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ABSTRACT
Modern applications requiring spatial network processing
pose many interesting query optimization challenges. In
many cases, query processing depends on the corresponding
graph size (number of nodes and edges) and other graph pa-
rameters. This dependency may be local or global. In this
paper, we present novel methods to estimate the number
of nodes in regions of interest in spatial networks, towards
predicting the space and time requirements of range queries.
We examine all methods by using real-life and synthetic spa-
tial networks. Experimental results show that the number
of nodes can be estimated efficiently and accurately with
small space requirements, thus providing useful information
to the query optimizer.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Spatial databases and GIS

General Terms
Algorithms Performance

Keywords
estimation, optimization, spatial networks

1. INTRODUCTION
Every spatial network can be represented as a graph, where

all spatial network’s nodes and connections are represented
as the graph’s vertices and edges, respectively. Depend-
ing on the application this graph may be weighted, directed
or un-directed. Thus, any spatial query into the original
network can be executed to its corresponding graph repre-
sentation G. Evidently, the performance of such queries is
strongly related to the number of nodes and edges lying into
the region of interest, which is a subgraph of G.

Several query processing techniques in spatial networks
have been proposed for fundamental query types like window
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and k-nearest-neighbors [6]. However, when such queries are
combined, query optimization techniques are important to
increase efficiency. Therefore, estimations on factors that
can affect the performance of such queries are crucial for
query optimization purposes. More specifically, the number
of vertices contained in a specific range, is an indication of
the required computational time that will be required to
store this part of the graph, as well as the time required to
execute queries.

To the best of our knowledge, the estimation of the num-
ber of nodes in spatial networks has not been studied yet.
This paper is a first attempt to design efficient techniques
that can successfully estimate the number of vertices con-
tained in a region of the spatial network graph determined
by a starting vertex v0 and a network-based distance e. To-
wards this goal, several different directions are taken, each
one with different requirements and estimation accuracy.
The studied methods are: (i) an estimation with global pa-
rameters, (ii) a local estimation using densities or kernels,
and (iii) an estimation with binary encoding techniques.

2. RELATED WORK
In [11] the Power-Method has been presented, which can

perform accurate estimations for spatial queries using only
a simple formula with minimal computational cost, small
space requirements and average relative error rate below
20%. However, this methodology can be applied only in
Euclidean geometry data sets, using the L2, L∞ metrics.

In [12], the authors examined the performance of spatial
range queries specifically in R-trees and variants. In partic-
ular, specific estimation formulae have been derived for the
number of disk accesses using global parameters and local
densities.

The notion of local density has been studied extensively
in general and spatial data sets, but not in combination with
spatial queries performance in spatial networks. There is a
great number of density estimation proposals in bibliogra-
phy, which are used in numerous estimation and approxima-
tion problems. A significant method in this direction is the
Kernel Density Estimation Method and its variants [10, 2].
Kernel Density Estimators are used in many applications
domains. For example, they are used in many clustering
methods [4, 7], outlier detection [9], and visualization tech-
niques [8]. Also, several corrections and variants of Kernel
Density Estimations and Smoothing have appeared [3, 13].
However, all these applications are restricted to Euclidean
spaces.

The rest of the paper is organized as follows. Section 3



presents the proposed methods. Section 4 presents experi-
mental results, whereas Section 5 concludes our work.

3. ESTIMATION APPROACHES
Here, we define the problem and present the proposed

methods aiming at effective solutions for general graphs with
specific properties. Table 1 depicts the basic notations being
used for the rest of the work.

PROBLEM DEFINITION
Let G be a connected weighted graph (directed or not), with
a set of nodes VG and a set of weighted edges EG. In this
graph, we apply the network distance measure d() where
d(u, v) denotes the shortest path distance between the nodes
v, u of G. Giving a specific starting node v0 ∈ VG, and a de-
sired distance e, we are interested in determining an estima-

tor Ñ(v0, e), which can efficiently estimate the total number
of nodes that can be reached from v0 within a distance less
than or equal to e:

N(v0, e) = |{v ∈ VG : d(v, v0) ≤ e}|

There are several parameters affecting the answer to this
problem. The most significant ones are: (i) The selection of
the starting node v0 and its position on the graph. Different
results can arise between starting nodes from dense regions
and from sparse regions. (ii) The graph morphology and
topology. Different results are obtained for uniform and non-
uniform graphs. We define the notion of uniformity with the
following properties: (a) all edge weights of G are close to
the overall average weight, and (b) all node degrees of G are
close to the overall average degree.

