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ABSTRACT
This turorial offers a rich blend of theory and practice re-
garding dimensionality reduction methods, to address the in-
formation overload problem in recommender systems. This
problem affects our everyday experience while searching for
knowledge on a topic. Naive Collaborative Filtering can-
not deal with challenging issues such as scalability, noise,
and sparsity. We can deal with all the aforementioned chal-
lenges by applying matrix and tensor decomposition meth-
ods. These methods have been proven to be the most accu-
rate (i.e., Netflix prize) and efficient for handling big data.
For each method (SVD, SVD++, timeSVD++, HOSVD,
CUR, etc.) we will provide a detailed theoretical mathe-
matical background and a step-by-step analysis, by using
an integrated toy example, which runs throughout all parts
of the tutorial, helping the audience to understand clearly
the differences among factorisation methods.

1. INTRODUCTION
Representing data in lower dimensional spaces has been

extensively used in many disciplines such as natural lan-
guage and image processing, data mining and information
retrieval. Recommender systems deal with challenging is-
sues such as scalability, noise, and sparsity and thus, matrix
and tensor factorization techniques appear as an interest-
ing tool to be exploited [2, 4]. That is, we can deal with
all the aforementioned challenges by applying matrix and
tensor decomposition methods (also known as factorization
methods).

The rest of this paper is organized as follows. Section 2
provides a detailed outline of the tutorial for matrix decom-
position techniques. Section 3 provides a detailed outline
of the tutorial for tensor decomposition. Finally, Section 4
concludes this paper.

2. MATRIX DECOMPOSITION
Matrix Factorization denotes a process, where a matrix

is factorized into a product of matrices. Its importance re-
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lies on the exploitation of the latent associations that ex-
ist in data among the participating entities (e.g. between
users and items). In a trivial form, the matrix factorization
method uses two matrices, which hold the information of
correlation between the user-feature and item-feature fac-
tors, respectively.

Figure 1 shows an example of the latent factors, which
could be revealed after performing matrix decomposition.
As shown, the X’X axis divides both people and movies ac-
cording sex (e.g., male or female). When a movie is closer
to the female part of X’X axis, it means that this movie is
most popular in women rather than in men. The Y’Y axis
divides people and movies as “war-like” and “romantic”. A
“war-like” viewer is assumed to prefer movies showing blood
and deaths. In contrast, a “romantic” viewer chooses movies
that present love and passion.
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Figure 1: Visual representation of users and movies
using two axes — male versus female and war-like
versus romantic.
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To predict a user’s rating over a movie, we can compute
the dot product of the movie’s and user’s [x,y] coordinates
on the graph. In addition, Figure 1 shows where movies and
users might fall on the basic two dimensions. For example,
we would expect User 3 to love “Casablanca”, to hate “The
King’s Speech”, and to rate “Amelie” about average. Note
that some movies (i.e. “Taken 3”) and users (i.e. User 4 )
would be characterised as fairly neutral on these two dimen-
sions.

In this tutorial, we provide the related work of basic ma-
trix decomposition methods. The first method that we dis-
cuss is known as Eigenvalue Decomposition, which decom-
poses the initial matrix into a canonical form. A second
method is the Non-Negative Matrix Factorization (NMF),
which factorizes the initial matrix into two smaller matri-
ces with the constraint that each element of the factorized
matrices should be non-negative. A third method is the
Probabilistic Matrix Factorization (PMF), which scales well
to large datasets. PMF mathod performs well on very sparse
and imbalanced datasets using spherical Gaussian priors.
The last but one method is Probabilistic Latent Semantic
Analysis (PLSA) which is based on a mixture decomposi-
tion derived from a latent class model. The last method is
CUR Decomposition, which confronts the problem of density
in the factorized matrices (a problem that is faced on SVD
method). Moreover, we describe Singular Value Decomposi-
tion (SVD) and UV-Decomposition in details. We minimise
an objective function, which captures the error between the
predicted and the real value of a user’s rating. Moreover, an
additional constraint of friendship is added in the objective
function to leverage the quality of recommendations [1].

Finally, we study the performance of the described SVD
and UV-decomposition algorithms, against an improved ver-
sion of the original item-based CF algorithm combined with
SVD.

3. TENSOR DECOMPOSITION
Because of the ternary relational nature of data in many

cases (e.g., Social Tagging Systems (STSs), Location-based
social network (LBSNs) etc.), many recommendation algo-
rithms originally designed to operate on matrices cannot
be applied. Higher order problems put forward new chal-
lenges and opportunities for recommender systems. For ex-
ample, the ternary relation of STSs can be represented as
a third-order tensor A = (au,i,t) ∈ R|U|×|I|×|T |. Symeoni-
dis et al. [3], for example, proposed to interpret the user
assignment of a tag on an item, as a binary tensor where
1 indicates observed tag assignments and 0 missing values
(see Figure 2):

au,i,t :=

{
1, if user u assign on item i tag t

0, otherwise

Tensor factorization techniques can be employed in order
to exploit the underlying latent semantic structure in tensor
A. The basic idea is to transform the recommendation prob-
lem as a third-order tensor completion problem, by trying
to predict the non-observed entries in A.

In this tutorial, we provide the related work on tensor de-
composition methods. The first method that is discussed is
the Tucker Decomposition method (TD), which is the under-
lying tensor factorization model of HOSVD. TD decomposes
a tensor into a set of matrices and one small core tensor. The
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Figure 2: Tensor representation of a STS where pos-
itive feedback is interpreted as 1 (i.e., autr := 1) and
the rest as 0 (i.e., autr := 0).

second one is PARAFAC method (PARAllel FACtor analy-
sis), which is the same as TD method with the restriction
that core tensor should be diagonal. The third method is the
PITF method (Pairwise Interaction Tensor Factorization),
which is a special case of TD method with linear runtime
both for learning and prediction. The last method that is
analyzed is the Low-order Tensor Decomposition (LOTD)
method.

The main factorization method that will be presented in
this tutorial is Higher Order SVD (HOSVD), which is an
extended version of the SVD method. In particular, we will
present a step-by-step implementation of HOSVD in a toy
example. Then, we will present how we can update HOSVD
when a new user is registered in our recommender system.
We will also discuss how HOSVD can be combined with
other methods for leveraging the quality of recommenda-
tions. Finally, we will provide experimental results of tensor
decomposition methods on real datasets in STSs. Moreover,
we will discuss about the metrics that we will use (i.e., Pre-
cision, Recall, RMSE, etc.). Our goal is to present the main
factors that influence the effectiveness of algorithms.

4. CONCLUSIONS
In this tutorial, we discuss the advantages and limitations

of each matrix and tensor decomposition algorithm for rec-
ommender systems, and provide future research directions.
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[4] Gábor Takács, István Pilászy, Bottyán Németh, and
Domonkos Tikk. Matrix factorization and neighbor
based algorithms for the netflix prize problem. RecSys
’08, pages 267–274, New York, NY, USA, 2008. ACM.

430


	Introduction
	Matrix Decomposition
	Tensor Decomposition
	Conclusions



