies leading to the overall feed evaluation.

Initially, in a quantitative approach, one could be interested in a dispersion or breadth
of the similarity on a number of songs while not paying attention on the calculated
similarity distance. Still, as feeds may contain different number of songs,
normalisation is required in terms of the number of songs for which the result was
obtained. A quantitative overall feed evaluation is given by Equation 1. That is, for
every new song i in the feed, we may receive numerous matches j from the users’
preferences with similarity Tij. For every i and j we sum the corresponding similarity
Tij and divide it with the number L of songs considered in the feed.

L

T
i j

ij∑∑
 (1)

On the other hand, a qualitative approach would be concerned with the best match of
each user’s preference while disregarding the remaining matches. Once again, in
order to account for the different number of songs for which the result was obtained
across feeds, normalisation is required (see Equation 2). In this case, for every new
song i only the most similar result is considered for the evaluation of each feed.

()
L

T
i

ij∑max
 (2)

Even page header

8

4. Performance Evaluation

All algorithms described have been implemented on a personal computer with
3,06GHz Intel Pentium IV processor, 1 GByte RAM, MS Windows XP operating
system while the developing package utilised was MATLAB version 6.5.

The data sets employed for the experiments include real music objects. Each wav file
was down-sampled at 11.025 Hz at 8 bits, mono channel. The music objects pertain to
various genres such as Greek and English pop, rock as well as instrumental music.
Each feed was created by concatenating 30 songs, while experiments assume 5 feeds
unless otherwise stated. Each feed has been created by random selection of songs,
while to examine exact matching capability, the user’s preferences have been
included in the feeds in random locations.

Table 1 summarises the default values that are used in all following experiments,
unless otherwise stated. Due to space restrictions, we do not present results on the
tuning of these parameters. In order to evaluate CQiSM, we utilised the method
proposed by Pampalk [Pampalk (2006)] as a competitor (henceforth “baseline”),
bearing in mind that although very efficient was not originally developed for
streaming environments. To account for the continuous querying, we reapplied the
baseline for each update.

Table 1. Experimental parameters.

Parameter Default value
Window size 11,62 seconds (128128 stream elements)
Segment size 256 stream elements
Hop size 128 stream elements
New song event threshold 10
Similarity threshold 0,4

In our first experiment (Figure 3) we have examined the execution time for varying
window sizes for both CQiSM and baseline approaches. Notice that in Figure 3 the
abbreviation A denotes the CQiSM, B denotes the baseline while the execution time
is given in a logarithmic scale. For each window size two bars describe each
approach: the overall time of execution and the time required for the extraction of the
MFCCs per update. Accordingly, their difference accounts for similarity time
calculation. It can be clearly seen that the proposed methodology outperforms the
baseline approach. It should be noted that, for the baseline approach, computation
times become prohibitive in order to keep up with input rate of feeds.

In the next experiment (Figure 4), we tested the execution time for the two
approaches for different values of the new song event detection threshold. To begin

Odd page header

9

with, the overall execution time and MFCC extraction time for the baseline approach
is fixed due to the fact that it is not affected by the examined parameter. It is
presented here for comparison reasons. The key observation is the confirmation of our
claim for song boundary identification aiming at saving costly similarity calculations.
In detail, for new song event detection threshold equal to zero, the difference between
overall and MFCC extraction execution times is equal to the similarity calculations
that the baseline performs (not clear due to logarithmic scale). Accordingly, the use of
the new song event detection drastically reduces similarity calculations at the cost of
potential lost song identifications. As the baseline method proves clearly not suitable
for the examined framework, it is not examined further in the experimentation.

In our next experiment, Figure 5, memory requirements for different number of feeds
and varying window sizes have been put to examination. Initially it should be noted
that the memory requirements mainly depend on the size of the utilised window. The
attitude of the CQiSM is linear for both the window size and number of feeds.

In the sequel, Figure 6 shows the achieved accuracy of CQiSM for different window
sizes over the similarity threshold. In this case, the accuracy refers to exact matches
identified in the feeds, in other words the ratio of exact matches found over the
correct exact matches included in the feed. In this experiment the similarity threshold
greater than zero is used for exact matching for the following two reasons: (a)
comparison between windows might not reveal matching due to shifting and (b) the
use of the hop size introduces areas from which features might not be extracted.
Nevertheless, as it can be clearly seen, CQiSM attains over 89% accuracy in all cases.
It is obvious that for increasing similarity threshold, the accuracy ameliorates as more
matches accumulate. For varying window sizes the performance of the method is
quite similar, while small changes appear due to the shifting effect introduced during
window selection.

0

1

10

100

1000

A B A B A B A B A B

5,82 8,72 11,62 14,52 17,43

Window size (in seconds)

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Overall time MFCC extraction

Figure 3. Execution time over window
size for CQiSM and baseline.

Figure 4. Execution time for CQiSM
and baseline approaches for different
values of the new song event detection

threshold.

