A Performance Evaluation
of Spatial Join Processing Strategies*

Apostolos Papadopoulos', Philippe Rigaux?, Michel Scholl?

! Data Engineering Lab., Aristotle Univ., 54006 Thessaloniki, Greece,
2 Cedric/CNAM, 292 rue St Martin, F-75141 Paris Cedex 03, France

Abstract. We provide an evaluation of query execution plans (QEP)
in the case of queries with one or two spatial joins. The QEPs assume
R*-tree indexed relations and use a common set of spatial joins algo-
rithms, among which one is a novel extension of a strategy based on an
on-the-fly index creation prior to the join with another indexed relation.
A common platform is used on which a set of spatial access methods and
join algorithms are available. The QEPs are implemented with a general
iterator-based spatial query processor, allowing for pipelined QEP exe-
cution, thus minimizing memory space required for intermediate results.

1 Introduction

It is well known that the application of Database Management Systems (DBMS)
join techniques, such as sort-merge, scan and index, hash join and join indices,
to the context of spatial data is not straightforward. This is due to the fact
that these techniques, as well as B-tree-based techniques, intensively rely on the
domain ordering of the relational attributes, which ordering does not exist in
the case of multi-dimensional data.

A large number of spatial access methods (SAM) have been proposed in
the past fifteen years [VG98] as well as a number of spatial join algorithms
[Ore86,GS87,Gun93,BKS93,LR96,PD96,HIRI7,APR 98], some of them relying
on the adaptation of well-known join strategies to the particular requirements
of spatial joins.

These strategies have been validated through experiments on different plat-
forms, with various methodologies, datasets and implementation choices. The
lack of a commonly shared performance methodology and benchmarking ren-
ders difficult a fair comparison among these numerous techniques.

The methodology and evaluation are crucial not only for the choice of a few
efficient spatial join algorithms but also for the optimization of complex queries
involving several joins in sequence (multi-way joins). In the latter more general
case, the generation and evaluation of complex query execution plans (QEP) is

* Work supported by the European Union’s TMR program (“Chorochronos” project,
contract number ERBFMRX-CT96-0056) and by the 1998-1999 French-Greek bilat-
eral protocol.

central to optimization. Only a few papers study the systematic optimization of
spatial queries containing multi-way joins [MP99].

The objective of this paper is two fold: (i) to provide a common framework
and evaluation platform for spatial query processing, and (ii) to use it to exper-
imentally evaluate spatial join processing strategies.

A complex spatial query can be translated into a QEP with some physical
operations such as data access (sequential or through an index), spatial selection,
spatial join, sorting, etc. A QEP is then represented as a binary tree in which
leaves are either indices or data files and internal nodes are physical operators.

We use as a model for spatial query processing the pipelined execution of
such QEPs with each node (operation) being implemented as an iterator [Gra93].
This execution model provides a sound framework: it encompasses spatial and
non-spatial queries, and allows to consider in an uniform setting simple and
large complex queries involving several consecutive joins. Whenever possible,
records are processed one-at-a-time and transfered from one node to the follow-
ing, thereby avoiding the storage of intermediate results.

Such an execution model is not only useful to represent and evaluate complex
queries, but also to specify and make a fair comparison of simple ones. Indeed,
consider a query including a single spatial join between two relations. The join
output is, unfortunately, algorithm dependent. Some algorithms provide as an
output a set of pairs of record identifiers (one per relation), others, such as the
so-called Scan and Index (SAI) strategy provide a set in which each element
is composed of a record (of the first relation) and the identifier of a record in
the second relation. Then to complete the join, the former case requires two
data accesses, while only one data access is necessary in the latter case. This
example illustrates the necessity for a consistent comparison framework. The
above execution model provides such a framework.

Another advantage of this execution model is that it allows not only to com-
pare two QEPs on their time performance but also on their memory space re-
quirement. Some operations cannot be pipelined, e.g., sorting an intermediate
result, and require the completion of an operation before starting the following
operation. Such operators, denoted blocking iterators in this paper, are usually
memory-demanding and raise some complex issues related to the allocation of
the available memory among the nodes of a QEP. In order to make a fair compar-
ison between several QEPs, we shall always assign the same amount of memory
to each QEP during an experiment.

The study performed in this paper is a first contribution to the evaluation
of complex spatial queries that may involve several joins in sequence (multi-way
joins). Based on the above model we evaluate queries with one or two spatial
joins. We make the following assumptions: (i) all relations in the database are
indexed on their spatial attribute, (ii) we choose the R*-tree [BKSS90] for all
indices, (iii) the index is always used for query optimization. While the first
assumption is natural, the second one is restrictive. Indeed, while the R*-tree
is an efficient SAM, there exists a number of other data structures that deserve
some attention, among which it is worth noting the grid based structures derived

from the grid file [NHS84]. The third assumption is also restrictive since it does
not take into account the proposal of several techniques for joining non indexed
relations.

