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Abstract. Similarity search in time series databases is an important research
direction. Several methods have been proposed in order to provide algorithms
for efficient query processing in the case of static time series of fixed length. In
streaming time series the similarity problem is more complex, since the dynamic
nature of streaming data make these methods inappropriate. In this paper, we pro-
pose a new method to evaluate similarity range queries in streaming time series.
The method is based on the use of a multidimensional access method, the R∗-
tree, which is used to store features of the time series extracted by means of the
DFT (Discrete Fourier Transform). We take advantage of the incremental com-
putation of the DFT and equip the R∗-tree with a deferred update policy in order
to improve maintenance costs. The experimental evaluation based on synthetic
random walk time series and on real stock market data shows that significant per-
formance improvement is achieved in comparison to the sequential scanning of
the database.

1 Introduction

Nowadays, a significant number of applications require the manipulation of data streams
(LF03; BBD02; BW01; CF02). Examples of these applications are online stock analy-
sis, computer network monitoring, network traffic management, earthquake prediction.
The major common characteristic of the above applications is that they are all time-
critical. Therefore, the DBMS must be equipped by effective and efficient tools for data
stream processing.

An important query type that has been studied thoroughly in database literature is
the similarity query. Given a query objectQ the similarity query asks for all objects
Ox that are similar toQ to a sufficient degree. Similarity queries have been studied
for multidimensional objects, images, video, time series and other non-traditional data
types. In data streams the problem is more challenging since the query object, the data or
both may change over time. The similarity between two objects is expressed by means
of a distance metric (e.g., Euclidean, Manhattan).

Basically, there are three similarity query types: 1) similarity range query, 2) simi-
larity nearest-neighbor query and 3) similarity join query. In this paper, we study sim-
ilarity range queries in streaming time sequences where both the query sequence and
the data sequences change over time. In this query type, given a query objectQ and a
distancee, the systems determines the data objectsOx that are within distancee from
Q. These queries can be used on their own, or can be part of complex data mining tasks
for clustering and classification (NTM01).
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The length of a streaming time series can be very large, since new values are ap-
pended. Therefore, the similarity of two time series is expressed by means of the last
values of each sequence (e.g. 128, 256, 1024). Each sequence can be defined as a vec-
tor in a high-dimensional space. Dimensionality reduction techniques (e.g., DFT, KLT)
can be used in order to reduce the number of dimensions, allowing efficient multidi-
mensional access methods to be utilized. However, each vector changes over time since
new values are continuously appended. The naive procedure is to delete the old vector
by updating the access method, to re-apply the dimensionality reduction technique to
the new vector, and to store the resulting vector in the access method. This process is
very time consuming both in CPU time and disk accesses and therefore is inappropriate
in our case.

In this work we use the R∗-tree access method (BKSS90) to index the vectors cor-
responding to the time series. The dimensionality reduction technique applied to the
original time series is based on an incremental computation of the DFT which avoids re-
computation. Moreover, the R∗-tree is equipped by a deferred update policy in order to
avoid index adjustments every time a new value for a stream is available. Experiments
performed on synthetic random walk time series and on real stock market data have
shown that the proposed approach outperforms the sequential scanning of the database
significantly.

The rest of the paper is organized as follows. In the next section we briefly discuss
related work on similarity-based queries both in streams and traditional databases. In
Section 3 the proposed method is presented in detail, giving emphasis to the incremental
DFT computation and the deferred R∗-tree update policy. The performance evaluation
results are offered in Section 4. Finally, Section 5 concludes the work and raises some
issues for future research in the topic.

2 Related Work

During the last years, data streams have attracted the interest of researchers. In (BBD02;
BW01) a system architecture for continuous queries has been proposed and some very
important issues on data streams are addressed.

Similarity queries in streaming time series have been studied in (GW02) where
whole-match queries are investigated by using the Euclidean distance as the similarity
measure. A prediction-based approach is used for query processing. The distances be-
tween the query and each data stream are calculated using the predicted values. When
the actual values of the query are available, the upper and lower bound of the prediction
error are calculated and the candidate set is formed using the predicted distances. The
same authors have proposed another approach which uses pre-fetching (GYW02).

