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Modeling Users Preference Dynamics and Side
Information in Recommender Systems

Dimitrios Rafailidis and Alexandros Nanopoulos

Abstract—In recommender systems user preferences can be
fairly dynamic, as users tend to exploit a wide range of items and
modify their tastes accordingly over time. In this paper, we model
user-item interactions over time using a tensor that has time as a
dimension (mode). To account for the fact that user preferences
change individually, we propose a new measure of user-preference
dynamics (UPD) that captures the rate with which the current
preferences of each user have been shifted. UPD shows the vari-
ability in how users interact with items in recommender systems.
We generate recommendations based on a tensor factorization
technique, where the importance of past user preferences are
weighted according to their UPD values, that is, higher UPD
values downweigh more past user preferences. Additionally, we
exploit users’ side data, such as demographics, which improve
the accuracy of recommendations based on a coupled tensor-
matrix factorization scheme. Our empirical evaluation uses two
real benchmark datasets from the social media platforms Last.fm
and MovieLens, containing users’ history records pertaining to
listening to songs and viewing movies, respectively. We demon-
strate that in both datasets, there are users with a varying level of
dynamics, expressed by the UPD metric. Our experimental results
show that the proposed method outperforms several baselines, by
taking into account both dynamics and side data of users.

Index Terms—Coupled tensor factorization (CTF), recom-
mender systems, users’ dynamics.

I. INTRODUCTION

COLLABORATIVE filtering plays a vital role in recom-
mender systems [1], [2], where users with the same

activity, for example, rating or tagging behavior tend to get
similar recommendations. Following the collaborative filter-
ing paradigm, several matrix and tensor factorization methods
have been proposed, such as [3]–[7]. In addition to these
studies, in this paper, we focus on the user’s preference
dynamics (UPD) in temporal collaborative filtering methods.
We consider user-item interactions over time and capture
how users preferences shift within certain time-periods. There
are many factors that affect UPDs in temporal collaborative
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filtering. According to [8], [12], [13], and [15] users in rec-
ommender systems shift their preferences over time mainly
for the following reasons.

1) New Items Exploration: Users in recommender sys-
tems tend to explore new items over time, instead of
interacting with the same items multiple times.

2) Users’ Past Experience: Users tend to interact with items
that they have previously liked. For instance, if the first
song of a certain artist that a user listens is particularly
good, then the user will probably keep listening songs
from the same artist. Similarly, if the user did not enjoy
the first song, then the user will probably dislike the rest
of this artist’s songs.

3) Popular Items Bias: Users may interact with popular
items to a great extent, irrespective of their history
record. For instance, if a user likes “romantic” movies
but there is a popular “sci-fi” movie, then despite his
past preference the user may prefer to watch it.

4) Neighbors’ Influence: Users preferences may be updated
based on the preferences of their neighbors/friends over
time. According to [17], users can be categorized to:
(a) “stubborn,” that is, users who do not change pref-
erences; (b) “compromising,” that is, users who update
their preferences by combining their initial preferences
and those of their neighbors; or (c) “conforming,” that
is, users who inherit their neighbors’ preferences, ignor-
ing their own. However, user behavior may be dynamic,
because a user may interact differently when faced with
different amounts and types of items.

A. Motivation

For the aforementioned reasons users may change their
interests over time, especially in recommender systems where
they interact customarily with a wide range of items, for
example, when listening to music or watching movies. Recent
research has started to incorporate temporal effects into matrix
factorization models [8], [9], by observing “drifts” in the
rating behavior and modeling the way user and item charac-
teristics change over time [10]–[12]. For instance, users like
cartoons when they are young, but dislike them when grow-
ing up. However, such approaches do not take into account
the fact that in several applications: users interact with items
over time [13], or unlike [13] that focuses on explicit feedback
in the form of ratings, implicit quantitative feedback may be
provided by users, such as the number of times they listened
to a song or downloaded a video within a time period.

User-item interactions over time can be captured with
a sparse tensor whose dimensions (modes) correspond to
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users, items and time-periods [14]. Each nonempty tensor
cell records the count information within the given period.
For instance, Xiong et al. [15] used a Bayesian probabilis-
tic tensor factorization model for movie recommendations.
Spiegel et al. [16] used tensor factorization on evolving data
with the different time-periods being modeled as time slices
in the tensor. In this paper, the importance of users’ past pref-
erences was decreased according to a smoothing factor (SF).
Nevertheless, these approaches ignore the fact that changes
in user preferences can vary individually, that is, some users’
tastes may be very volatile, whereas others may keep their
tastes relatively stable over time.

In addition to UPDs, several studies [18]–[20] exploited
auxiliary information (also known as side information) of
users or items to improve the recommendation accuracy. For
instance, Beel et al. [21] discussed the importance of users’
demographics and private attributes for evaluating recom-
mender systems. In their case study, they showed that it is
crucial to consider users’ age and other private data, when
evaluating recommender systems. For the evaluation, they used
the click-through rate, which expresses how many times the
displayed recommendations were clicked. In their case study,
the authors revealed that younger users (20–24 years old)
tend to have a lower click-through rate than older ones.
Nevertheless, in many cases the private attributes may be
missing, thus prohibiting their direct use in recommender sys-
tems. In addition, the aforementioned methods that exploit side
information do not consider the UPDs.

