
Transitive Node Similarity for Link Prediction in Social
Networks with Positive and Negative Links

Panagiotis Symeonidis
Department of Informatics

Aristotle University
Thessaloniki, 54124, Greece

symeon@csd.auth.gr

Eleftherios Tiakas
Department of Informatics

Aristotle University
Thessaloniki, 54124, Greece

tiakas@csd.auth.gr

Yannis Manolopoulos
Department of Informatics

Aristotle University
Thessaloniki, 54124, Greece
manolopo@csd.auth.gr

ABSTRACT
Online social networks (OSNs) like Facebook, and Myspace
recommend new friends to registered users based on local
features of the graph (i.e. based on the number of common
friends that two users share). However, OSNs do not exploit
the whole structure of the network. Instead, they consider
only pathways of maximum length 2 between a user and
his candidate friends. On the other hand, there are global
approaches, which detect the overall path structure in a net-
work, being computationally prohibitive for huge-size social
networks. In this paper, we define a basic node similar-
ity measure that captures effectively local graph features.
We also exploit global graph features introducing transitive
node similarity. Moreover, we derive variants of our method
that apply in signed networks. We perform extensive ex-
perimental comparison of the proposed method against ex-
isting recommendation algorithms using synthetic and real
data sets (Facebook, Hi5 and Epinions). Our experimen-
tal results show that our FriendTNS algorithm outperforms
other approaches in terms of accuracy and it is also time
efficient. We show that a significant accuracy improvement
can be gained by using information about both positive and
negative edges.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Online social networks (OSNs) such as Facebook.com1,

Myspace2, Hi5.com3, etc. contain gigabytes of data that can

1http://www.facebook.com
2http://www.myspace.com
3http://www.hi5.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys2010,September 26–30, 2010, Barcelona, Spain.
Copyright 2010 ACM 978-1-60558-906-0/10/09 ...$10.00.

be mined to make predictions about who is a friend of whom.
OSNs gather information on users’ social contacts, construct
a large interconnected social network, and recommend other
people to users based on their common friends.

In this paper, we focus on recommendations based on links
that connect the nodes of an OSN, known as the Link Pre-
diction problem, where there are two main approaches that
handle it. The first approach is based on local features of a
network, focusing mainly on the nodes structure; the second
approach is based on global features, detecting the overall
path structure in a network.

Facebook.com and Hi5.com, as shown in Figure 1, have
adopted a local method for recommending new friends to a
target user v8: “People you may know : (i) users v2, v3, v5, v6

because you have one common friend (user v1) (ii) user v4

because you have one common friend (user v9) . . . ”. The
list of recommended friends is ranked based on the number
of common friends each candidate friend has with the target
user. However, in the aforementioned example, the list of
recommended friends cannot be ranked, because the number
of common friends is the same for all recommended friends.
Thus, user v8 gets as friend recommendation user v2 or v3

or v4 or v5 or v6 with equal probability.

Figure 1: Example of Social Network.

Although Facebook.com and Hi5.com provide friend rec-
ommendations, they do not exploit effectively the similari-
ties between the social graph nodes. Instead, they consider
only pathways of maximum length 2 between a target user
and his candidate friends. For example, according to exist-
ing OSNs, in Figure 1, user v8 would get as friend recom-
mendation with equal probability user v2 or v3 or v4 or v5

or v6.
However, if we take into account the “strong” connection

between v8 and v9 (due to the fact that v9 does not share
many edges with others) then v4 should have a higher prob-
ability to be recommended as a friend to v8. In contrast,
other candidate friends (e.g. v2, v3, v5, v6) should have a

lower probability to be recommended as friends to v8 be-
cause of the “loose” connection between v8 and v1 (due to
the fact that v1 shares many edges with other nodes).

Compared to existing approaches, our method takes into
account the local and the global features of a graph. In
particular, we define a basic local similarity measure that
captures effectively the proximity between neighbor graph
nodes. We also exploit global graph features by introduc-
ing transitive node similarity. Thus, two persons that are
connected with a path have a high probability to know each
other, proportionally to: (i) the length of the path they are
connected with, and (ii) the degree of similarity between the
neighbor nodes that form that pathway.

Compared to the bulk of research on social networks that
has focused almost exclusively on positive interpretations of
links between people, we also study the interplay between
positive and negative relationships. We connect our anal-
ysis to theories of signed networks, such as the Structural
Balanced theory [8], and the Status theory [10, 11]. More
details about these theories can be found later in Section 4.3.

The rest of this paper is organized as follows. Section 2
summarizes the related work, whereas Section 3 briefly re-
views preliminaries in graphs employed in our approach.
Section 4 defines a node similarity measure in OSNs. A mo-
tivating example, the proposed algorithm and an algorithm
variation for signed networks are described in Section 4.2.
Experimental results are given in Section 5. Finally, Sec-
tion 6 concludes this paper.

2. RELATED WORK
The research area of link prediction in social networks,

tries to infer which new interactions among members of a
social network are likely to occur in the near future. There
are two main approaches [12] that handle the link prediction
problem. The first approach is based on local features of a
network, focusing mainly on the nodes structure; the second
approach is based on global features, detecting the overall
path structure in a network.