Both the aforementioned research efforts examine the case of whole-match queries,
where the data is static time series and the query is dynamic (changes over time). In
(LF03) the authors present a method for query processing in streaming time series
where both the query object and the data are dynamic. The Va-stream and Va+-stream
access methods have been proposed, which are variants of the Va-file (WSB98). These
structures are able to generate a summarization of the data and enable the incremental
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update of the structure every time a new value arrives. The performance of this approach
is highly dependent on the number of bits associated with each dimension.

One of the first studies in similarity queries for time sequences databases has been
performed in (AFS93). DFT is used as the feature extraction method, and the Euclidean
distance is used as the similarity measure. The DFT coefficients are stored in an R∗-tree.
The Euclidean distance is the most common similarity measure (FRM94; CF99; KP99;
GW02) due to its simplicity. Transformations other than DFT have been used as well:
Haar wavelet transform (CF99), piecewise linear representation (KP99), categorization
(PCYH00), segmented means (YF00).

The contribution of our work is three-fold: a) the exploitation of the DFT trans-
form which has been successfully applied in time series databases, b) the use of an
index structure to store the transformed vectors, c) the application of a deferred update
policy in order to avoid high reorganization costs for index adjustments. With this ap-
proach, multidimensional access methods can be used to handle similarity range queries
in streaming time series in an effective and efficient way.

3 Proposed Method

We begin with some definitions. Stream is an infinite sequence of numbers. Streaming
time series is called a finite sequence of numbers with fixed length that changes over
time. For example assume that the last five prices of a stock at timet = 0 are: 20.32,
25.70, 28.32, 23.87, 24.27. At timet = 1 the new value 25.33 is arrived. The new
streaming time series is: 25.70, 28.32, 23.87, 24.27, 25.33.

We assume that streams are sampled at random time intervals. Therefore the query
and data streams do not have the same length. A stream is denoted by the symbolSx

and finite time series by the symbolSx[i : j], wherei is the first time instance of the
time series andj is the last. The number of values of a time series is thereforej-i and
corresponds to a windoww. Sx(i) is thei-th value of the time series.

In our study, the Euclidean distance between two finite time series is used as the
similarity measure. The distance between two streaming time seriesSx andSy is de-
fined by the Euclidean distance between the lastw values ofSx andSy.

3.1 Incremental DFT Computation

The DFT is used as the feature extraction method. Real-life time series often concentrate
the energy in the first few components of the DFT. Therefore we need less information
in order to capture the characteristics of the original vector. Another important feature
of the DFT is that the Euclidean distance in the original and the Euclidean distance
in the frequency domain are equal. By taking the first coefficients of the DFT vectors,
the resulting distance between two vectors is reduced, and therefore no false dismissals
occur during range query processing (AFS93; FRM94).

Normally, every time a new value for a stream arrives, the DFT vector must be re-
calculated by using the lastw values of the stream. This may lead to high costs since
the recomputation of the DFT is quite expensive. However, as the following proposition
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explains, the computation of the DFT can be performed incrementally avoiding recom-
putation.

Proposition 1. LetS be a streaming time series with valuesS(0), S(1), ...,S(N − 1)
and lengthN . If a new value for this stream arrives, we get the sequenceT (1), T (2),
..., T (N). The DFT coefficients ofT can be computed by the DFT coefficients ofS
according to the following equation:

T (n) =
1√
N
· (
√

N · S(n)− S(0) + T (N)) · ej2πn/N (1)

Proof. Note thatS(i) = T (i) for 1 ≤ i ≤ N − 1. Then-th coefficient ofS is given by:

S(n) =
1√
N

N−1∑

k=0

S(k) · e−j2πkn/N (2)

Similarly, then-th coefficient ofT is given by:

T (n) =
1√
N

N−1∑

k=0

T (k + 1) · e−j2πkn/N (3)

We begin with (1) and substitute the values ofS(n) as follows:

T (n) =
1√
N

(S(0) + S(1)e−j2πn/N + ...+

+S(N − 1)e−j2π(N−1)n/N − S(0) + T (N))ej2πn/N

By algebraic manipulations in the above equation and taking into consideration that
S(i) = T (i) for 1 ≤ i ≤ N − 1, and thatej2πn/N = e−j2π(N−1)n/N we get:

T (n) =
1√
N

(T (1) + T (2)e−j2πn/N + ...+

+T (N − 1)e−j2π(N−2)n/N + T (N)e−j2π(N−1)n/N )

which is exactly (3).