B. Contribution and Outline

In [22], we introduced a new measure of UPD that cap-
tures the rate with which the current preferences of each
user have been shifted, when listening to music. We gener-
ated artist recommendations, by weighting the importance of
past users’ preferences according to their UPD values, and we
exploited users’ demographics in a coupled tensor factoriza-
tion (CTF) scheme to improve the recommendation accuracy.
In this paper, we extend our preliminary study as follows: we
introduce the generic optimization problem of CTF, then, we
present the optimization problem of CTF for missing data,
and we describe our CTF model calculation. We extend our
experiments, using two benchmark datasets from the social
media platforms Last.fm1 and MovieLens.2 We show that the
UPD values for the majority of users significantly vary, indi-
cating that users significantly shift their preferences over time,
when listening to music or watching movies. In addition, we
experimentally show the effectiveness of our approach against
competitive methods, and we discuss the main findings of
our experimental evaluation. Finally, according to the afore-
mentioned findings, we provide the managerial insights which
could result in more accurate recommendations.

The rest of this paper is organized as follows: after sum-
marizing related studies in Section II, we present some
preliminaries of tensors in Section III. Next, we formulate our
problem in Section IV and we present the proposed model in

1http://www.last.fm: a music discovery service, providing personal recom-
mendations based on the music that users listen to.

2http://www.movielens.org/: a personalized movie recommendation
platform.

Section V. In our experimental results on the two benchmark
datasets, we show the effectiveness of the proposed approach
against competitive methods in Section VI. Finally, we draw
the basic conclusion of this paper in Section VII.

II. RELATED STUDY

The related study can be divided into: 1) collaborative
filtering methods that handle temporal information; 2) ten-
sor factorization techniques that consider data dynamics; and
3) tensor factorization with side information, mainly including
coupled-based tensor factorization techniques. The first two
groups differ, as tensor factorization techniques that consider
data dynamics can also handle temporal information, but not
vice versa.

A. Temporal Collaborative Filtering Methods

With respect to the temporal dimension, several studies
exploited the time information. Stefanidis et al. [24] presented
a framework for generating recommendations based on users’
recent preferences and providing different suggestions under
different temporal specifications. Gao et al. [25] presented a
model for location-based recommendations to a user based
on his personal preferences, to facilitate his exploration of
new areas of a city. This was achieved by exploring temporal
patterns, modeling temporal effects on location-based social
networks. Wang et al. [26] modeled tuples {tourist, time, loca-
tion} into tensors, to perform time-aware recommendations
for travel destinations, by maximizing the temporal-spatial
correlation for tourists. The proposed context-aware recom-
mendation model tried to predict the items and their best
corresponding temporal context. However, the aforementioned
methods focused on the spatial and temporal information of
the data, even as ignoring the UPDs in recommender systems.

B. Tensor Factorization for Data Dynamics

To predict a future link, Dunlavy et al. [14] considered
bipartite graphs with tuples in the form {author, confer-
ence, relationship} that evolve over time. In this paper, the
CANDECOMP/PARAFAC (CP) decomposition [23] (see also
Section III-C) of a tensor X (a, c, t) = 1 was used, denot-
ing if author a links to conference c at time t. The goal
was to predict a new link at time t + 1, by exploring the
3-D structure of temporal data. Liu et al. [27] proposed an
iterative tensor factorization technique with linear time com-
plexity for mining time-evolving graph data. Xiong et al. [15]
added constraints in the time dimension of a Bayesian prob-
abilistic tensor factorization model, to process time-evolving
data and furthermore to generate sales prediction and movie
recommendations. Spiegel et al. [16] proposed a prediction
algorithm on evolving data using tensor factorization. They
used the CP decomposition to a tensor, constructed by tuples
in the form {user, item, time, rating}. Different time-periods
were modeled as time slices in the tensor. Using a SF, expo-
nentially decreasing weights were assigned over time. This
was achieved by multiplying different weights to the time
slices of the tensor, with the weights being calculated based
on the time difference of the recently examined time-period
and the past ones. Nevertheless, the fundamental problem of

http://www.last.fm
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this paper was that the algorithm assigned the same weight for
all users’ ratings at the same time-period, by ignoring the per-
sonal preference dynamics. Finally, in these studies the side
information of users’ private attributes were not exploited. In
addition, there are several studies that consider data streams
in tensor factorization techniques such as [28]. However,
following [14]–[16], [26], and [27], user-item interactions are
considered within certain time periods, for example, days,
weeks, and so on, and thus data streams are out of this paper’s
scope.

C. Tensor Factorization With Side Information

Several studies have addressed the recommendation prob-
lem with tensor-based approaches using auxiliary information.
For instance, Ermis et al. [19] presented a generalized CTF
method for generating personalized activity recommendations
based on geo-locations. According to a probabilistic approach
of tensor factorization models, they generated recommenda-
tions using a coupled analysis of relational datasets, which
were represented as heterogeneous data in the form of matri-
ces with side information: 1) the location features from the
points of interest and 2) user-location preferences from the
GPS trajectory data. In this paper, the main data were tuples
in the form {user, location, activity}, which were modeled to
high-order tensors. Narita et al. [20] introduced two regular-
ization approaches for exploiting the auxiliary information in
tensor factorization. However, both regularization approaches
used an alternative least squares-based technique [23] for fit-
ting the reconstructed tensor to the initial tensor over the
factorization, thus making the method have poor convergence
in the presence of missing data; as for example usually hap-
pens in recommender systems. Acar et al. [18] proposed an
all-at-once optimization approach, which is a gradient-based
approach for fitting outer-product models to high-order tensors
and matrices in a coupled manner. Additionally, they extended
their approach to handle incomplete datasets, that is, missing
entries either in the tensor or in the coupled matrices. Although
the aforementioned studies incorporated auxiliary information
to generate more accurate recommendations, the UPDs were
ignored.

III. PRELIMINARIES

A. Notations

N-order tensors are denoted by the Euler script letter, for
example, X . In this paper, we consider three-order tensors
(i.e., N = 3). Matrices and sets are denoted by italic capi-
tal letters, for example, A, vectors are denoted by boldface
lowercase letters, for example a, and scalars are denoted by
lowercase letters for example, a. The ith column of a matrix is
denoted by a boldface lower letter with a subscript, for exam-
ple, ai of matrix A. The entries (nonempty cells) of a matrix
or a tensor are denoted by lowercase letters with subscripts,
that is, the i1, i2, . . . , and iN entry of a N-way tensor X is
denoted by xi1i2···iN .