There is a variety of local similarity measures [12] (i.e.
Adamic/Adar index, Jaccard Coefficient, Common Neigh-
bors index, etc.) for analyzing the “proximity” of nodes in a
network. Among these indices, Adamic/Adar [1] index is re-
ported [12] to attain the best performance in predicting new
links in a social network. Adamic/Adar index, which is sim-
ilar to Jaccard Coefficient (a commonly used similarity met-
ric in information retrieval), measures how strongly“related”
two web pages are. Common Neighbors index, also known
as Friend of a Friend algorithm (FOAF) [2], is adopted by
many popular OSNs, such as facebook.com and hi5.com for
the friend recommendation task. FOAF is based on the com-
mon sense that two nodes vx and vy are more likely to form
a link in the future, if they have many common neighbors.
Finally, other local similarity measures are based on prefer-
ential attachment [12]. These similarity measures are based
on the sum or product of nodes degree. The basic premise
of preferential attachment is that the probability that a new
edge involves a node is proportional to the current number
of its neighbors.

There is a variety of global approaches [12] (i.e Shortest
Path algorithm, RWR algorithm, SimRank algorithm etc.).
Liben and Kleinberg [12] claimed that the identification of
the shortest path between any pair of nodes in a graph can
be used for link prediction (friend recommendation). The

computation of the shortest path between two nodes, can
be made using any well-known shortest path algorithm [4,
6]. RWR algorithm [15] (Random Walk with Restart algo-
rithm) is based on a Markov-chain model of random walk
through a graph. RWR considers a random walker that
starts from node vx who chooses randomly among the avail-
able edges every time, except that, before he makes a choice,
with probability c he goes back to node vx (restart). Thus,
the relevance score of node vx with respect to node vy is
defined as the steady-state probability rvx,vy that the ran-
dom walker will finally stay at node vy. SimRank [9] also
computes a global similarity measure based on the struc-
tural context of a network that says “two objects are similar
if they are related to similar objects”. Recently, Clauset
et al. [3] proposed an algorithm based on the hierarchical
network structure.

The novelty of our approach compared to existing ap-
proaches is as follows:

In contrast to global algorithms, such as the Random Walk
with Restart (RWR) algorithm [15], the Shortest Path [4,
6] algorithm etc., our method also takes into account lo-
cal graph features (i.e. the weighted similarity between
nodes that may share many edges with others). We selected
RWR (reported to present good accuracy results in [12]) and
Shortest Path algorithms as representatives of the global al-
gorithms and compared them with our method. As will be
shown experimentally later, our method outperforms RWR
and Shortest Path. The reason is, they traverse globally
the social network, missing to capture adequately the local
graph characteristics.

In contrast to local similarity measures, such as FOAF [2]
algorithm (also known as the Common Neighbors index [13]),
the Adamic/Adar [1] index etc., we take into account also
global graph features (i.e. paths connecting any pair of
nodes in an OSN). We have compared our method against
FOAF algorithm and Adamic/Adar index, as representa-
tives of the local-based measures. As will be shown experi-
mentally later, our method outperforms FOAF and Adamic-
Adar index. The reason is, we do not take into account only
pathways of length 2 to compute similarity between a pair
of nodes in an OSN. Instead, we use an extensive similarity
measure that takes into account transitive node similarity.

Apart from the aforementioned link prediction algorithms,
which are based solely on the graph structure, there are al-
ternative methods [14, 7] that also exploit other data sources
such as users messages, users ratings, co-authored papers,
common tagging etc. However, we focus only on recommen-
dations based on the link structure of an OSN, and thus, we
will exclude them from our experimental comparison.

3. PRELIMINARIES IN GRAPHS
In this section, we present the most important notations

and the corresponding definitions used throughout the rest
of the paper.

Let G be a graph with a set of nodes V and a set of edges
E . Every edge is defined by a specific pair of graph nodes
(vi, vj), where vi, vj ∈ V. We assume that the graph G is
undirected and un-weighted, thus the graph edges do not
have any weights, plus the order of nodes in an edge is not
important. Therefore, (vi, vj) and (vj , vi) denote the same
edge on G. We also assume that the graph G has no multiple
edges, thus if two nodes vi, vj are connected with an edge
of E , then there is no other edge in E also connecting them.

Finally, we assume that there are no loop edges on G (i.e. a
node can not be connected to itself). The graph expressing
friendships among users of an OSN, which can be seen in
Figure 1, will be used as our running example throughout
the rest of the paper. For our calculations, we will use well-
known representations, such as the adjacency matrix An×n,
and the incidence matrix Rm×n.

4. BASIC NODE SIMILARITY MEASURE
In this section, we define a basic node similarity mea-

sure to determine the proximity between any pair of neigh-
bor nodes in a graph G. Therefore, if vi and vj are two
neighbor connected nodes of G, we define a specific function
sim(vi, vj) that expresses their corresponding similarity in
the range [0,1] and has all the required properties (i.e. pos-
itivity, reflexivity, symmetry etc.) of a well-defined mea-
sure. The more similar the nodes are, the more the value
of sim(vi, vj) will be close to 1. On the contrary, the more
dissimilar the nodes are, the more the value of sim(vi, vj)
will be close to 0.