The comparison of QEPs as defined above has been done on a common
general platform developed for spatial query processing evaluation. This platform
provides basic I/O and buffer management, a set of representative SAMs, a
library of spatial operations, and implements a spatial query processor according
to the above iterator model using as nodes the SAMs and spatial operations
available.

The rest of the paper is organized as follows. Section 2 briefly surveys the
various spatial join techniques proposed in the literature and summarizes related
work. The detailed architecture of the query processor is presented in Section 3.
Section 4 deals with our choices for spatial join processing and the generated
QEPs. Section 5 reports on the experiment, the datasets chosen for the evaluation
and the results of the performance evaluation. Some concluding remarks are
given in Section 6.

2 Background and Related Work

We assume each relation has a spatial attribute. The spatial join between re-
lations R; and R, constructs the pairs of tuples from R; X R, whose spatial
attributes satisfy a spatial predicate. We shall restrict this study to intersect
joins, also referred to as overlap joins. Usually, each spatial attribute has for a
value a pair (MBR, spatial object representation), where MBR is the minimum
bounding rectangle of the spatial object. Intersect spatial joins are usually com-
puted in two steps. In the filter step the tuples whose MBR, overlap are selected.
For each pair that passes the filter step, in the refinement step the spatial object
representations are retrieved and the spatial predicate is checked on these spatial
representations [BKSS94].

Many experiments only consider the filter step. This might be misleading for
the following reasons: first one cannot fairly compare two algorithms which do
not yield the same result (for instance if the SAI strategy is used, at the end of the
filter step, part of the record value has been already accessed, which is useful for
the refinement step, while it is not true with the STT strategy [Gun93,BKS93]),
second by considering only the filter step, one ignores its interactions with the re-
finement step, for instance in terms of memory requirements. We shall include in
our experiments all the operations necessary to retrieve data from disk, whether
this data access is for the filter step, or the refinement step. Only the evaluation
of the computational geometry algorithm on the exact spatial representation,
which is equivalent whatever the join strategy, will be excluded.

SAMs can be roughly classified into two categories:
— Space driven structures, among which grids and quadtrees are very popular,

partition the tuples according to some spatial scheme independent from the
spatial data distribution of the indexed relation.

— Data-driven structures, on the other hand, adapt to the spatial data distribu-
tion of tuples. The most popular SAM of this category is the R-tree [Gut84].
The RT-tree [SRF87], the R*-tree [BKSS90] and the X-tree [BKK96] are im-
proved versions of the R-tree. These dynamic SAMs maintain their structure
on each insertion/deletion. In the case of static collections which are not of-
ten updated, packing algorithms [RL85,KF93,LEL97] build optimal R-trees,
called packed R-trees.

Spatial joins algorithms can be classified into three categories depending on
whether each relation is indexed or not.

1. no index: for the case where no index exists on any relation, several par-
titioning techniques have been proposed which partition the tuples into
buckets and then use either hashed based techniques or sweep-line tech-
niques [GS87,PD96,LR96,KS97, APR*98].

2. two indices: when both relations are indexed, the algorithms that have been
proposed depend on the SAM used. [Ore86] is the first known work on spatial
joins. It proposes a 1-dimensional ordering of spatial objects, which are then
indexed on their rank in a B-tree and merge-joined. [Gun93] was the first pro-
posal of an algorithm called Synchronized Tree Traversal (STT) which adapts
to a large family of spatial predicates and tree structures. The STT algo-
rithm of [BKS93] is the most popular one because of its efficiency. Proposed
independently from [Gun93], it uses R*-trees and an efficient depth-first tree
traversal of both trees for intersection joins. The algorithm is sketched below.

Algorithm STT (Node Ny, Node Ns)
begin
for all (e; in Ny)
for all (e; in N3) such that e;.MBRNes.MBR # ()
if (the leaf level is reached) then
output (eq,es)

else
N| = readPage (e;.pagelD); N} = readPage (e2.pagel D);
STT(N’1, N'2)

endif

end

Advanced variants of the algorithm apply some local optimization in order
to reduce the CPU and I/O costs. In particular, when joining two nodes, the
overlapping of entries is computed using a plane-sweeping technique instead
of the brute-force nested loop algorithm shown above. The MBRs of each
node are sorted on the z-coordinate, and a merge-like algorithm is carried
out. This is shown to significantly reduce the number of intersection tests.
3. single index : when only one index exists, the simplest strategy is the Scan
And Index (SAI) strategy, a variant of the nested loop algorithm which scans
the non-indexed relation and for each tuple r delivers to the index of the other

relation a window query with .M/ BR as an argument. The high efficiency
of the STT algorithm suggests that an “on-the-fly” construction of a second
index, followed by STT, could compete with SAI. This idea has inspired the
join algorithm of [LR98] which constructs a seeded-tree on the non indexed
relation which is a R-tree whose first levels match exactly those of the existing
R-tree. It is shown that the strategy outperforms SAI and the naive on-the-
fly construction of an R-tree with dynamic insertion. An improvement of
this idea is the SISJ algorithm of [MP99]. An alternative is to build a packed
R-tree by using bulk-load insertions [LEL97]. Such constructions optimize
the STT algorithm since they reduce the set of nodes to be compared during
traversal. These algorithms are examples of strategies referred to as Build-
and-Match strategies in the sequel.

