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ABSTRACT
Skyline queries are important due to their usefulness in many
application domains. However, by increasing the number
of attributes, the probability that a tuple dominates an-
other one is reduced significantly. To attack this problem,
k-dominant skylines have been proposed, relaxing the defi-
nition of domination. In this paper, we study the problem of
continuous monitoring of k-dominant skylines, where multi-
ple queries are running concurrently. The proposed method
divides the space in pairs of attributes. For each pair, we
compute skyline tuples and we exploit them to eliminate
candidates tuples of the queries and we combine the partial
results. The proposed scheme uses only simple domination
checks and it is applicable to the streaming case as well as to
ad-hoc insertions and deletions. Experiments, based on dif-
ferent data distributions, show the efficiency of the proposed
scheme in comparison to existing methods.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing

General Terms
Algorithms, Experimentation, Performance

Keywords
Continuous Processing, Skylines, Data Streams

1. INTRODUCTION
Recently, skyline queries have attracted the research in-

terest significantly. Skyline queries are frequently used in
multicriteria decision making applications, where a number
of (usually) contradictory criteria participate towards select-
ing the most convenient answers to the user.
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Assume that a customer is interested in purchasing a PDA
device. Assume further, that the customer focuses on two
important characteristics of a PDA, the screen size and the
battery autonomy (time interval between succesive battery
charges). Unfortunately, these criteria are usually contradic-
tory (the larger the screen the more significant the energy
consumption) and therefore, the PDAs that best match the
customer’s needs should be carefully selected. In this ex-
ample, each PDA is represented as a tuple containing two
attributes (size and time) and the customer is interested in
items that maximize these attributes. Depending on the se-
mantics of each attribute, in other cases the customer may
ask for minimization of the attributes, or any other combi-
nation. Without loss of generality, in the sequel we focus
on maximizing the attributes of interest. However, the pro-
posed technique is directly applicable to other cases as well.

The PDA example is depicted in Figure 1. In Figure 1(a)
each PDA is represented by a two-dimensional point, where
each dimension corresponds to an attribute (in the sequel the
terms attribute and dimension are used interchangeably).
PDA tuples (also termed points) are shown in Figure 1(b).
Points connected by the dashed line comprise the skyline,
which we will henceforth refer to as simple skyline and it
consists of points t1, t2, t3, and t4.

The literature is reach in algorithms of skyline query pro-
cessing for static [3, 5] and dynamic data [4]. All the pre-
vious efforts report the skyline result taking into consid-
eration all dimensions. There are two problems with this
perspective: (i) in high dimensionalities the number of sky-
line points increases substantially [1, 2], and (ii) users may
not be interested in the whole set of dimensions. To han-
dle these issues, subspace skylines have been proposed in [6]
and several efforts have been performed to provide efficient
subspace skyline computation [7, 8]. Towards eliminating
the huge number of skyline points, a novel method has been
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Figure 1: Skyline example.



proposed in [2] which relaxes the dominance definition, in
order to increase the probability that a point will dominate
another. Instead of searching for ordinary skyline points in
all dimensions, k-domimant skylines are being used.

The processing techniques reported in [2] are executed on
static data sets. However, in case of insertions and deletions
the skyline result should be updated accordingly. In the
sliding window paradigm, insertions and deletions are very
frequent. In our example, a customer may be interested
in a PDA that belongs to the n most recent models. Our
first contribution involves the continuous processing of k-
dominant skylines. Our second contribution involves the ef-
ficient processing of multiple continuous queries. Each query
may be defined in a subset of the available dimensions, since
different users are usually interested in different attributes.
The parameter k set by each query may vary, thus increasing
the challenge even further.

The rest of the work is organized as follows. Section 2 pro-
vides background material. Our proposal is given in Section
3, whereas Section 4 gives some representative experimental
results. Finally, Section 5 concludes our study.

2. BACKGROUND MATERIAL
Table 1 summarizes the basic symbols that are used throu-

ghout the study. The proofs of propositions as well as the
pseudocode of algorithms are omitted due to lack of space.

Assume a D-dimensional space D = {d1, d2, ..., dD} and
a set of tuples T = {t1, t2, ..., tT }. We use ti,j to denote
the value of the j-th dimension of the i-th tuple. Moreover,
assume a number of k-dominant skyline queries. Each query
qi is defined on a set of dimensions qi.ds ⊆ D in which the
query is applied and has a parameter qi.k which specifies the
desired number of k-dominant skyline tuples.