To capture proximity between node vectors, we apply the
Jaccard Coefficient, which is able to measure the degree of
overlap between node vectors, in contrast to other measures
(i.e. dot product, Euclidean distance etc.), which cannot
measure it. In particular, we use an extension of the Jac-
card Coefficient that contains the cosine similarity metric
as we have binary vectors. This extension is also called the
Tanimoto coefficient [16], and for two binary vectors ri, rj is
defined as:

sim(vi, vj) =
ri · rj

||ri||2 + ||rj||2 − ri · rj
By substitution of vector operations between ri, rj in the
previous equation with the corresponding values of the inci-
dence matrix R, we derive the following equivalent equation:

sim(vi, vj) =

=

m∑

h=1

R[eh, vi] ·R[eh, vj]

m∑

h=1

R[eh, vi]
2 +

m∑

h=1

R[eh, vj]
2 −

m∑

h=1

R[eh, vi] ·R[eh, vj]

(1)

Note that the term
∑m

h=1 R[eh, vi] · R[eh, vj] in the fi-
nal derived equation, expresses the number of edges that
the nodes vi, vj share, whereas the terms

∑m
h=1 R[eh, vi]

2,∑m
h=1 R[eh, vj]

2 are equal to the degrees of nodes vi, vj re-
spectively.

The basic node similarity measure satisfies the positivity
property, returning values into the interval [0,1]. Note that
the maximum value of similarity (equal to 1) can be reached,
when the two nodes are connected with only one edge and
have no connections with other nodes. Moreover, Equation 1
can be simplified by using Theorem 1.

Theorem 1. If the basic node similarity measure of Equa-
tion 1 is applied in a graph G satisfying all mentioned as-
sumptions of Section 3, then it is equivalent with the follow-
ing Equation:

sim(vi, vj) =

{
0, if (vi, vj) /∈ E∧(vj , vi) /∈ E

1
deg(vi)+deg(vj)−1

, otherwise

where deg(vi) and deg(vj) are the degrees of nodes vi and
vj, respectively.

Proof. The fact that (vi, vj) /∈ E and (vj , vi) /∈ E means
that nodes vi, vj do not share any edges. Thus the term∑m

h=1 R[eh, vi] · R[eh, vj] in Equation 1 is equal to 0 and
sim(vi, vj) = 0.

If nodes vi, vj share one edge, then they can not share
any other edge as explained in Section 3. Thus, the term∑m

h=1 R[eh, vi] ·R[eh, vj] in Equation 1 is equal to 1. More-
over, the terms

∑m
h=1 R[eh, vi]

2,
∑m

h=1 R[eh, vj]
2 are equal

to the degrees of nodes vi, vj , respectively. In that case we
have:

sim(vi, vj) =
1

deg(vi) + deg(vj)− 1
,

and the theorem has been proved.

Henceforth, Theorem 1 will be used in defining our ba-
sic similarity measure, which is based on the inverse sum of
node degrees. However, someone could suggest the usage of
any other local-based similarity measure [12] as described in
Section 2. For this reason, our basic measure will be later ex-
perimentally compared with other measures, which are also
based on the nodes degree and the preferential attachment
process [12]: the sum of nodes degree and the product of
nodes degree.

Now, let us calculate some similarity values on the graph
of Figure 1 using Equation 1. The similarity between nodes
v1 and v2 is: sim(v1, v2)=

1
5+2−1

= 1
6
=0.16. The similarity

between nodes v2 and v4 is: sim(v2, v4)=
1

2+3−1
= 1

4
=0.25.

Thus, the similarity score between nodes v1, v2 is less than
that of v2, v4 because the degree of node v1 is greater than
that of v4, whereas v1 shares only one of its total 5 edges.

Collecting all similarity values between the nodes of a
graph G, we construct the basic node similarity matrix S
of G, which is an n×n matrix having n rows and n columns
labeled by the graph nodes. The basic node similarity ma-
trix values are defined as follows:

S[vi, vj] = sim(vi, vj)

In our running example, the basic node similarity matrix is
depicted in Figure 2, where all values are rounded to the
third decimal digit. As shown, user v9 is more similar with
user v8 than user v4. This is reasonable, because user v4 is
connected with 2 other nodes (v2 and v3), while user v8 is
connected with only 1 other node (v1).

 V1 V2 V3 V4 V5 V6 V7 V8 V9

10.3330000.25000

0.33310000000.167

0010.3330.3330000

000.333100000.167

000.333010000.167

0.25000010.250.250

000000.25100.167

000000.25010.167

00.16700.1670.16700.1670.1671

S

V1

V2

V3

V4

V5

V6

V7

V8

V9

Figure 2: Basic Node Similarity Matrix.

4.1 Transitive Node Similarity Measure
Based on Theorem 1, the similarity values between all

non-neighbor nodes in a graph G are zero. For instance, in
our running example, the similarity value between nodes v1

and v4 is zero, because they do not share any edge. However,
users v1 and v4 have both user v2 as a common friend, and
thus they could be related in some way.