3.1 Global Parameters Estimation Method
The first proposed method is the most applicable in uni-

form or almost uniform graphs, and constructs an estimation

formula Ñ(v0, e) containing only global graph parameters.
The necessary definitions for these parameters are:

• Average weight: w = 1
|EG|

∑
w (vi, vj)

Symbol Description
G The network graph, directed or not
VG The set of nodes in the graph G
EG The set of edges in the graph G
|VG| The number of nodes in the graph G
|EG| The number of edges in the graph G
v0 The selected starting node
e The selected radius in the region of v0

d(vi, vj) The network distance between nodes vi, vj

DG The diameter of G
indeg(vi) The in-degree of node vi

outdeg(vi) The out-degree of node vi

deg(vi) The total degree of node vi

w(vi,vj) The weight of the edge (vi,vj)
w The average weight of all edge weights

deg The average total degree of all nodes
N(v0, e) The exact number of nodes into the e-range

Ñ(v0, e) The estimator of nodes into the e-range

Table 1: Frequently used symbols.

• Total degree: deg(vi) = in deg(vi)+out deg(vi), if G is
a directed graph. Otherwise, is defined as the simple
degree of the node vi.

• Average total degree: deg = 1
|VG|

∑
i

deg (vi) = 2|EG|
|VG|

The Global Parameters Estimation method, defines a spe-
cific estimation formula for the number of nodes N(v0, e)
lying into the e-range region of v0. This formula use only
the global graph parameters w and deg:

Ñ(v0, e) = Ñ(e) =
deg

2
· e

w
·
( e

w
+ 1

)
+ 1 (1)

This formula can be used in all graph types, but in many
cases of non-uniform graphs the estimation error may be
high. By studying further the graph types that Global Pa-
rameters Estimation Method returns always efficient esti-
mation results, we concluded to interesting properties and
graph classes. More specifically, it can be proven that Global
Parameters Estimation Method returns definitely efficient
estimation results if the following hold (proofs omitted):

1. The spatial network G is a uniform or almost uniform
graph.

2. The starting node v0 is selected from the region of G
which is defined by the most central node vc of G and
distance radius equal to DG

4
, where DG is the diameter

of the graph G, thus: d(v0, vc) ≤ DG
4

.

3. The range distances e are selected from the interval
[0,DG

4
], thus: 0 ≤ e ≤ DG

4
.

A significant advantage of the Global Parameters Estima-
tion method is that there is no need for additional space (in
memory or disk) for bookkeeping. Moreover, the estimator

Ñ(v0, e), can be computed instantly.

3.2 Local Densities Estimation Method
The second proposed method is the most applicable in

both uniform and non-uniform graphs. To achieve efficient
estimation results, it defines the notion of local densities.
Using local densities, this method can include the affection
of sparse and dense regions to the estimation procedure.
The local densities are computed in a preprocessing step and
kept in memory. The most representative local density fac-
tors we use, the best estimation results we will have. More
specifically, to derive the new formula we need the following
definitions:

Local Node Density: Let G be a graph with a set of
nodes VG. Then, for every node v ∈ VG we define its local
node density ANv to be a positive real number representing
the local density of node v based on the node distribution
into the spatial area of the graph.

Normalized Local Node Density: Let G be a graph
with a set of nodes VG, and local node densities ANv,∀v ∈
VG. Then for every node v ∈ VG we define its normalized
local node density UNv to be a real number into the interval
[0,1], given by:

UNv =
ANv

max{ANvi , vi ∈ VG}
(2)

A significant property of the normalized local node densities
is: Nodes with normalized local densities close to 1, lie on



dense regions of the graph, and nodes that have normalized
local densities close to 0, lie on sparse regions of the graph.

Following all the previous definitions, the proposed new
estimation formula is an extension of the global parameters
estimation formula adding the normalized local nodes den-
sities of v0 as global factors:

Ñ(v0, e) = UNv0 ·
(

deg

2
· e

w
·
( e

w
+ 1

)
+ 1

)
(3)

The local node densities ANv of all graph nodes can be
computed with any known method, but different estimation
results may arise between method selections in these com-
putations. Here, we propose two different methods for the
calculation of the local densities which can give efficient es-
timation results: (a) the Local Counting Density Estimators
and (b) Kernel Density Estimators.