B. Tensors Operators and Products

In this section, we present some basic operators and prod-
ucts of matrices and tensors. For further details, interested

readers can refer to [23]. Given a matrix A ∈ R
m×p, the oper-

ator vec(A) concatenates the columns of the matrix and forms
the following vector ∈ R

mp×1 : vec(A) = [
a1 a2 · · · ap

]
.

Let A ∈ Rm×n and B ∈ Rp×q be two matrices, the Kronecker
product, denoted by ⊗, results in a matrix ∈ Rmp×qn as
follows:

⎡

⎢
⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤

⎥
⎦. (1)

Given two matrices A ∈ R
m×p and B ∈ R

q×p, their
Khatri–Rao product is denoted by A � B and it is defined as
the columnwise Kronecker product, resulting in the following
matrix ∈ R(mq)×p:

A � B = [
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bp

]
. (2)

A three-order tensor can be rearranged as a matrix, which
is called the unfolding of the tensor. The mode-n unfolding of
a tensor X ∈ RI1×I2×I3 , with n = 1, 2, 3, is denoted by X(n)

and arranges the mode-n 1-D “fibers” [23], as the columns
of the resulting matrix. Tensor X can be unfolded to all its
three modes-dimensions. Thus, after unfolding the tensor X ,
we create three new matrices X(1), X(2), and X(3), as follows:

X(1) ∈ R
I1×I2I3 , X(2) ∈ R

I2×I1I3 , X(3) ∈ R
I3×I1I2 . (3)

Given two tensors X ∈ RI1×I2×I3 and Y ∈ RI1×I2×I3 , their
Hadamard (elementwise) product is denoted by

(X ∗ Y)i1i2i3 = xi1i2i3 yi1i2i3 . (4)

Let 〈X ,Y〉 be the inner product of tensors X and Y , which
is the sum of products of their entries

〈X ,Y〉 =
I1∑

i1=1

I2∑

i2=1

I3∑

i1=3

xi1i2i3 yi1i2i3 . (5)

Based on (5), the norm of tensor X is defined as

||X || = √〈X ,Y〉 (6)

where || · || denotes the Frobenius norm and the two-norm in
the case of matrices.

The three way outer product of vectors a, b, and c is
defined as

(a ◦ b ◦ c)i,j,k = aibjck. (7)

Given a sequence of matrices A(n) ∈ R
In×R, for n = 1, 2, 3

the notation �A(1), A(2), A(3)� defines a three-order tensor ∈
R

I1×I2×I3 whose elements are calculated as follows:

(�
A(1), A(2), A(3)

�)

i1i2i3
=

R∑

r=1

3∏

n=1

a(n)
inr . (8)

In the case of two matrices, it holds that [A, B] = ABT .
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Fig. 1. R-component CP model for a third-order tensor X results in the
low-rank approximation tensor X̂ .

C. Low-Rank R Approximation of Tensors

The rank of a three-order tensor X , denoted as
rank(X ) = R, is the smallest number of rank-one tensors that
generate the tensor as their sum, that is, the smallest R is
defined as follows:

X =
R∑

i=1

a1
r ◦ a2

r ◦ a3
r

where ◦ is the outer product operation of (7) and a1
r ∈ R

I1×1,
a2

r ∈ R
I2×1, a3

r ∈ R
I3×1 are called factor vectors. As

determining the rank R of the tensor is a nondeterminis-
tic polynomial-time (NP)-hard problem [29], several methods
consider the low-rank R approximation of a tensor X . In this
paper, we consider the CP decomposition [23], which in its
original form calculates the X̂ low-rank R approximation of a
tensor X as follows:

X̂ =
R∑

r=R

λra1
r ◦ a2

r ◦ a3
r (9)

where the factor vectors are normalized by a scalar term λr,
one for each rank-one factor of the decomposition (compris-
ing a vector ∈ R

R×1), thus forcing the factor vectors to be
of unit norm. Also, factor vectors are considered as the rth
columns of matrices, which are called factor matrices of CP,
denoted by A(1) ∈ R

I1×R, A(2) ∈ R
I2×R, and A(3) ∈ R

I3×R,
with A(n) = [an

1 an
2 · · · an

R]. According to (8) and (9), it holds
that X̂ = �A(1), A(2), A(3)�. The goal of the R-component CP
decomposition is to minimize the low rank approximation
error ||X − X̂ ||, where || · || indicates the Frobenius norm,
as described in (6). An overview of the R-component CP
decomposition is depicted in Fig. 1.

IV. PROBLEM FORMULATION

Given the sets U, I, and T of users, items, and time-
periods, respectively, the training set consists of tuples in the
form {user, item, time-period, # of interactions}. The training
tuples are stored into a tensor X ∈ R

|U|×|I|×|T|, with users,
items, time dimensions, and each nonempty cell xu,i,t= # of
interactions. Tensor X is coupled with the auxiliary matrix
Y ∈ R

|U|×|D|, which contains the side information of the |D|
users’ attributes.

The setting of the examined problem is presented in Fig. 2.
Tensor X can be viewed as an aggregation of many slices,
which for the rest of this paper we will call time slices.
Each time slice corresponds to a time-period t = 1 . . . |T|,
denoted by (|U| × |I|)t. The entries in the current/last time

Fig. 2. Tensor X with the auxiliary matrix Y can be viewed as an aggregation
of |T| different time slices. In the current/last time slice (|U| × |I|)|T|, there
are the missing values for a future (test) period. For example, time slices could
be semiannuals and the future (test) period could be the last sixth months of
the ongoing semiannual, corresponding to the current/last time (|U| × |I|)|T|.

slice (|U| × |I|)|T| are the number of users’ interactions within
the ongoing time-period. Note that in the current/last time
slice, a few entries have already been filled by the users’ inter-
actions at the ongoing time-period. The goal is to predict the
missing values for a future (test) period within the ongoing
time-period, that is, the missing values of the current/last time
slice (|U| × |I|)|T|.