By using a transitive similarity we can efficiently solve
this problem. In our method, we define a transitive node
similarity, between two nodes vi and vj , denoted as extended
similarity. Extended similarity is calculated by the product
of the basic similarities between the nodes of the shortest
path from vi to vj .

This shortest path expresses the minimum number of edges
required to connect the two nodes, as all edges of graph G are
not weighted. Therefore, we define the following extended
node similarity measure for any two nodes of G:

esim(vi, vj) =





0, if there is no path between vi, vj

sim(vi, vj), if vi, vj are neighbors
k∏

h=1

sim(vph , vph+1), otherwise

(2)
where vp1=vi, vpk+1=vj and the nodes vph (for h=2,. . .,k)
are all the intermediate nodes that the shortest path from
vi to vj passes through. Note that, in case that vi, vj are
neighbor nodes, the shortest path between them is the single
edge connecting them, and this explains why esim(vi, vj) =
sim(vi, vj).

In our running example, according to the previous defini-
tion, the extended similarity between nodes v1 and v4 using
Equation 2 equals:

sim(v1, v4) = sim(v1, v2) · sim(v2, v4) =
1

6
· 1
4

=
1

24
= 0.042

as the shortest path between v1, v4 is: v1 → v2 → v4 (the
alternative path v1 → v3 → v4 has the same length and
the same similarity score since nodes v3 and v2 have equal
degrees). Note that the extended similarity score between
nodes v1, v4 is less than the basic similarity score of v1, v2

(0.167) and v2, v4 (0.25).
Collecting all the extended similarity values between the

nodes of a graph G, we construct the extended node simi-
larity matrix ES of G. It is a matrix which has the same
dimensionality and structure with the basic node similarity
matrix S. Its values are defined as follows:

ES[vi, vj] = esim(vi, vj)

In our running example, the extended node similarity ma-
trix is depicted in Figure 3, where all values are rounded to
the third decimal digit.

It is important to note that using the extended node sim-
ilarity in a connected graph, such as the graph G of our
running example, all values of ES will be positive numbers
(non-zero values). This is due to the fact that there is al-
ways a shortest path between any pair of node of a connected
graph.

4.2 The FriendTNS Algorithm
In this section, we present the proposed algorithm, de-

noted as FriendTNS (Friend Transitive Node Similarity), we
analyze its steps, provide implementation details and discuss
its time and space complexity.

 V1 V2 V3 V4 V5 V6 V7 V8 V9

10.3330.0030.0090.0090.250.0620.0620.056

0.33310.0090.0280.0280.0830.0280.0280.167

0.0030.00910.3330.3330.0020.0090.0090.056

0.0090.0280.33310.0280.0070.0280.0280.167

0.0090.0280.3330.02810.0070.0280.0280.167

0.250.0830.0020.0070.00710.250.250.042

0.0620.0280.0090.0280.0280.2510.0280.167

0.0620.0280.0090.0280.0280.250.02810.167

0.0560.1670.0560.1670.1670.0420.1670.1671

ES

V

V1

V2

V3

V4

V5

V6

7

V8

V9

Figure 3: Extended Node Similarity Matrix.

The basic task of the FriendTNS algorithm is simple: to
compute the similarities from a specific node (user) v0 to
all other nodes (users) in a graph, using our basic and ex-
tended node similarity measures. The algorithm input is
the graph G, the node v0, which represents the target user
that will take friend recommendations and the number r of
friends that will be recommended to him. The output is the
recommendations array recom[r].

Firstly, FriendTNS initializes the arrays and computes all
node degrees from the graph data. Then, it computes all
similarities for the target user v0 in an array s[n]. It uses the
formula of Theorem 1, if the examined node vi is a neighbor
of v0. Otherwise, it uses Equation 2. Friends can be recom-
mended to v0 according to their weights in s[n]. Therefore,
we sort the similarity list s[n], we keep an index ind[n] for
the corresponding node ID’s, and we recommend the top-r
nodes (users), which are not already friends of v0.

In our running example, user v8 would receive user v4 as
friend recommendation, because his similarity score (0.083)
is greater than the similarity score of users v2, v3, v5, v6 (0.028).
Note that the similarity values of the neighbor nodes of v8

(and v8 itself) are ignored as these are already friends of the
target user v8. The resulting recommendation is reasonable,
due to the fact that user v9 (which is responsible for rec-
ommending user v4 to target user v8) does not share many
edges with others. In contrast, user v1 (which is responsi-
ble for recommending users v2, v3, v5, v6 to target user v8)
shares many edges with others. Thus, our FriendTNS algo-
rithm is able to capture the associations among the graph
nodes.

FriendTNS keeps the graph nodes and edges in memory
using an adjacency list representation, which requires an
O(n+m) space, where n is the total number of nodes and m
is the total number of edges. All other arrays (s, ind, recom)
require O(n) space. Therefore, our FriendTNS total space
complexity is O(n + m) + 4O(n) = O(n + m).

For FriendTNS’s similarity calculations, we use the one-
to-all nodes shortest path algorithm of Fredman-Tarjan [6],
which has a complexity of O(m + n log n), and when occurs
an update into the shortest path tree of the graph, we im-
mediately update the transitive similarity values on-the-fly.
Therefore, the computational complexity of FriendTNS is
O(m + n log n).