Definition 1 (k-dominated tuple)
A tuple ti is k-dominated by a tuple tj in query ql, if and
only if ∃ D’ ⊆ ql.ds, D′ = ql.k, ∀ dx ∈ D’, tj,x ≥ ti,x and ∃
dy ∈ D’, tj,y > ti,y. 2

Definition 2 (k-dominant skyline tuple)
A tuple ti is k-dominant skyline tuple of query ql if and
only if there does not exist any tuple tj in the data set that
k-dominates ti in dimensions ql.ds. 2

Symbol Description

D,D’ dimensions sets and the number of dimensions
and D,D′
d, di a dimension
T, T tuples set and the number of tuples
ti the i-th tuple
ti,j the value of i-th tuple in j-th dimension
Q, Q queries set and the number of queries
q, qi queries
q.ds, qi.ds the set and the number of dimensions of
q.ds, qi.ds queries
q.k, qi.k parameter k for a query
sq, sqj subqueries
sq.ds, sqj .ds the set and the number of dimensions of
sq.ds, sqi.ds subqueries
gi,j grid of the i-th and j-th dimensions
c,ci,j cells of a grid

Table 1: Basic symbols used throughout the study.

We examine the data space in pairs of dimensions. There-
fore, if D is the total number of dimensions, we use gi,j

(1 ≤ i, j ≤ D · (D − 1)/2 and i < j) to denote the grid
formed by the i-th and j-th dimensions.

Definition 3 ((2,D’)-skyline tuple)
Given a subset of two dimensions D’ ⊆ D, a tuple tl is
(2,D’)-skyline tuple if and only if it is a simple skyline tuple
in at least one gi,j (di ∈ D’, dj ∈ D’ and i 6= j). 2

Definition 4 ((D′,D’)-skyline tuple)
Given a subset of dimensions D’ ⊆ D (D′ > 2), a tuple ti

is (D′,D’)-skyline tuple if and only if it is a simple skyline
tuple in D’ and it is not a (2,D’)-skyline tuple. 2

A query qi, defined on dimensions qi.ds, with parameter
qi.k has

(
qi.ds
qi.k

)
subqueries. For example, a query qi with

q1.ds = 4 and qi.k = 3 has 4 subqueries.

Definition 5 (subquery)
Given a query qi with qi.ds and qi.k, a subquery sqj of qi

has one out of
(

qi.ds
qi.k

)
possible combinations of the dimen-

sions of qi. 2

The next proposition allows us to identify skyline points
in subspaces, but it holds only if the distinct value condition
holds [6].

Proposition 1
Given T D-dimensional tuples, if a tuple ti is a simple sky-
line tuple in D1 ⊆ D then it is simple skyline tuple in every
set of dimensions D2 ⊇ D1 (D2 ⊆ D). 2

The previous property does not hold in the case of k-
dominant skylines when k < D. Additionally, the transitive
property of simple skylines does not hold in k-dominant sky-
lines. Therefore it is possible to have 3 tuples t1, t2 and t3
such that t1 is k-dominated by t2, t2 is k-dominated by t3
and t3 is k-dominated by t1 (cyclic dominant relationship).
Due to cyclic dominant relationships, we cannot discard a
tuple that is k-dominated since it might be used to exclude
another tuple. Thus, algorithms that have been proposed
for skyline and continuous skyline computation are not ap-
plicable in our case. In the sequel, we describe the CoSMuQ
algorithm (Continuous Skylines for Multiple Queries), which
attacks the following problem:

Given a dynamic data set of D-dimensional tuples and a
set of k-dominant skyline queries, each specifying a set of
dimensions qi.ds ⊆ D and a parameter qi.k ≤ qi.ds, com-
pute the k-dominant skyline for each query continuously.