The above proposition can be used to incrementally compute the new DFT vector
of a streaming time series, taking into account the previous one, and therefore, avoiding
the recomputation.

3.2 Deferred R∗-tree Update

Since the number of streams may be quite large, the use of an index structure is desirable
in order to avoid the computation of the distance between the query and all the time
series. We use the R∗-tree as an index structure for the DFT coefficients of the streaming
data series.
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In our case the problem is that the DFT of data time series must be updated when
a new value arrives. If we update the index every time a new value becomes available,
the overhead may be prohibitive due to additional page accesses. In order to avoid
continuous deletions and insertions in the R∗-tree, we use a deferred update policy. A
parameterD is used to control the updates. If the distance between the new and the old
DFT vector exceeds the value of parameterD, then the R∗-tree is updated. Otherwise,
no update is performed. This technique leads to considerable saving in CPU and I/O
time. The last recorder DFT vector is stored in the last disk page of every streaming
time series, in order to become available when a new value arrives.

The example that is follow will clarify the method. Assume that we have a stream
S and the lastN values form a time seriesS[k − N : k], wherek is the position
of last value of the stream. When a new value arrives, a new time series is formed
S[k + 1−N : k + 1]. Let Sk andSk+1 be the DFT vectors of seriesS[k −N : k] and
S[k + 1−N : k + 1] respectively. IfEuclidean(Sk + 1, Sk) < D thenSk+1 is stored
as the most recent DFT but it is not inserted into the R∗-tree. Assume that another value
for the same stream arrives.S[k + 2 − N : k + 2] is the new time series andSk+2

is the DFT of this sequence. Assume thatEuclidean(Sk + 2, Sk) < D. Then,Sk+2

replacesSk+1, andSk+1 is discarded.Sk+2 is not inserted in the R*-tree. Notice that
the comparison is always between the new DFT and the DFT that has been last recorded
in the R*-tree. IfD(Sk + 2, Sk) ≥ D thenSk+2 replacesSk in the R*-tree.

In summary, we need both the last recorded DFT vector and the previously calcu-
lated DFT vector. The first is used to decide whether an update will occur or not, and
the second is used for the incremental computation of the new DFT vector.

The update of the R∗-tree is performed as follows: When a new DFT is produced, an
exact match query is performed in order to locate the tree leaf that where the DFT vector
is stored. The new DFT replaces the old one in this leaf. Then, the MBRs of the corre-
sponding path from the leaf to the root are adjusted accordingly. Since the coefficients
of consecutive DFT vectors are similar, the overlap enlargement is not significant.

3.3 Similarity Queries

The range query algorithm has two basic steps. In the first step the R∗-tree is traversed.
The distances in the frequency domain between MBRs and query are computed. If
the traversed node is leaf, the distances are computed using the streaming time series
that falls into this node. During the traversal, MBRs or streaming time series that their
distance is more thane + D, are pruned. Recall that a new DFT vector replaces the old
one in the R∗-tree only if the Euclidean distance between the two vectors exceedsD.
The candidate set is formed by the remaining streaming time series. In the second step,
using the candidate set, the real streaming time series are retrieved from the disk. The
distances between them and the query are computed. The streams with distances more
thane are discarded. Figure 1 outlines the algorithmic form of the range search for the
R∗-tree.
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Algorithm RangeSearch(Node, Query, e, D, Candidates)
1. if Node.type == LEAF
2. for i=1 to Node.ReservedEntries
3. dist = DFTEuclideanDIST(Query, Node.entries[i])
4. if dist< (e + D)
5. Candidates = Candidates

⋃
Node.entries[i]

6. endif
7. endfor
8. else
9. for i=1 to Node.ReservedEntries
10. dist = DFTEuclideanDIST (Query, Node.entries[i])
11. if dist< (e + D)
12. RangeSearch(Node.entries[i].ptr, Query, e, Candidates)
13. endif
14. endfor
15. endif
16. end

Fig. 1. Range search algorithm.

4 Performance Evaluation

In this section, we present the experimental results in order to evaluate the performance
of the proposed technique. The algorithms have been implemented in C++ and the ex-
periments have been conducted on a Pentium IV Workstation with 512MB memory,
running Windows 2000.