Please note that the auxiliary matrix Y ∈ R
|U|×|D| may also

change over time, as users’ attributes can be dynamic too. As
depicted in Fig. 2, each of the |T| time slices of tensor X may
potentially have a different instance of the auxiliary matrix Y .
However, motivated by the fact that most publicly available
benchmark datasets (such as those used in our experimental
evaluation) provide static users’ attributes, we henceforth focus
on the case of a single auxiliary matrix Y for all |T| time slices
of tensor X .

V. PROPOSED MODEL

The inputs of the proposed model are: 1) a third-order tensor
X ∈ R

|U|×|I|×|T|, where U, I and T denote the sets of users,
items and time-periods, respectively; 2) an auxiliary matrix
Y ∈ R

|U|×|D| of users’ side information with a set of D pri-
vate attributes, coupled in the user dimension (mode) U of
tensor X ; and 3) the rank R of X . The proposed model consists
of the following three steps.

1) First, we model the temporal and users’ side information
in tensor X , which is also coupled with the auxiliary
matrix Y , as presented in Fig. 2 (Section V-A).

2) Then, the proposed model downweighs the past entries
of tensor X based on the users’ recent interaction
behavior (Section V-B).
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3) According to a CP decomposition for CTF, the output
is a low-rank R approximation of X coupled with Y ,
which is denoted by a tensor X̂ . Finally, based on X̂ ,
we generate personalized recommendations for a user at
the future (test) time-period in the current/last time slice
(|U| × |I|)|T| of X̂ (Section V-C).

A. Modeling Changing User Preferences and
Side Information

Each nonempty tensor cell xu,i,t contains the number of
interactions of user u with item i at the time period t. The time
period can be days, months, semiannuals or years, correspond-
ing to the |T| different time slices (|U| × |I|)t of tensor X , with
t ∈ 1 . . . |T|. The choice of the time period mainly depends
on the application of the recommender system. This means
that the test time-period, for example, the test month where
the personalized recommendations have to be generated, is
included in the current/last time slice (|U| × |I|)|T| of the
ongoing time-period.

With respect to the users’ side information, the uth row
of the auxiliary matrix Y ∈ R

|U|×|D|, with u ∈ U, corre-
sponds to the set D of the users’ private attributes. In case of
numerical private attributes, for example, age, we perform an
equal-width binning method, where for each numerical entry
in the matrix Y , we store the respective number of the bin. In
the case of categorical attributes, such as county and gender,
we calculate the c distinct categorical values and then we cre-
ate a binary vector ci ∈ R

c×1, where 1 denotes the categorical
attribute of each user. Finally, we concatenate the transformed
numerical and categorical attributes to generate the final |D|
different private attributes in matrix Y . Because a matrix can
be considered as a two-way tensor, we model the auxiliary
matrix Y to a sparse two-order tensor with the help of the
tensor MATLAB toolbox [38]. The reason for using sparse
tensor structures is that in many cases users’ private attributes
are missing in recommender systems.

B. Users Preference Dynamics

Given a test period t within the current/last time slice
(|U| × |I|)|T| of the tensor X , for example, the test month
in the last semiannual, for each user u we calculate the UPDu
value as follows:

UPDu = 1 −
∣∣∣Iu

cur ∩ Iu
prev

∣∣∣
∣∣∣Iu

cur ∪ Iu
prev

∣∣∣
(10)

where Iu
cur ⊆ I denotes the set of items that user u has inter-

acted at the current/last time slice (|U| × |I|)|T| of X and
Iu
prev ⊆ I is the union set of the items that user u has interacted

at all the previous time slices |U| × |I|t, with t = 1 . . . |T|−1.
The nominator of the fraction in (10) is the number of com-
mon items that user u has interacted in the current and the
previous time-periods, whereas the dominator of the fraction
is the number of the distinct items that user u has interacted
overall. According to (10), low UPDu values indicate that user
u preserved his preferences, whereas high ones correspond
to user’s u high tendency to change his preferences at the
current/last time-period (|U| × |I|)|T|. After calculating the |U|

different UPD values, we decrease the weights of each number
of interactions of user u at the |T|−1 different past time slices
(|U| × |I|)t, with t = 1 . . . |T|−1. In particular, the weights are
decreased by multiplying them with the SF sfu = 1 − UPDu
∀u ∈ U and |T| > 1, as follows:

xu,i,t := sfu · xu,i,t (11)

with t = 1, . . . , |T| − 1, i ∈ Iu
prev, and sfu = 1 − UPDu

where := is the assignment operator. In the special case of
|T| = 1, ∀u ∈ U then sfu = 1. Note that the SF sfu is different
for each user u, depending on the users’ interaction behavior
within the current/last time-period. This comes in contrast to
several studies such as [16], where the SF is applied in a
nonpersonalized manner. The outcome of this process is the
recalculation of the respective entries of X based on (11).

C. CP Decomposition for Coupled Tensor Factorization

In our model, we use the CP decomposition of X with the
recalculated entries based on (11). As X is coupled with the
auxiliary matrix Y in the users’ dimension, we have to follow
a CP decomposition for CTF. The rest of this section is orga-
nized as follows: 1) the generic optimization problem of CTF;
2) the special case of CTF with the missing entries for the
test period at the current/last time slice (|U| × |I|)|T|, defining
thus the objective function for our CTF problem; 3) the com-
putation of the partial derivatives of the objective function for
CTF with the missing entries; 4) the calculation of the gradi-
ent values of the objective function based on the previously
computed partial derivatives; 5) the construction of the final
R-component CP model, that is, the reconstructed tensor X̂ ;
and 6) the generation of the recommendations for a user u at
the test time-period t = |T| within the current/last time slice
(|U| × |I|)|T| of X̂ .