3. CONTINUOUS K-DOMINANT SKYLINES

3.1 Data structures
The proposed method maintains a grid for each pair of

dimensions. We used grids with equal-sized cells but the
method can also work with irregular grids as well. The ad-
vantage of equal-sized cells is that we can insert/delete a
data to/from the grid very efficiently. Each cell contains the
IDs of the tuples that lie in this cell and also the coverage of
the cell. The coverage of the cell is the number of tuples that
dominate this particular cell. Finally, each grid maintains



its skyline tuples.
When a new query is posed, we initially compute its sub-

queries. Each subquery sqj of query qi has an ID and a sub-
set of dimensions of the query denoted as sqj .ds (sqj .ds =
qi.k). Additionally each subquery stores the (2,sqj .ds)-sky-
line tuples, the (qi.k,sqj .ds)-skyline tuples and a set of can-
didate skyline tuples. Notice that it is possible, queries
with the same parameter k to share common subqueries.
Moreover, the method maintains the queries into the list of
queries. Each query has an ID, a parameter k, a subset of
dimensions, the IDs of the subqueries of the query and the
k-dominant skyline of this query.

Before we proceed with the description of CoSMuQ, we ex-
plain the three types of skyline tuples that a subquery stores.
Each subquery sq of a query q maintains the (2,sq.ds)-
skyline tuples, the (q.k, sq.ds)-skyline tuples and the can-
didate skyline tuples. The (2, sq.ds)-skyline is the union of
the skylines of the grids gi,j with di ∈ sq.ds, dj ∈ sq.ds and
i 6= j. A tuple is candidate skyline tuple if it is not domi-
nated by the (2,sq.ds)-skyline tuples of the subquery, there-
fore the candidate skylines is a superset of the (q.k,sq.ds)-
skylines. A candidate skyline tuple is (q.k,sq.ds)-skyline tu-
ple if it is not dominated by any existing (q.k,sq.ds)-skyline
tuple.

3.2 The CoSMuQ Approach
Our main focus is to compute k-dominant skylines of mul-

tiple queries continuously. Thus, we deal with the tuple in-
sertions and deletions rather than with the initial phase of
discovering k-dominant skylines. Besides, the initial phase
can be processed by applying consecutive insertions.

First, let us examine a subquery as a simple skyline query.
We assume that the distinct value condition holds. Then,
due to Proposition 1, the skyline of the subquery is the union
of (2,sq.ds)-skyline and (sq.ds,sq.ds)-skyline. The following
proposition explains:

Proposition 2 (subquery skylines)
The simple skyline of a subquery sq of a query q with a set of
dimensions sq.ds is given by the union of (2, sq.ds)-skyline
and (q.k,sq.ds)-skyline of the subquery. 2

In the case where the distinct value condition does not
hold, elements with equal values in the two dimensions of a
grid can be stored in a buffer enabling further examination
during the update of the subqueries. The key observation
in order to answer k-dominant skyline queries, is that the
intersection of the skylines of the subqueries is the skyline
of the k-dominant query.

Proposition 3 (query k-dominant skyline)
The k-dominant skyline of a query q with q.ds and q.k is
given by the intersection of the simple skylines of the sub-
queries of the query. 2

We proceed now with the detailed description of our algo-
rithm. The proposed method comprises three basic stages.
The first stage updates the grids and the skylines of the
grids. The second stage updates the subqueries, whereas
the third stage updates the queries. We begin the descrip-
tion of the CoSMuQ algorithm with the insert operation.
We will illustrate the CoSMuQ-insert procedure by means
of an example depicted in Figures 2, 3 and 4. Assume that

there are four 4-dimensional tuples, therefore T = D = 4
and there is only one query with q1.ds = {d1, d2, d3, d4})
(q1.ds = 4) and q1.k = 3. Figure 2 depicts the tuples and
the 2 out of 6 grids, one for each pair of dimensions. Each
cell contains its coverage and the tuples that lie in this cell.
Assume that a new tuple t5 arrives.
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Figure 2: Data values and grids.

The first step is to insert tuple t5 into the grids. The tuple
is inserted into the shaded cells of Figure 2. Moreover the
coverage of the cells should be updated. The coverage of the
cells that are dominated by the shaded cell is increased by
one. In Figure 2 these are the striped cells.