The database is composed of 50,000 streams, and the length of each stream is set to
20,000 values. The data are produced by means of a random-walk process. Each stream
is generated asSx(i) = 100 ∗ (sin(0.1 ∗ RW (i)) + 1 + i/20000), 0 ≤ i ≤ 19999,
whereRW is a random walk series of 20,000 values. We assume a page size of 4KB
both for data and the R∗-tree index. For each diagram we use the nameDFT for the
proposed method and theSSfor the sequential scanning of the database. In addition, we
performed experiments with 50,000 real time sequences representing stock variations
obtained from http://finance.yahoo.com.

We study the performance of a query with respect toe (maximum similarity dis-
tance),D (minimum update distance), window sizew, number of DFT coefficients and
number of streams. Due to space limitation only the most representative results are
presented.

In the first experiment we study the performance of similarity range query process-
ing with respect to the parametere. The values of the other parameters are as follows:
a) the window size isw = 256, b) only the first two coefficients of the DFT are con-
sidered, c) the minimum update distance isD = 100, d) the user specified distance e
is 1550 (for the other experiments) and e) the number of streams is 50000. This holds
for all experiments unless other values are specified explicitly. The parametere ranges
between 1500 and 2200. We select this range of values, because fore=1500 only a few
time series are selected, whereas fore=2200 almost half of the number of streams are
contained in the answer set.

The results of the first experiment are depicted in Fig. 2. The proposed method
clearly outperforms the sequential scanning. We note that a user usually is interested in
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Fig. 2. CPU time and number of disk accesses vs query rangee.

relatively small values ofe in order to obtain the most similar time series. It is observed
that whene is equal to 2050 (almost half of the dataset is contained in the answer) or
greater, sequential scanning shows better performance. This was anticipated, since all
indexed-based methods perform better for small selectivities due to the time overhead
to search the index pages.
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Fig. 3. Disk accesses vsD.

In the second experiment (Fig. 3) we examine the performance of a query with re-
spect to the minimum update distanceD. It is evident that parameterD does not affect
the performance of range queries significantly. On the other hand, theD parameter af-
fects the cost per update as Fig. 3 shows. IfD is small, more updates are performed,
and consequently the R∗-tree quality is decreased. This means that upcoming updates
require more disk accesses in order to locate the entries in the leaf level. On the other
hand, large values ofD introduce less updates and therefore the R∗-tree quality is sat-
isfactory. ForD = 100 we obtain a good compromise between the number of updates
and the tree quality.
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By using real data sets the performance improvement is even more significant, since
the DFT manages to describe more concretely the time sequences. In Fig. 4 we present
the number of disk accesses and the number of candidate time sequences that are ex-
amined for different values ofe. It is evident that the proposed method outperforms by
factors the brute-force search method.
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A very important performance measure is the ratio of the number of answers over
the number of candidates. This ratio gives the efficiency of the method regarding the
false alarms, and it is depicted in Fig. 5 for the real dataset by varying the query range
e. It is evident that the DFT-based method manages to prune irrelevant streams and and
to reduce significantly the number of false alarms.

Figure 6 shows the performance of the method when the minimum update distance
(D) is varied and Fig. 7 the impact of the sliding window size. In all cases the DFT-
based method performs very well and outperforms sequential scanning considerably.
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5 Concluding Remarks

Streaming time series are used in many modern applications in order to capture the
changes of a value with respect to time. In this paper we have studied the problem
of streaming time series indexing in order to provide a mechanism for similarity range
query processing. The proposed method uses the R∗-tree as the underlying access method,
equipped by an incremental computation of the DFT and a deferred update technique.
The experimental results have shown that the proposed method outperforms the sequen-
tial scanning of the dataset.

Currently we study the application of the proposed method fork-nearest-neighbor
queries, in order to perform comparisons with other approaches studied in (LF03). Fu-
ture research in the area may include: a)the selection of the minimum update distance
D by means of an analytical formula in order to select the appropriate value according
to the database size, the window sizew and the data distribution, b)the study of the
buffer impact on the performance of the methods, and c)the application of the proposed
approach for similarity join queries in streaming time series.
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