3.2.1 Local Counting Density Estimators
The main strategy on Local Counting Density Estimators,

is to count the exact number of nodes on every node v of the
spatial graph G, within a small local region of the node v
with a global constant range radius ec. Therefore, the Local
Counting Density Estimators method defines the local node
densities as follows: ANv = |{vi ∈ VG : d(v, vi) ≤ ec}|. The
normalized local node densities are computed by Equation
(2). This approach is simple and can give efficient estima-
tion results if the global constant radius ec is calibrated cor-
rectly. This constant affects all the local densities values.
We propose to use ec values that are small multiples of the
average weight w of the graph. Varying this constant, we

can change the accuracy of the estimator Ñ(v0, e). However,
we must never use values ec ≤ w, because we will underes-
timate many local densities of the graph.

3.2.2 Kernel Density Estimators
The Kernel Density Estimators are non-parametric den-

sity estimators which they smooth out the contribution of
each observed object over a local neighborhood of this ob-
ject. We applied the Kernel Density Estimators to our prob-
lem, where the observed objects now are the nodes of the
spatial network graph G, and their contribution to each
other is their network distance (shortest path distance). Any
known kernel function K(x) can be used, but we propose
using the normal (Gaussian) kernel, for better estimation

results: K(X) = 1√
2π

e−
1
2 x2

. Now the local node and edge

densities are defined as follows: ANv =
∑

vi∈VG
K

(
d(v,vi)

h

)
.

The normalized local node densities are computed by the
Equation (2). The parameter h > 0 is the bandwidth of the
kernel function, which is a global constant used for smooth-
ing. Varying this constant, we can change the accuracy of

the estimator Ñ(v0, e).

In both Local Densities estimation methods, the required
space for keeping all normalized local node and edge den-
sities after pre-computations is: 2 · |VG| · SizeOf(real). If
we keep the normalized local node densities UNv0 in mem-

ory, then the estimation values of Ñ(v0, e) can be computed
instantly without any time complexity cost during the esti-
mation calculation.

3.3 Binary Encoding Estimation Method

The following proposed method is applicable in all type
of graphs, and the selection of both parameters e and v0 is
completely free: the radius e can be any non-negative real
number (e ≥ 0), and the starting node v0 can be any node
of the graph G.

The rationale of this method is based onto the following
observations. In the previous sub-section we have seen that
all local densities pre-computations require some or all of the
shortest path distances between the graph nodes. This hap-
pens for any selection of density estimators (Kernel, Count-
ing, etc.). Therefore, a process that could encode all short-
est path distances into node labels in a preprocessing step
would be helpful, because all computations of network dis-
tances would be avoided.

An important research work in this direction is [1], were
the authors present an efficient encoding technique, based
on hypercube embedding, for assigning labels to all graph
nodes, such that the network distance of every two nodes
can be calculated directly by their labels. More specifically,
after the encoding process, the node labels are binary code
numbers and the network distance of every two nodes can be
approximated efficiently by the Hamming distance between
their corresponding codes. This binary encoding technique
and its algorithms require a unitary weighted graph (all edge
weights are equal to 1), therefore to apply this technique to
our methodology, we must transform the spatial network to
such a graph. The main task is that during this transforma-
tion all network distances on the final graph must approxi-
mate (as accurately as possible) the corresponding original
distances. For this purpose, we propose the following pre-
processing steps:

• We select a constant positive real value wu into the
interval 0 < wu < w, which represents the selected
unitary distance in the graph G. This constant affects
the precision on distances approximations. If it takes
values close to w then we will have low precision and
a high estimation error. If instead it takes values close
to 0 (but never equal to 0), then we will have high
precision and an almost zero estimation error.

• In the next step, we transformation the graph G into a
new graph G′ = T (G), by dividing all weights w(vi, vj)
with the selected unitary distance measure wu and by
adding intermediate nodes. More specifically, to pro-
duce the graph G′, in every edge (vi, vj) of G we add
a number of intermediate nodes, which is equal to the

closest integer of
w(vi,vj)

wu
minus one. If we denote AG

the set of all added new nodes, then the graph G′ will
have VG′ = VG ∪ AG, therefore |VG′ | = |VG| + |AG|
and |EG′ | = |EG| + |AG|, because the number of all
new edges on G′ is exactly the same with all added
intermediate nodes. Finally, all edge weights on the
new constructed graph G′ will be equal to 1.