The next step is to update the skyline tuples of each grid.
Figure 3 depicts the skylines of the grids before the insertion
of t5 (left) and after the insertion (right). First, the new
tuple is checked if it is skyline tuple in the grid. If the
coverage of its cell is above 0 then the new tuple is definitely
not a skyline tuple. If the coverage is 0, then the tuple is
compared with the skyline tuples of the grid. Notice that
we compare the new tuple only with the skyline tuples of
the grid and not with any other tuple since we compute
simple skylines and not k-dominant ones. Therefore, the
transitive property holds. If the new tuple is a skyline tuple
of a grid, it should be checked if it dominates existing skyline
tuples of this grid. These skyline tuples are deleted and
are temporarily stored. Let us examine the update of the
skylines of the grids g1,2 and g2,4. The cell c2,2 of g1,2 has
coverage 1 due to t2, thus t5 is not skyline tuple. The cell c2,3

of g2,4 has coverage 0, therefore we check t5 with the skyline
tuples t2 and t4 of the grid to conclude that t5 belongs to
the skyline of this grid.

Figure 4 illustrates the subqueries before (left) and after
(right) the insertion of t5. Before the insertion, the tuple t4
is a candidate skyline tuple for sq1 because is not dominated
by the (2,sq1.ds)-skyline and is (3,sq.ds)-skyline tuple since
it is not dominated by any other (3,sq.ds)-skyline tuple.

The update of the subqueries follows. First the new tu-
ple t5 is checked if it should be inserted in the (2,sq.ds)-
skyline. Remember that the (2,sq.ds)-skyline is the union
of the skylines of the grids that belong to sq.ds. Since t5
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Figure 3: Skylines of Grids.
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Figure 4: Information maintained for Subqueries.

is skyline tuple in g1,4, g2,4 and g3,4, it will be inserted in
the (2,sq.ds)-skylines of subqueries sq2, sq3 and sq4. In the
case where the distinct value condition does not hold and
the new tuple is equal with at least one skyline tuple of a
grid, we should further examine these tuples. If the new tu-
ple is (2,sq.ds)-skyline tuple, the (sq.ds,sq.ds)-skyline and
the candidate skyline tuples that are dominated by the new
tuple are discarded. Next, we examine the deleted skyline
tuples of the grids, that were temporarily stored during the
first stage. We need to check if the deleted skyline tuples
of the grids should be removed from the (2,sq.ds)-skyline
of the subquery. This can happen if a deleted skyline tuple
does not exist as a skyline tuple in any other grid affecting
the subquery. In this case, the deleted skyline tuple is re-
moved from (2,sq.ds)-skyline and if it is not dominated by
the new tuple, it is inserted in the candidate skyline and in
the (sq.ds,sq.ds)-skyline, since it is not dominated by any
other tuple.

If the new tuple is not (2,sq.ds)-skyline tuple, we com-
pare it with all the (2,sq.ds)-skyline tuples. If the new tu-
ple is not dominated by them it is candidate skyline tuple
and if it is not dominated by any (sq.ds,sq.ds)-skyline tu-
ple then it is (sq.ds,sq.ds)-skyline tuple. If the new tuple
is (sq.ds,sq.ds)-skyline tuple, we check if it dominates some
existing (sq.ds,sq.ds)-skyline tuples and we discard them.
In our example t5 is not skyline tuple of g1,2, g1,3 and g2,3,
therefore it is not (2,sq.ds)-skyline tuple of sq1. Then we
check if the new tuple is dominated by the (2,sq.ds)-skyline
tuples of sq1. It is not dominated, thus it is inserted in the
candidate skyline. It is not dominated by any (sq.ds,sq.ds)-
skyline tuple, thus it is inserted in them. Finally, we com-
pare t5 with t4 and we discard t4, since it is dominated by
t5. Notice that in the procedure of updating subqueries,
we perform only simple skyline comparisons. Moreover if
a new tuple is not inserted in the (2,sq.ds)-skyline or in
the (sq.ds,sq.ds)-skyline, we do not perform extra opera-
tions. Finally, to update a subquery only the tuples of the
(2,sq.ds)-skyline, (sq.ds,sq.ds)-skyline and candidate sky-
line are needed.

The third stage involves the update of the result of k-
dominant queries. Due to Proposition 2 and 3, we first com-
pute the union of (2,sq.ds)-skyline and (sq.ds,sq.ds)-skyline
of each subquery of the query and then we intersect the re-
sults. For the query of the example, the k-dominant skyline
consists of tuples t1 and t5.