4.3 Extending FriendTNS for Signed Networks
In this Section, we derive variants of FriendTNS that ap-

ply to directed networks and networks with weighted edges,

including the case of edges with negative weights (signed
networks).

In signed networks edges have positive (+1) as well as
negative (-1) weights. Such signed graphs arise for instance
in social networks (i.e. Epinions.com, Shashdot Zoo, etc.)
where negative edges denote enmity instead of friendship. In
such signed graphs, FriendTNS’s basic similarity measure of
Theorem 1, which is the inverse of the sum of nodes’ degree,
can be adjusted accordingly based on the Status theory [10,
11].

Based on Status theory [10, 11], the positive nodes’ in-
degree deg+

in(x) and the negative nodes’ in-degree deg−out(x)
of a node x increase its status. In contrast, the positive
nodes’ out-degree deg+

out(x), and the negative nodes out-
degree deg−in(x) decrease its status. In the following, our
basic similarity measure is transformed, so that it can take
into account the aforementioned properties of Status The-
ory: sim(vi, vj) = 1

σ(vi)+σ(vj)−1
, where σ(x) = deg+

in(x) +

deg−out(x)− deg+
out(x)− deg−in(x).

As already stated, in networks with negative edge weights
the concept of transitivity has to take into account nega-
tive values. Thus, for our extended similarity measure of
Theorem 2, if some edges have negative weight, the total
weight of a shortest path can be calculated as the product
of the edges’s weights, based on the assumption of multi-
plicative transitivity of the structural balance theory [8, 11],
as formulated in the graph-theoretic language by Hage and
Harary (1983).

Structural balance theory considers the possible ways in
which triangles on three individuals can be signed. Triangles
with three positive signs exemplify the principle that “the
friend of my friend is my friend”, whereas those with one
positive and two negative edges capture the notions “the
enemy of my friend is my enemy”, “the friend of my enemy
is my enemy”, and the “enemy of my enemy is my friend”.

5. EXPERIMENTAL EVALUATION
In this section, we compare experimentally our approach

with existing friend recommendation algorithms. Hence-
forth, our proposed approach is denoted as FriendTNS. We
use in the comparison the Random Walk with Restart [15]
algorithm, the Shortest Path[4] algorithm, the Adamic and
Adar [1] algorithm and the Friend of a Friend [5] algorithm,
denoted as RWR, Shortest Path, Adamic/Adar and FOAF,
respectively. Our experiments were performed on a 3 GHz
Pentium IV, with 2 GB of memory. All algorithms were
implemented in C. To evaluate the examined algorithms,
we have generated synthetic data sets and chosen three real
data sets from the Facebook, Hi5, and Epinions web sites.

5.1 Real Data Sets
We used the Epinions4 data set, which is a who-trusts-

whom social network. In particular, users of Epinions.com
express their Web of Trust, i.e. reviewers whose reviews
and ratings they have found to be valuable. It contains 49K
users and 487K edges among pair of users. Moreover, we
crawled the Facebook website on the 30th of October, 2009.
Our data crawling method was the following: For each user
u, we traverse all his friends and then traverse the friends
of each of u’s friends etc. We created a data set with 3694
users, denoted as Facebook 3.7K. Moreover, from the Hi5

4http://www.trustlet.org/wiki/Downloaded Epinions dataset

web site, we crawled 63329 users and all of their friends,
denoted as Hi5 63K 5, available from the Hi5 site on the 15th
of April, 2009. Finally, we also use in our comparison the
extended Epinions 132K data set, which consist of positive
and negative edges. A positive edge implies friendship/trust
whereas a negative edge implies enmity/distrust.

5.2 Generation of Synthetic Data Sets
In contrast to purely random (i.e., Erdos-Renyi) graphs,

where the connections among nodes are completely inde-
pendent random events, our synthetic model ensures depen-
dency among the connections of nodes, by characterizing
each node with a ten-dimensional vector with each element
a randomly selected real number in the interval [−1, 1]. This
vector represents the node’s intrinsic features such as the
profile of a person. Two nodes are considered to be similar
and thus of high probability to connect to each other if they
share many close attributes. Given a network size N and
the degree k of each node, we start with an empty network
with N nodes. At each time step, a node with the smallest
degree is randomly selected (there is more than one node
having the smallest degree). Among all other nodes whose
degrees are smaller than k, this selected node will connect
to the most similar node with probability 1−p, while a ran-
domly chosen one with probability p. This process will be
terminated when all nodes are of degree k. The parameter
p ∈ [0, 1] represents the strength of randomness in generat-
ing links, which can be understood as noise or irrationality
that exists in almost every real system. Based on the above
procedure, we have created 2 synthetic data sets based on
different network sizes N (1000, 100000), with k nodes de-
gree equal to 10 for the first synthetic data set and with k
equal to 100 for the second synthetic data set, whereas p is
equal to 0.2 for both data sets.

We calculated several topological properties of the syn-
thetic and real data sets which are presented in Figure 4.