Now that we have construct the required unitary weighted
graph G′, we can execute the encoding algorithms of [1], and
construct the final binary codes. These binary codes have
a length of k-bits, where k equals to the number of edges
contained into the perimeter of the graph G′. According to
[1] this length is O(

√
n) where n is the number of all nodes

on G′, thus: k = O(
√
|VG′ |) = O(

√
|VG|+ |AG|).

After all these preprocessing steps, we can have the final



binary encoding in all nodes of our basic graph G. Let us
now present the necessary definitions for the estimation:

• We denote by Cv the binary code of node v derived by
its label, for every v ∈ VG.

• We denote by H(cvi , cvj ) the Hamming distance be-
tween the binary codes cvi , cvj , which is equal to the
number of bit positions where the codes cvi , cvj differ.

• We denote by u(x) the simple function that returns 1
if x ≥ 0 and 0 otherwise.

The estimation formula of the binary encodings method fi-
nally is:

Ñ(v0, e) =
∑

vi∈VG

u

(
e− H(cv0 , cvi) · wu

2

)
We have proven (proof omitted) that the final binary

codes have length equal to:

k = O(

√
|VG|+ |EG| ·

w − wu

wu
) (4)

A significant observation regarding Equation (4) is that
the unitary weight parameter wu affects the length of the
final binary encoding k. As wu take values close to 0, k
becomes larger, and therefore we need more space for the
encoding. Thus, there is a trade-off between required space
and estimation accuracy of this method. According to (4),

we need an O(|VG| ·
√
|VG|+ |EG| · w−wu

wu
) space to store all

node binary codes. Thus, if we have not enough space, we
can calibrate the wu value to the available space.

If we keep the needed binary encoding in memory, then

the required time for computations of estimator Ñ(v0, e),
will be only the time of calculations of this formula, which
is O(|VG|). However, this time cost is negligible, because the
final formula has only binary and basic register operations.

4. EXPERIMENTS AND RESULTS
In this section we present experimental results for all the

proposed estimation methods. We have used several real
and synthetic spatial networks and we have tested the pro-
posed methods for several parameter values. For brevity, we
present only a small set of representative results, which de-
pict the most significant performance aspects and trade-offs
of the proposed methods. The data-sets used are as follows:

• UN: A synthetic, almost uniform, un-directed and
weighted spatial network with 10,000 nodes of degree
4 (except from a small fraction of randomly selected
nodes with degrees 2 and 3), and 19,800 edges with
weights having randomly selected values from 12 to 18.
Its global parameters are: w = 14.98591, deg = 3.96,
and DG = 2, 666.25.

• OL: The real road network of Oldenburg, with 6,105
nodes and 7,035 edges [5]. Its global parameters are:
w = 73.67902, deg = 2.304668, and DG = 12, 985.97.

• SF: The real road network of San Francisco, with
174,956 nodes and 223,001 edges [5]. Its global pa-
rameters are: w = 8.782676, deg = 2.549224, and
DG = 16, 828.54.

In all presented experimental results, we have selected a
large number of random nodes from these graphs (10% of
the whole node sets) as representatives starting nodes v0, we

have performed e-range queries varying e from 0 to ≈ DG
4

(which is 50% of the graph radius), with a small increasing
step (5 in UN and 25 in OL and SF), and we have computed
and recorded the real N(v0, e) values. Then, we computed

and recorded the corresponding estimation results Ñ(v0, e)
in all proposed methods with the following parameter setups
for the three data-sets: (i) ec ≈ 3w, 10w, 20w, (ii) h ≈ 1

w
,

1, w
3
, w, (iii) wu ≈ 2w

3
, w

3
, 1.