The CoSMuQ-delete procedure handles deletions. A delete
operation comprises similar operations of the insertion pro-
cedure. The description of CoSMuQ-delete procedure is omit-
ted due to space limitation. Both the CoSMuQ-insert and
CoSMuQ-delete procedures do not use k-dominant compar-
isons but only simple skyline comparisons. An advantage of
the method is that it can distinguish cases and perform a
minimum set of operations. A second advantage is that the
method exploits the overlap between different queries. This

is based on the observation that skyline queries of different
users have frequently common dimensions (attributes). If
there is an adequate number of queries, the gain of the us-
age of the pairs outperforms the cost of updating the grids.
Extensive experimentation shows that even a number of 10
queries sharing a subset of dimensions, is adequate to over-
come the cost introduced by the usage of the grids. More-
over, the cost of updating the grids is low since a) only
grids that participate in at least one query should be up-
dated and b) the skyline points in two dimensions can be
computed very easily. Additionally, CoSMuQ can handle
insertions and deletions of queries. Finally, the method is
appropriate both in ad-hoc and streaming scenarios.

4. PERFORMANCE EVALUATION
We have conducted a series of experiments to evaluate the

performance of our scheme. We use the TSA and SRA algo-
rithms, proposed in [2], as the competitors of our technique,
bearing in mind that, although very efficient, they were not
originally developed for dynamic environments and multiple
queries. For fairness, we have modified the SRA algorithm
to apply binary search for tuple insertions or deletions in-
stead of sorting all tuples in each update. All algorithms
have been implemented in C++ and the experiments have
been conducted on a Pentium IV system at 3GHz, with 1GB
of main memory running Windows XP.

The three data sets (Correlated, Independent and Anti-
Correlated) have been generated by using the process de-
scribed in [1]. We examine the performance of the methods
by varying the most important parameters (i.e., number of
tuples, number of dimensions and number of queries). The
default parameter values (if not otherwise specified) are: the
number of active tuples is 10,000, the number of dimensions
is 10, the number of dimensions of each query varies between
6 and 10 and the number of queries is 500. The parameter
q.k of each query q lies in the range [q.ds/2, q.ds). The num-
ber of dimensions q.ds, the set of the dimensions q.ds and
the parameter q.k of the queries are generated uniformly.
The grid size is set to 30 cells per dimension. The number
of updates varies between 10,000 and 200,000. Performance
is measured by the CPU time per update.

The first experiment measures the response time with re-
spect to the number of tuples. Figure 5 depicts the results
for all the data sets. The gap between TSA and SRA is
reduced in the Anti-Correlated and Independent data sets
because the number of k-dominant skyline tuples is higher
and therefore TSA cannot prune many tuples in the first
scan. CoSMuQ outperforms both TSA and SRA in all data
sets. CoSMuQ is almost unaffected by the number of tuples,
since it does not evaluate queries from scratch.

The second experiment studies the response time with re-
spect to the number of dimensions. Figure 6 illustrates the
results. SRA is better than TSA in the Anti-Correlated and
Independent data sets in almost all cases for the same rea-
son. In this experiment, the number of comparisons is more
due to the increase of the number of dimensions, which af-
fects more the TSA algorithm. The response time of our
method increases as the number of dimensions increases but
it remains lower than 1sec even for 20 dimensions.

Finally, in the third experiment (Figure 7) we show the
response time vs. the number of queries. The number of
queries varies from 100 to 10,000. CoSMuQ outperforms
both TSA and SRA even for 100 queries. Moreover the pro-
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Figure 5: CPU Time vs. Number of Tuples
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Figure 6: CPU Time vs. Number of Dimensions
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Figure 7: CPU time vs. number of queries (the time axis is shown in logarithmic scale)

posed method has response time less than 1 sec in all cases.
Note that, the queries have randomly generated subsets of
dimensions that cover all the dimensions and various values
for the parameter k. This is an indication that the proposed
method will have even better performance in the case where
some dimensions are usually more preferable than others.

5. CONCLUSIONS
In this paper, a novel method has been proposed towards

efficient processing of continuous k-dominant skylines for
multiple queries. The proposed algorithm, CoSMuQ, is ap-
propriate for ad-hoc as well as streaming scenarios. Perfor-
mance evaluation illustrates the superiority of the proposed
method against the TSA and SRA algorithms. Moreover, it
demonstrates the capability of the proposed method to man-
age multiple queries. Future work may include the extension
of our method to handle δ-skyline queries.
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