TOPOLOGICAL PROPERTIES:

N = total number of nodes

E = total number of edges

ASD = average shortest path distance between node pairs

ADEG = average node degree

LCC = average local clustering coefficient

GD = graph diameter (maximum shortest path distance)

Data-Set Type N E ASD ADEG LCC GD

Facebook 3.7K Undirected 3694 13692 3.73 7.41 0.32 10

Hi5 63K Undirected 63329 88261 7.18 2.78 0.02 19

Epinions 49K Directed 49288 487183 4.01 19.76 0.26 14

Synthetic (N=1000, k=10) Undirected 1000 5000 2.81 10 0.01 4

Synthetic (N=100000, k=100) Undirected 100000 5000000 3.56 100 0.001 16

Epinions 132K Signed 131828 841372 1.78 6.38 0.24 14

Figure 4: Topological properties of the real and syn-
thetic data sets.

As shown in Figure 4, Epinions 49K and Facebook 3.7K
present (i) a large clustering coefficient (LCC), and (ii) a
small average shortest path length (ASD). These topological
features can be mainly discovered in small-worlds networks.
Small-world networks have sub-networks that are character-
ized by the presence of connections between almost any two
nodes within them (i.e. high LLC). Moreover, most pairs of
nodes are connected by at least one short path (i.e. small
ASD).
5Our Facebook and Hi5 data sets are available in our web
site: http://delab.csd.auth.gr/∼symeon

0

20

40

60

80

100

0 0,2 0,4 0,6 0,8 1

P
re

c
is

io
n

Fraction of Edges observed

Inverse Sum of Nodes Degree

Sum of Nodes Degree

Product of Nodes Degree

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

A
U

C

p (strength of model randomness/noise)

Inverse Sum of Nodes Degree

Sum of Nodes Degree

Product of Nodes Degree

Pure Chance

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

A
U

C

Fraction of Edges observed

FriendTNS

RWR

Shortest Path

Adamic/Adar

FOAF

Pure Chance

(a) (b) (c)

Figure 5: (a) Precision vs. different basic similarity measures for the synthetic 1K data set. (b) AUC vs.
p strength of graph model randomness for the synthetic 1K data set. (c) Comparison of FriendTNS, RWR,
Shortest Path, Adamic/Adar, FOAF and the pure chance algorithm for the Epinions 49K data set.

In contrast, as also shown in Figure 4, Hi5 63K has a
very small LLC (0.02) and a quite big ASD (7.18). In other
words, Hi5 data set can not be considered as a small-world
network, since (i) most of its nodes can not be reached from
every other by a small number of hops or steps and (ii) does
not have sub-networks that are a few edges shy of being
cliques.

5.3 Experimental Protocol and Evaluation
Our evaluation considers the division of friends of each

target user into two sets: (i) the training set ET is treated
as known information and, (ii) the probe set EP is used for
testing and no information in the probe set is allowed to be
used for prediction. It is obvious that, E = ET ∪ EP and
ET ∩ EP = ® . Therefore, for a target user we generate the
recommendations based only on the friends in ET .

Each experiment has been repeated 30 times (each time
a different training set is selected at random) and the pre-
sented measurements, based on two-tailed t-test, are statis-
tically significant at the 0.05 level. All algorithms predict
the friends of the target users’ in the probe set.

We use the classic precision/recall metric as performance
measure for friend recommendations. For a test user receiv-
ing a list of k recommended friends (top-k list), precision
and recall are defined as follows:

Precision is the ratio of the number of relevant users in
the top-k list (i.e., those in the top-k list that belong
in the probe set EP of friends of the target user) to k.

Recall is the ratio of the number of relevant users in the
top-k list to the total number of relevant users (all
friends in the probe set EP of the target user).

Moreover, we use the AUC statistic to quantify the accu-
racy of prediction algorithms and test how much better they
are than pure chance, similarly to the experimental protocol
followed by Clauset et al. [3]. AUC is equivalent to the area
under the receiver-operating characteristic (ROC) curve. It
is the probability that a randomly chosen missing link (a
link in EP) is given a higher similarity value than a ran-
domly chosen non-existent link (a link in U − ET , where U
denotes the universal set). In the implementation, among n
times of independent comparisons, if there are n′ times the
missing link having higher similarity value and n′′ times the
missing link and nonexistent link having the same similarity
value, we define AUC, as follows: AUC = (n′+0.5×n′′)/n.

If all similarity values are generated from an independent
and identical distribution, the accuracy should be about 0.5.
Therefore, the degree to which the accuracy exceeds 0.5 in-
dicates how much better the algorithm performs than pure
chance.

5.4 FriendTNS Sensitivity Analysis
In this Section, we study the sensitivity of FriendTNS

in terms of accuracy performance. In particular, we test
how the performance of FriendTNS is affected, when (i) it is
combined with different basic similarity metrics, (ii) it runs
on synthetic data sets with different controllable sparsity,
and (iii) it runs with different graph model randomness.

As the basic similarities of our proposed algorithms are
calculated using the inverse sum of node degrees (Theorem
1), it is very interesting to compare the precision of our basic
similarity measure with the corresponding precision of two
other similarity measures, which are based on preferential
attachment process [12]: the sum of node degrees and the
product of node degrees. The basic premise of preferential
attachment is that the probability that a new edge involves
node vi is proportional to current number of neighbors of
vi. Thus, we used the three aforementioned measures to
calculate the extended similarities of FriendTNS algorithm
for the synthetic 1K data set and then, we computed the
precision attained by each measure vs. the fraction of ob-
served links used in the training set (p parameter is fixed to
0.2). Figure 5(a) depicts the results.