1) Generic Optimization Problem of CTF: According
to [18], the CP decomposition of a tensor X with the coupling
of the auxiliary matrix Y is defined as

f
(

A(1), A(2), A(3), V
)

= 1

2

∣∣∣
∣∣∣X −

�
A(1), A(2), A(3)

�∣∣∣
∣∣∣
2

+ · · · + 1

2

∣∣∣
∣∣∣Y − A(1)VT

∣∣∣
∣∣∣
2
. (12)

Following the notation of Section III-C, let matrices A(1) ∈
R

|U|×R, A(2) ∈ R
|I|×R, and A(3) ∈ R

|T|×R be the factor matri-
ces of X and let A(1) and V ∈ R

|D|×R be the factor matrices
extracted from Y (with users’ private attributes), by perform-
ing matrix factorization. As aforementioned in Section III-C,
according to (8), we use the notation X̂ = �A(1), A(2), A(3)�
in (12) to denote the low-rank approximation based on the
CP model. Our goal is to calculate the factor matrices
A(1), A(2), A(3), and V that minimize the objective function
of (12). To solve the minimization problem we use a gradient-
based algorithm [18], which also handles missing data.

2) Optimization Problem of CTF for Missing Entries: Let
W ∈ R

|U|×|I|×|T| be a tensor with missing entries in the
current/last time slice (|U| × |I|)|T|, that is, those of the test
time-period

wi,j,t =
{

1, if xi,j,t is known
0, if xi,j,t is missing.

(13)
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By modifying (12) let fW be the respective objective function
for tensor W and auxiliary matrix Y . In particular, objective
function fW is defined as

fW
(

A(1), A(2), A(3), V
)

= 1

2

∣
∣∣
∣
∣∣W ∗

(
X−

�
A(1), A(2), A(3)

�)∣
∣∣
∣
∣∣
2

. . . + 1

2

∣∣
∣
∣∣
∣Y − A(1)VT

∣∣
∣
∣∣
∣
(2)

. (14)

The objective function of (14) is divided into the following
two terms: 1) fW1(A(1), A(2), A(3)) and 2) f2(A(1), V), which
are the terms of sum of the squared norms in (14). The first
term fW1 corresponds to the least squares problem for fitting
the CP model for tensor X, whereas the second term f2 is
the respective objective function for factorizing the auxiliary
matrix Y .

3) Partial Derivatives of the Objective Function: Let Z =
�A(1), A(2), A(3)� based on (8) and let A(−n) = A(N) · · · �
A(n+1) � A(n−1) � A(1), where � is the Khatri–Rao product
of (2). According to [30], ∀n ∈ 1, . . . , 3, the partial derivatives
of fW1 with respect to A(n) and V are

∂fW1

∂A(n)
= (W(n) ∗ Z(n) − W(n) ∗ X(n)

)
A(−n) (15)

∂fW1

∂V
= 0 (16)

where the partial derivative of fW1 with respect to V is always
equal to 0, because, according to (14), fW1 does not depend
on V . Also, as tensor X and the corresponding tensor W with
the missing values of the test time-period are both coupled in
the users’ dimension (n = 1, that is, the first dimension/mode
of tensor X ), the partial derivatives of the second term f2 with
respect to A(n) and V are

∂f2
∂A(n)

=
{−YV + A(−n)VTV, if n = 1

0, if n �= 1
(17)

∂f2
∂V

= −YTA(n) + VA(i)T
A(n). (18)

Therefore, based on (15)–(18) the partial derivatives of (14)
with respect to A(n) and V are

∂fW
∂A(n)

=

⎧
⎪⎨

⎪⎩

∂fW1

∂A(i)
+ ∂f2

∂A(i)
, if n = 1

∂fW1

∂A(n)
, if n �= 1

(19)

∂fW
∂V

= ∂f2
∂V

. (20)

4) Gradient of the Objective Function: The respective
gradient ∇fW of (14) is formed by vectorizing the par-
tial derivatives of (19) and (20). This is achieved by
using the vec(·) operator of Section III-B, thus computing
a vector ∈ R

(|U|+|I|+|T|+3|D|)×1 as follows:

∇fW =
[

vec

(
∂fW
∂A(1)

)
vec

(
∂fW
∂A(2)

)

. . . vec

(
∂fW
∂A(3)

)
vec

(
∂fW
∂V

)]
. (21)

5) CP Model Calculation: Finally, given the objective func-
tion of fW in (14) and the respective gradient values ∇fW
in (21), we use the first-order optimization algorithm of the
nonlinear conjugate gradient [31], as implemented in the cou-
pled matrix and tensor factorization toolbox [39], to calculate
the factor matrices A(1) ∈ R

|U|×R, A(2) ∈ R
|I|×R, A(3) ∈

R
|T|×R. In doing so, we compute tensor X̂ = �A(1), A(2), A(3)�

based on (8), where X̂ is the low-rank approximation of the
initial tensor X based on the CP model.

6) Generation of Recommendations: The final top-k rec-
ommendations for each user u at the test time-period t are
generated by ordering in descending order the entries of
x̂u,:,t, that is, the respective column of items with indices
u ∈ U and t = |T| within the current/last time slice of X̂ .
Thus, the outcome of the proposed model is the respective
top-k (recommended) items.