Next, we have calculated all average real Navg(e) and es-

timation Ñavg(e) recorded values by v0 for every range e.
These averages are functions of e. The basic accuracy mea-
sure used in all estimation methods and selections is defined

as: error[N ](e) =
|Navg(e)−Ñavg(e)|

Navg(e)
. Again this measure is

a function of e, which we call estimation error function.
Figure 3a depicts the estimation error for the selected pa-

rameters of all proposed methods in UN network, where we
observe that: (i) Global method offers good estimation re-
sults, due to the uniformity of the graph. (ii) By varying the
densities radius ec and the bandwidth h, we can improve the
estimation accuracy of the Local methods. (iii) The Binary
Encoding method returns accurate estimations with unitary
distances equal to w

3
or bellow. However, by decreasing the

unitary distance wu, the required space for the binary en-
coding becomes more significant, and therefore, the choice of
wu ≈ w

3
is adequate because it balances estimation accuracy

with small space requirements.
Figure 3b depicts the estimation error for the selected

parameters of all proposed methods in OL network, where
we observe that: (i) Global method returns good estima-
tion results, due to the almost uniform node distribution of
the graph. (ii) By varying the densities radius ec and the
bandwidth h, we can improve the estimation accuracy of
the Local methods. (iii) Again, the Binary method returns
accurate estimations when wu ≈ w

3
or less.

Figure 3c depicts the estimation error for the selected pa-
rameters of all proposed methods in SF network, where we
observe that: (i) The Global method returns inaccurate es-
timations because SF is a completely non-uniform graph.
(ii) Local methods return better estimation results, where
Kernel Densities estimators are sensitive to bandwidth se-
lections. (iii) Again, the Binary method returns accurate
estimations when wu ≈ w

3
or less.

5. CONCLUSIONS
In this paper, we have presented methods to estimate the

number of vertices that are lying within a distance e from
a vertex. Three different methods have been studied. We
have given estimation equations for all methods, as well as
specific space and time bounds. We have applied the pro-
posed methods in both synthetic and real spatial networks,
and we have given performance results. We conclude that:
(a) Global Parameters Estimation method performs efficient
estimations in uniform or almost uniform graphs, (b) Local
Densities methods offer better estimations in non-uniform
graphs, and (c) the Binary Encoding method offers the most
accurate estimations in all graph types, with small space re-
quirements which can be adjusted. An interesting direction
for future work is to study the selectivity estimation for the
number of edges in spatial networks.



(a) Synthetic

(b) Oldenburg

(c) San Francisco

Figure 1: Estimation results.

6. REFERENCES
[1] S. Gupta, S. Kopparty, C. Ravishankar. “Roads,

Codes, and Spatiotemporal Queries” Proceedings of
the 23th ACM Symposium on Principles of Database
Systems, June 2004, Paris, France.

[2] J. N. Hwang, S. R. Lay and A. Lippman. “
Nonparametric multivariate density estimation: a
comparative study.” Transactions on Signal
Processing, 42(10):2795-2810, October 1994

[3] M.C. Jones: “Simple boundary correction for kernel
density estimation”, Statistics and Computing, 3,
135-146, 1993.

[4] M. Klusch, S. Lodi, G. Moro: “Distributed Clustering
Based on Sampling Local Density Estimates”,
Proceedings of International Joint Conference On
Artificial Intelligence, 2003.

[5] R-Tree Portal, http://www.rtreeportal.org/main.html.

[6] J. Sankaranarayanan, H. Alborzi, H. Samet: “Efficient
Query Processing on Spatial Networks”, Proceedings
13th ACM International Symposium on Geographic
Information Systems (GIS), pp.200-209, Bremen,
Germany, 2005.

[7] E. Schikuta: “Grid-Clustering: An efficient

hierarchical clustering method for very large data
sets”, Proceedings of the 13th International Conference
on Pattern Recognition, pp.101-105, 1996.

[8] D.W. Scott: “Multivariate Density Estimation:
Theory, Practice and Visualization”, John Wiley and
Sons Inc., 1992.

[9] X. Shen, S. Agrawal: “Kernel Density Estimation for
An Anomaly Based Intrusion Detection System”,
International Conference on Machine Learning;
Models, Technologies, Applications, p.161-167, 2006.

[10] B. W. Silverman: “Density Estimation for Statistics
and Data Analysis”, Chapman and Hall, 1986.

[11] Y. Tao, C. Faloutsos, D. Papadias: “Spatial Query
Estimation without the Local Uniformity
Assumption”, Geoinformatica, No.10, pp.261-293,
2006.

[12] Y. Theodoridis, T. Sellis: “A Model for the Prediction
of R-Tree Performance”, Proceedings of the 15th ACM
Symposium on Principles of Database Systems, 1996.

[13] M.P. Wand, M.C. Jones: “Kernel Smoothing”,
Chapman and Hall, 1995.