We observe that the inverse sum of nodes degree measure
outperforms both other measures. The same result holds for
the 100K synthetic data set, but we do not present it due to
lack of space. In the following, we adopt the inverse sum of
nodes degree measure as the default basic similarity measure
of FriendTNS. Notice also that, as we increase the fraction
of observed edges, the precision of all algorithms is increased
too. This is reasonable, since every prediction algorithm is
expected to give higher accuracy for a denser network.

In our synthetic model, the parameter p ∈ [0, 1] repre-
sents the strength of randomness in generating links. Next,
we test FriendTNS’s sensitivity with different graph model
randomness. As shown in Figure 5(b), when the strength
of randomness is weak, the inverse sum of nodes degree
performs better than the other metrics. However, as the
strength of randomeness becomes high all metrics cannot
perform better than pure chance.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

%
 P

r
e
c
is

io
n

% Recall

FriendTNS

RWR

Shortest Path

Adamic/Adar

FOAF

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

%
 P

r
e
c
is

io
n

% Recall

FriendTNS

RWR

Shortest Path

FOAF

Adamic/Adar

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

%
 P

r
e
c
is

io
n

% Recall

FriendTNS

RWR

Shortest Path

FOAF

Adamic/Adar

(a) (b) (c)

Figure 6: Comparison of FriendTNS, RWR, Shortest Path, Adamic/Adar and the FOAF algorithm for (a)
Facebook 3.7K, (b) Epinions 49K and (c) Hi5 63K data sets.

5.5 Precision Comparison with other Methods
In this section we compare FriendTNS with other meth-

ods in terms of accuracy. The performance of all tested
algorithms should be at least better than the case, where
the friend recommendations would be performed by pure
chance. Thus, to more meaningfully represent the friend rec-
ommendation algorithms’ accuracy performance, we also use
as baseline algorithm a pure chance predictor which simply
randomly selects pairs of nodes in graph G to be friends. We
use the AUC statistic, which looks at an algorithm’s over-
all ability to rank all the missing connections over nonex-
isting ones. For the Epinions 49K data set, as shown in
Figure 5(c), we plot a curve for AUC vs. the fraction of ob-
served links used in the training set. As shown, FriendTNS
does far better than pure chance, indicating that FriendTNS
is a strong predictor of missing structure. The main reason
is that FriendTNS captures effectively the local and global
graph features. Notice that we have also verified the same
results for the other real networks (Hi5 and Facebook), but
we do not present them due to lack of space.

Next, we proceed with the comparison of FriendTNS with
RWR, Shortest Path, Adamic-Adar, and FOAF algorithms,
in terms of precision and recall. This reveals the robustness
of each algorithm in attaining high recall with minimal losses
in terms of precision. We examine the top-k ranked list,
which is recommended to a target user, starting from the
top friend. In this situation, the recall and precision vary as
we proceed with the examination of the top-k list.

For the Facebook 3.7K data set, in Figure 6(a) we plot a
precision vs. recall curve for all algorithms. As expected,
all algorithms’ precision falls as k increases. In contrast,
as k increases, recall for all algorithms increases as well.
FriendTNS attains the best results with impressive high pre-
cision. The reason is that FriendTNS exploits global and
local features of the social graph by combining the basic
with the extended similarity measure. In contrast, RWR
traverses only globally the social network, missing to cap-
ture adequately the local characteristics of the graph. More-
over, Shortest Path does not take into account the reduced
similarity between connected nodes that do not share many
edges with others. Furthermore, Adamic/Adar and FOAF
algorithms exploit only local features of the social network.

The precision of FriendTNS is impressive in this specific
data set. The main reason is the topological characteristics
of Facebook 3.7K data set. It presents (i) a large cluster-

ing coefficient (LCC) equal to 0.32, and (ii) a small average
shortest path length (ASD) equal to 3.73. Thus, Facebook
3.7K can be considered as a small-world network .

For the Epinions 49K data set, as shown in Figure 6(b),
we also plot precision vs. recall curve for all algorithms.
FriendTNS again attains the best results. The precision of
FriendTNS is again quite high. Based on its topological
features, Epinions 49K can be also considered as a small-
world network, since it presents high LLC and small ASD.

For the Hi5 63K data set, as shown in Figure 6(c), we
plot precision vs. recall curve for all algorithms. However,
the overall performance of FriendTNS, RWR and Shortest
Path algorithms is significantly decreased compared with the
results in both previous data sets. The main reason is the
high sparsity (i.e. very small ADEG equal to 2.78) of the
Hi5 data set. Moreover, it has very small LLC and quite
big ASD (7.18). In other words, Hi5 data set can not be
considered as a small-world network.