VI. EXPERIMENTS

In Sections VI-A and VI-B, we present the two bench-
mark evaluation datasets of Last.fm and MovieLens. Then,
in Section VI-C, we show how the preference dynamics of
users evolve over time in both datasets. In Section VI-D, the
settings of the experiments are provided. In Section VI-E, we
present the experimental results, where we evaluate the perfor-
mance of the proposed method against competitive strategies,
in terms of recommendation accuracy. Finally, the results are
discussed in Section VI-F.

A. Last.fm Dataset

In our experiments, we used the Last.fm—1K dataset [40],
which contains the listening habits of |U| = 992 users. The
dataset consists of tuples in the form of {user, artist, song,
timestamp} over 54 months (till May 5, 2009). In total, there
are |I| = 176 948 artists3 and 19 150 868 listening events, cor-
responding to track-listenings. The distribution of the listening
events is presented in Fig. 3. In our experiments, we split
the dataset into nine time periods (time slots t = S1 . . . S9),
corresponding to nine semiannuals. Thus, we have |T| = 9 dif-
ferent time slices in the tensor, where each slice corresponds
to a period of six months. In the Last.fm dataset, the private
attributes of users are also available, including age, gender
and country, where in many cases the attributes are miss-
ing. Users in this dataset come from 68 different countries.
As gender and country are categorical values, we used the
transformation technique of Section V-A to generate |D| = 71
attributes in total, that is, 68, 2, and 1 for the county, genre,
and age attributes, respectively. In the Last.fm dataset tuples
were transformed in the form of {user, artist, time slot, # of
listening events}, corresponding to the number of times a user
has listened to tracks of an artist within the time slot. Given
a set of training months, the proposed model performs top-k
artist recommendations for a user during a test month. In our
experiments, we used a time window equal to a semiannual,
where as training set we considered all the past months of
the previous semiannuals and the first five months of the cur-
rent ongoing semiannual. Therefore, we have nine different

3To remove extreme sparsity for artists, we applied the p-core filtering
technique, with p = 0.2%|I|.
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Fig. 3. Users’ listening events (track-listenings) in the Last.fm dataset.

test sets of tuples at test months 6, 12, 18, 24, 30, 36, 42,
48, and 54, denoted by red lines in Fig. 3, and nine differ-
ent training sets of tuples at the respective past months. The
goal is to predict the artists that each user is going to lis-
ten at the last (sixth) test month of the current semiannual.
Following the evaluation protocol of [7], [32], and [33], the
quality of recommendations is measured in terms of recall.
Thus, for a test user u that receives a list of k recommended
items (top-k list) at a test period t, recall is defined as the
ratio of the number of relevant artists in the top-k list over
the total number of relevant artists (all artists in the hidden
triplets containing the test user u and the test period t). Other
commonly used measures are precision and F1. However, the
following two factors should be clearly mentioned: 1) for each
user/time-period combination in the test data, a constant num-
ber of artists has to be predicted (artists within the test period t
listened by the user u) and 2) only a prespecified number k
of recommendations is taken into account. Therefore, for this
kind of evaluation protocol, it is redundant to evaluate pre-
cision (thus F1 too) because it is the same as recall up to
multiplicative constants. Because in the Last.fm dataset, each
user does not listen to more than 100 different artists in a test
month, we report average recall (AR), with k = 100 artists.

B. MovieLens Dataset

In addition, in our experiments, we used the
MovieLens—1M dataset [41], with 1 000 209 anony-
mous ratings of 3952 movies of |U| = 6040 users who joined
MovieLens in 2000. The dataset consists of tuples in the form
{user, movie, rating, timestamp} over 36 months. Ratings are
made on a five-star scale, which correspond to users’ viewing
events, assuming that users have rated movies after viewing
them. The distribution of the viewing events is presented
in Fig. 4. Accordingly, we split the dataset into six time
periods (time slots t = S1 . . . S6), corresponding to six semi-
annuals, where we have |T| = 6 different time slices in the
tensor, with each slice corresponding to a six-month period.
In the MovieLens dataset, the private attributes of users are
also available, including age, gender, and 21 occupation types,
such as “academic/educator,” “lawyer,” “doctor/health care,”
“programmer,” and so on. As gender and occupation type
are categorical attributes, we used the same transformation

Fig. 4. Users’ viewing events (movies-watched) in the MovieLens dataset.

technique as in the Last.fm dataset, generating |D| = 24
attributes in total, that is, 21, 2, and 1 for occupation,
gender, and age attributes, respectively. Moreover, in the
MovieLens dataset, we have |I| = 18 movie-genres, such as
“action,” “adventure,” “animation,” “comedy,” “documentary,”
“thriller,” “fantasy,” and so on. In the MovieLens dataset,
tuples were transformed in the form of {user, movie-genre,
time slot, # of viewing events}, corresponding to the number
of times a user watched a movie of a certain movie-genre
within the time slot. The goal is to perform movie-genre
recommendations, instead of movie recommendations, as
users rarely watch (interact) the same movie multiple times.
Given a set of training months, the goal of the proposed
model is to perform top-k movie-genre recommendations for
a user at a test month. Similar to the Last.fm dataset, in our
experiments, we used a time window equal to a semiannual,
where, as training set, we considered all the past months
of the previous semiannuals and the first five months of
the current ongoing semiannual. The goal is to predict the
movie-genre of movies that each user is going to watch at the
last (sixth) test month of the current ongoing semiannual. In
our experiments, we report AR, with k = 3 movie-genres, as
in the MovieLens dataset, users watch movies from no more
than three different movie genres in a test month.