0,1

1,0

10,0

100,0

1000,0

0 2 4 6 8 10

New song event detection threshold
Ex

ec
ut

io
n

tim
e

(in
 s

ec
on

ds
)

CQiSM Overall execution time CQiSM MFCC extraction time
Baseline overall execution time Baseline MFCC extraction time

Even page header

10

The following experiment (Table 2) studied the qualitative attributes of CQiSM. In
this experiment for the running value of new song event detection threshold we
examine the recall percentage accounting for the number of songs identified over the
correct number of the received songs. The recall achieved by the CQiSM reaches
96,667%, which corresponds to one missed song. The next parameter pertains to the
number of false alarms introduced with respect to the total number of updates, which
would be the number of calculations processed by the baseline approach. The last
parameter shows the number of new song events detected with respect to the total
number of updates. It is obvious that CQiSM achieves high recall rates, despite the
fact that our song detection approach prunes approximately 99,95% of the candidates,
thus the savings produced in similarity calculations overwhelm the false alarm ratio.

In our final experiment (Table 3) we have tested the suitability of CQiSM to operate
in a streaming environment. The results in Table 3 show that our proposed method
manages to identify an exact match shortly after 7 seconds (on average) it has arrived.
This means that even before the smallest window buffer has accumulated the next
window data, results can be obtained and the user notified.

5. Conclusions

This paper deals with the development of methods for searching by content in
broadcasted streams of musical data, where the querier defines a set of preferred

Parameter Value %
Recall 96,667

False alarms 0,0507
New song events 0,0555

Table 3. Exact match average delay. Table 2. Qualitative attributes of
CQiSM

Window Size Average delay
8,72 7,08

11,62 7,17
14,52 7,27

100

300

500

700

900

1100

1300

1500

1700

5,82 8,72 11,62 14,52 17,43

Window size (in seconds)

M
em

or
y

re
qu

ire
m

en
ts

 (i
n

KB
yt

es
)

3 feeds 2 feeds 1 feed

Figure 5. CQiSM memory
requirements for different number of

feeds over window size.

Figure 6. CQiSM accuracy for
different window sizes over similarity

threshold.

89

89,5

90

90,5

91

91,5

0,1 0,2 0,3 0,4 0,5
Similarity threshold

A
cc

ur
ac

y
(%

)

window = 8,72 sec window = 11,62 sec window = 14,52 sec

Odd page header

11

musical pieces and receives a list of broadcasting feeds that contain music similar to
the preferred set. Notice that to our best knowledge, the implementation of CBMIR in
streaming musical data has not been attempted before in the literature.

To address the requirements posed by the streaming environments, we propose the
incremental version of an award winning feature extraction & similarity process and a
song boundary detection in the stream in order to increase similarity accuracy and
reduce costly feature extraction and similarity calculations. The aforementioned
claims are verified through extensive experimental results.

References
Ajmera J., McCowan I., Bourlard H. (2003), Speech/music segmentation using

entropy and dynamism features in a HMM classification framework, Speech
Communication, vol. 40, no. 3, pp. 351-363.

Berenzweig A., Logan B., Ellis D. P., Whitman B.P., (2004), A Large-Scale
Evaluation of Acoustic and Subjective Music-Similarity Measures, Computer
Music Journal, vol. 28, no. 2 , pp. 63-76.

Directory of 55.000 radio stations, retrieved from http://radiotime.com/
Gao L., Wang X., (2002), Continually evaluating similarity based pattern queries on

a streaming time series, in Proc. ACM SIGMOD, pp. 370-381, Wisconsin, USA.
Karydis I., Nanopoulos A., Manolopoulos, Y., (2006), Mining in Music Databases,

Processing and Managing Complex Data for Decision Support, Idea Group
Publishing, pp. 340-374.

Kontaki M., Papadopoulos A.N., (2004), Efficient Similarity Search in Streaming
Time Sequences, in Proc. SSDBM, pp. 63-72, Santorini, Greece.

MIREX, Annual Music Information Retrieval eXchange, http://www.music-
ir.org/mirex2006/

Pampalk E., (2006), Audio-Based Music Similarity and Retrieval: Combining a
Spectral Similarity Model with Information Extracted from Fluctuation Patterns,
implementation submitted to the 3rd Annual Music Information Retrieval
eXchange (MIREX'06).

Podcast mvyradio's Blues@8, retrieved on December 31st 2006, from
http://www.podcast.net/cat/18

PR Newswire, 'Podcast' Is the Word of the Year, retrieved on December 31st 2006,
from http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/
story/12-05-2005/0004228195

Typke R., Wiering F., Veltkamp R.C., (2005), A Survey of Music Information
Retrieval Systems, in Proc. ISMIR-05, pp. 153-160, London, UK.

Velivelli A., Zhai C., Huang T.S., (2003), Audio Segment retrieval using a
synthesized HMM, in Proc. ACM SIGIR, Multimedia Information Retrieval
Workshop, Toronto, Canada.