5.6 Time Comparison with other methods
In this section, we compare FriendTNS against the RWR,

Shortest Path, Adamic/Adar, and FOAF algorithms in terms
of time complexity. We have created 2 synthetic data sets
based on different network sizes N (1000, 100000), where
N is the total number of nodes in the network. For the
first synthetic data set the k nodes degree is equal to 10,
whereas k is equal to 100 for the second one. All recorded
times are refer to the total required time for calculating sim-
ilarities for a target node with all other nodes in a graph.
Each algorithm’s performance is obtained by averaging over
30 independent realizations. Figure 7 depicts the results.
As shown, RWR present the worst results because it calcu-
lates the inverse of an n × n matrix. As expected, FOAF
and Adamic/Adar algorithms, outperform the other algo-
rithms due to their simpler complexity since they are local-
based similarity measures. However, as already shown in
Section 5.5, both methods perform the worst results in terms
of accuracy.

5.7 FriendTNS Efficacy in Signed Networks
In this section, we present the accuracy performance of

FriendTNS when we take into account positive and nega-
tive links of a signed network, i.e. extended Epinions 132K
data set. We have two different variants of FriendTNS: The
first variation considers only positive links and is denoted
as FriendTNS+. The second variation considers both pos-

Data-Set FriendTNS Shortest Path Adamic/Adar RWR FOAF

Synthetic-(N=1000, k=10) 0.012sec 0.011sec 0.003sec 0.017sec 0.002sec

Synthetic-(N=100000, k=100) 1.102sec 1.05sec 0.394sec 1.621sec 0.280sec

Figure 7: Time complexity of the synthetic data sets. A smaller value is better.

itive and negative links and is denoted as FriendTNS+
− .

Figure 8 presents the precision and recall diagram for both
versions of FriendTNS. As shown, FriendTNS+

− outper-

forms FriendTNS+. The reason is that FriendTNS+
− ex-

ploits positive and negative links. This means that if we use
information about negative edges for predicting the pres-
ence of positive edges we get an accuracy improvement of
FriendTNS predictions. These results clearly demonstrate
that there is, in some settings, a significant improvement to
be gained by using information about negative edges, even
to predict the presence or absence of positive edges.

�

���

���

���

���

�

� ��� ��� ��� ��� �

	

�
�

�
��
��
�

	
�
����

� �

Figure 8: Accuracy performance of FriendTNS in
terms of precision/recall.

6. CONCLUSIONS
In this paper, we proposed the FriendTNS algorithm to

provide more accurate friend recommendations. We defined
a transitive node similarity measure in OSNs by taking into
account local and global features of a social graph. We also
derived variants of our method that apply to signed net-
works. We performed an extensive experimental comparison
using the three real social networks (Facebook, Epinions and
Hi5 data sets). We have shown that our FriendTNS algo-
rithm provides more accurate friend recommendations com-
pared to existing approaches. In future, we want to improve
friend recommendations based on other features that OSNs
offer, such as photos and video tagging, and common ap-
plications. The combination of such features can provide
valuable information and therefore yield to more accurate
friend recommendations.

7. REFERENCES

[1] L. Adamic and E. Adar. How to search a social
network. Social Networks, 27(3):187–203, 2005.

[2] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy.
Make new friends, but keep the old: recommending
people on social networking sites. In Proceedings 27th
International Conference on Human Factors in
Computing Systems (CHI), pages 201–210, 2009.

[3] A. Clauset, C. Moore, and M. E. J. Newman.
Hierarchical structure and the prediction of missing
links in networks. Nature, 453, 2008.

[4] T. Cormen, C. Leiserson, R. Rivest, and S. Stein.
Introduction to Algorithms. MIT Press, 3rd edition,
2001.

[5] Facebook. Official blog.
http://blog.facebook.com/blog.php?post=15610312130.

[6] M. Fredman and R. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms.
Journal of the ACM, 34:596–615, 1987.

[7] J. Golbeck. Personalizing applications through
integration of inferred trust values in semantic
web-based social networks. In Semantic Network
Analysis Workshop at the 4th International Semantic
Web Conference, 2005.

[8] P. Hage and F. Harary. Structural models in
anthropology. 56, 1983.

[9] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD ’02: Proceedings
of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
538–543, 2002.

[10] J. Leskovec, D. Huttenlocher, and J. Kleinberg.
Predicting positive and negative links in online social
networks. In WWW ’10: Proceedings of the 19th
international conference on World wide web, pages
641–650, 2010.

[11] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed
networks in social media. In CHI ’10: Proceedings of
the 28th international conference on Human factors in
computing systems, pages 1361–1370, 2010.

[12] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. Proceedings of the 12th
International Conference on Information and
Knowledge Management (CIKM), 2003.

[13] L. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins. Geographic routing in social
networks. Proceedings National Academy of Sciences
(PNAS), 102(33):11623–11628, 2005.

[14] P. Massa and P. Avesani. Trust-aware collaborative
filtering for recommender systems. In In Proc. of
Federated Int. Conference On The Move to Meaningful
Internet: CoopIS, DOA, ODBASE, pages 492–508,
2004.

[15] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu.
Automatic multimedia cross-modal correlation
discovery. In Proceedings 10th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 653–658, Seattle, WA,
2004.

[16] T. Tanimoto. IBM Internal Technical Report, 1957.