C. Preference Dynamics

For Last.fm in Fig. 5(a) and (b), we group users from the test
months into three different groups based on their: 1) listening
events and 2) UPD values according to (10). From Fig. 5(a),
we observe that users increase their listening events over time,
that is, the percentage of users in group > 300 increases over
time. Fig. 5(b) shows the high variability in how users interact
with items in the Last.fm dataset. The evolution of the three
different groups based on the UPD metric in Fig. 5(b) shows
that users tend to significantly shift their preferences over time,
as the percentage of users in group UPD ≥ 0.75 is significantly
increased over time. According to (10), group UPD ≥ 0.75
contains the users at the test months who have listened to
more than a 75% percentage of new artists than they have
listened during the past months. An interesting observation is
the critical point at 18 months, where users begin to signifi-
cantly shift their preferences. At this point, the percentage of
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(a) (b)

Fig. 5. Evolution of the three different users groups based on (a) listening events and (b) UPD values in Last.fm.

(a) (b)

Fig. 6. Evolution of the three different users groups based on (a) viewing events and (b) UPD values in MovieLens.

users in group UPD ≥ 0.75 starts to significantly increase,
whereas the percentages of users in groups UPD ≤ 0.5 and
0.5 < UPD < 0.75 begin to decrease.

For MovieLens in Fig. 6(a) and (b), we group users from the
test months into three different groups based on their viewing
events and their UPD values, respectively. From Fig. 6(a), we
observe that users increase their viewing events over time (the
increase of users in group >100). Comparing Fig. 5(b) of
Last.fm with Fig. 6(b) of MovieLens, users in the MovieLens
dataset have less dynamic taste, as the percentage of users
in group UPD ≥ 0.75 is not as significantly increased over
time as users in group UPD ≥ 0.75 of Last.fm. This means
that the percentages of users in MovieLens are more fairly
distributed to the UPD groups than the respective percent-
ages of users in Last.fm. Nevertheless, for test month 24 in
MovieLens, we observe a starting point for a slight increase of
the percentage of users in group UPD ≥ 0.75 and a decrease
of the percentages of users in groups 0.5 < UPD < 0.75 and
UPD ≤ 0.5.

D. Settings

In our experiments, we evaluated the proposed model, by
considering: 1) only the modeling of side information of the
private attributes with the CP decomposition, thus performing

CTF and 2) the combination of the private attributes with the
weighting scheme based on UPD in (10) and (11) (UPD-CTF).
As competitive methods, we considered TF [14] and SF [16],
where in the latter method, we varied the SF from 0.1 to 0.9,
concluding to 0.3 for both datasets. Lower values of the SF
mean that the SF method downweighs more the past prefer-
ences, in our case listening and viewing events for the Last.fm
and MovieLens, respectively. As baseline method, we used the
most-popular artists/movie-genres method, which recommends
the top-k most popular artists/movie-genres for each user in
the training months.

Because determining the rank R of the tensor is a NP-hard
problem [29], we varied R by 5, 10, 15, and 20, following the
related studies of [14], [16], and [18] that use CP decomposi-
tion (Section III-C). We concluded to R = 15 for both datasets,
as a further increase of rank R results in a higher computa-
tional cost without paying off in terms of recommendation
accuracy. The TF and SF methods have similar computational
complexities, whereas CTF and UPD-CTF have higher com-
putational complexities for the required coupling of matrix Y
with the auxiliary information of the private attributes. In the
Last.fm dataset for the methods: 1) with coupling and 2) with-
out the coupling, the computational times are: 1) 192.79,
400.65, 432.16, and 472.72 s and 2) 48.92, 108.96, 126.28,
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(a) (b)

Fig. 7. Methods comparison in terms of AR for the test months in (a) Last.fm and (b) MovieLens.

and 208.85 s for R = 5, 10, 15, and 20, respectively. In the
MovieLens dataset, the respective computational times are:
1) 23.6, 38.05, 67.28, and 71.12 s and 2) 11.09, 18.71, 35.63,
and 57.11 s. All experiments were performed on a Windows 7
PC with Intel core i7 2700K at 3.50 GHz, 8 GB RAM using
MATLAB 2011a.

E. Results

In Fig. 7, we compare the performance of the examined
methods in terms of recommendation accuracy (AR). In both
datasets, the proposed UPD-CTF method outperforms the
competitive methods of CTF, TF, SF, and baseline, by incorpo-
rating the auxiliary information of users’ private attributes and
capturing UPDs in a personalized manner based on the weight-
ing scheme of (10) and (11). Using the paired t-test, we found
that the differences between the reported results for the pro-
posed UPD-CTF method against the competitive approaches
were statistically significant at the 0.05 level. SF is slightly
inferior to TF, as SF uses the SF. Despite the fact that the
SF is low (0.3), the SF method works in a nonpersonalized
manner, by ignoring users’ personalized preferences over time.
A significant observation for the Last.fm dataset in Fig. 7(a)
is that after the critical point of 18 months, where users begin
to significantly shift their preferences (Section VI-C), the rec-
ommendation accuracies of TF and SF start to decrease fast,
even lower than the baseline method. This happens because
users in the Last.fm dataset have very dynamic preferences and
both TF and SF neither handle the users’ personalized prefer-
ence dynamics nor consider the users’ private attributes. In the
MovieLens dataset [Fig. 7(b)], both TF and SF outperform the
baseline method, as the users of MovieLens have less dynamic
preferences than those of Last.fm (Section VI-C). Additionally,
an interesting observation is that despite the fact that CTF
does not handle UPDs, the recommendation accuracy is pre-
served relatively well in both datasets, which means that users’
private attributes play a crucial role in recommender sys-
tems, also complying with the observations of [21]. However,
the proposed UPD-CTF method outperforms the competitive
methods in all cases by handling both users’ dynamics and
side information in a personalized manner.

In Table I, we report the performance of the examined
methods for the three users groups based on UPD for the

TABLE I
METHODS PERFORMANCE (AR) FOR THE THREE

DIFFERENT USERS GROUPS BASED ON UPD
FOR TEST MONTHS 12 AND 54 IN LAST.FM

test months 12 and 54 in Last.fm. The reason for selecting
these two months is that they are before and after the crit-
ical point of 18 months, where the UPD begin to change
significantly [Fig. 5(b)]. As expected, the baseline method per-
forms badly in the case of users in groups UPD ≥ 0.75 and
0.5 < UPD < 0.75 than for users in group UPD ≤ 0.5,
as in the latter group users’ preferences remain stable over
time. Additionally, the proposed UPD-CTF method preserves
the recommendation accuracy very well in all three different
groups of users based on UPD, by handling the UPD and
exploiting their personal attributes. Summarizing, the proposed
UPD-CTF method achieves a significant improvement of the
recommendation accuracy by up to 10% on average, either in
cases of balanced percentages of users in the UPD groups, that
is, (12 months) 38.6%, 36.28%, and 25.12% in groups UPD ≥
0.75, 0.5 < UPD < 0.75, and UPD ≤ 0.5, respectively, or in
cases of imbalanced percentages, where the majority of users
are in group UPD ≥ 0.75, that is, (54 months) 96.77%.

In Table II, we present the respective experimental results
based on the three different UPD groups for the test months
18 and 36 of the MovieLens dataset. The reason for select-
ing these two months in MovieLens is that they are before
and after the critical point of 24 months, where the UPD
begin to change on average, as presented in Fig. 6(b). The
proposed UPD-CTF method achieves a recommendation accu-
racy improvement between 4% and 9%, compared to the
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TABLE II
METHODS PERFORMANCE (AR) FOR THE THREE DIFFERENT

USERS GROUPS BASED ON UPD FOR TEST

MONTHS 18 AND 36 IN MOVIELENS

competitive methods for users with high rate of preferences
change in groups UPD ≥ 0.75 and 0.5 < UPD < 0.75. In
contrast to Last.fm, the baseline method outperforms the com-
petitive methods, including UPD-CTF, for users with stable
preferences in group UPD ≤ 0.5. However, the percentage of
users with stable preferences in group UPD ≤ 0.5 is decreased
over time [Fig. 6(b)], for example from 27.27% to 14.29%
between 18 and 36 months. Therefore, the proposed UPD-CTF
method outperforms the competitive methods for all users in
the three different UPD groups on average.

F. Discussion

The main findings of our experimental evaluation are sum-
marized as follows.

1) Our study has demonstrated the existence of preference
dynamics when users interact with items over time, that
is, the fact that users tend to significantly change pref-
erences in the course of time. Nevertheless, the strength
of such a shift may depend on the type of items, for
example, songs, movies, and so on, which users inter-
act with in each application. This clearly relates to the
amount of exploration that users are willing to perform.

2) Compared to the baseline methods, the proposed
approach takes into account UPD in a personal man-
ner, also considering the information about the users’
profiles (CTF). It is this combination that allows the pro-
posed UPD-CTF method to outperform the baselines.
It is plausible to expect that UPD are related to the
users’ characteristics in their profiles, for example, gen-
der, age, or education level. Thus, the joint consideration
of dynamics and profiles makes sense in this kind of
application of recommender systems.

According to the aforementioned findings, the following
managerial insights could result in more accurate recommen-
dations.

1) Managers should be aware of the existence and the
amount of UPD according to the type of the recom-
mended items. As demonstrated in our experimental
study, users tend to change their preferences more
dynamically when interacting with songs than with
movies (Section VI-C). For managers, it is worth to first
investigate the users’ behavior and determine the dynam-
ics in their preferences, to assess whether a dynamic
approach is required for a specific application type.

2) We have grouped users in three categories according to
their preference dynamics. Thus, managers should inves-
tigate this kind of “customer segmentation,” to identify
how many meaningful groups can be considered with
respect to UPD and the users’ behavior within each
group. In different applications, managers may need to
explore more than three groups, also requiring exam-
ining the relative differences in the dynamics of each
group.

3) Additionally, managers should consider in more detail
the relation of user characteristics with the aforemen-
tioned user groups, that is, according to preference
dynamics. It is insightful to investigate specific hypothe-
ses and patterns of user characteristics within each
group; for instance, age groups that show more dynamic
preferences than others, as also suggested in [21].

Finally, in our experimental study, we used publicly avail-
able data to perform an offline evaluation. Nevertheless, it can
be expected that the dynamics of user preferences are affected
not only by the inherent user characteristics (e.g., age, gender,
etc.), but also by the outcomes of the recommender system
itself. Clearly, users may modify their preferences accord-
ingly even when following the provided recommendations.
The investigation of the role of a recommender system in
the formation of user preferences and their dynamics is an
interesting topic for future research.

VII. CONCLUSION

The proposed UPD-CTF model captures UPDs and exploits
side information with private attributes in a CTF scheme for
generating personalized recommendations. In our experiments,
we showed that the proposed model achieves a significant
improvement in recommendation accuracy when compared
against competitive methods, especially in the case of dynamic
users, the percentage of whom have increased over time.
This happens because our model considers user-item inter-
actions over time, by capturing in a personalized manner, the
rate (UPD) with which the current preferences of each user
have shifted and exploiting the user’s side information in the
CTF technique.

In our future study, we plan to extend the proposed model
to incremental tensor factorization techniques [34], [35], as
for each test time-period, we have to retrain the tensor
offline. Additionally, to scale up our CTF technique for mil-
lions of users, we plan to implement a parallel version of
our UPD-CTF model in a distributed framework, similar
to [36] and [37]. However, these studies propose a parallel
version of the baseline CP decomposition of Section III-C.
Finally, an interesting research direction is to automatically
determine the critical points, the points of 18 and 24 months
in Last.fm and MovieLens respectively, in our experiments,
where after these points users tend to significantly shift their
preferences over time.
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