The complexity of the spatial join operation, the variety of techniques and
the numerous parameters involved in a spatial join render extremely difficult the
comparison between the above proposals briefly sketched above.

Only a few attempts have been made toward a systematic comparison of spa-
tial join strategies. [GOPT98] is a preliminary attempt to integrate in a common
platform the evaluation of spatial query processing strategies. It proposes a web-
based rectangle generator and gives first results on the comparison of three join
strategies: nested loop, SAT and STT. The major limit of this experiment is that
it is built on top of an existing DBMS. This not only limits the robustness of
the results but renders impossible or inefficient the implementation of complex
strategies, the tuning of numerous parameters and a precise analysis.

[MP99] is the first study on multi-way spatial joins. It proposes an itera-
tor pipelined execution of QEPs [Gra93] for multi-way spatial joins, with three
join algorithms, one per category, namely STT, SISJ, and a spatial hash-join
technique [LR96]. An analytical model predicts the cost of QEPs, a dynamic
programming algorithm for choosing the optimal QEP is proposed. The query
optimization model is validated through experimental evaluation.

The modeling of QEPs involving one or several joins in the study reported
below follows the same pipelined iterator based approach. This execution model
is implemented on a platform common to all evaluations. This platform allows
for fine tuning of parameters impacting the strategies performance and is general
enough to implement and evaluate any complex QEP: it is not limited to spatial
joins. Last but not least, such a model and its implementation allow for various
implementation details generally absent from evaluations reported in the litera-
ture. The relation access after a join is an example of implementation “detail”
which accounts for an extremely significant part of the query response time as
shown below.

3 The Query Processor

The platform has been implemented in C++ and runs on top of UNIX or Win-
dowsNT. Its architecture is shown in Fig. 1. It is composed of a database and

three modules which implement some of the standard low-level services of a
centralized DBMS.

The database is a set of binary files. Each binary file either stores a data file
or a SAM. A data file is a sequential list of records. A SAM or index refers to
records in an indexed data file through record identifiers. The lowest level module
is the I/O module, which is in charge of reading (writing) pages from (to) the
disk. The second module manages buffers of pages fetched (flushed) from (to)
the disk through the I/O module. On-top of the buffer management module is
the query processing module, which supports spatial queries.

QEP) _
Query Processor openFile Buffer Manager
closeFile [Buf. pool 1 Buf. pool n ‘
- - P,
SAM + join algorithms getPage ch 5 ch 5
pinPage u]]
Iterators Flush Fetch
STT join Sort [/O module]
SAI join SegSort
Seeded Tree join ~ FileScan . §
write read
SaM join RowAccess I
e N I—
Database .
Binary
(I [[| e

S ———

Fig. 1. Platform architecture

Database and Disk Access

The database (data files and SAM) is stored in binary files divided into
pages whose size is chosen at database creation. A page is structured as a header
followed by an array of fixed-size records which can be either data records or
index entries. The header and record sizes depend on the file. By knowing the
record size, one can compute the number of records per page and the data file
size.

Each page is uniquely identified by its PageID (4 bytes). A record is identi-
fied by a RecordID (8 bytes) which is a pair [PageID, offset] where offset
denotes the record offset in the page.

1. Data files are sequential collections of pages storing data records. In the cur-
rent setting, a record basically is a binary representation of a spatial object.
From the query processing point of view, the most important information
stored in a record is its geometric key, which is, throughout this experiment,
its MBR. A data file can either be accessed sequentially (FileScan in the
sequel) , or by RecordID (RowAccess in the sequel). It is important to note
that the datafiles are not clustered on their geometric representation (i.e.,
objects close in space are not necessarily close on disk).

2. SAMs are structured collections of IndexEntry. An index entry is a pair
[Key, RecordID], where Key denotes the geometric key (here the MBR)
and RecordID identifies a record in the indexed data file. The currently
implemented SAMs are a grid file, an R-tree, an R*-tree and several packed
R-trees. In the sequel, each datafile is indexed with an R*-tree.

Buffer management

The buffer manager handles one or several buffer pools: a data file or index
(SAM) is assigned to one buffer pool, but a buffer pool can handle several indices.
This allows much flexibility when assigning memory to the different parts of a
query execution plan. The buffer pool is a constant-size cache with LRU or FIFO
replacement policy (LRU by default). Pages can be pinned in memory. A pinned
page is never flushed until it is unpinned.

Currently, all algorithms requiring page accesses uniformly access these pages
through the interface provided by the buffer manager. In particular, spatial join
algorithms share this module and therefore cannot rely on a tailored main mem-
ory management or a specialized I/O’s policy unless it has already been imple-
mented in this module.

Query processing module

One of the important design choices for the platform is to allow for any ex-
perimental evaluation of query execution plans (QEP) as generated by database
query optimizers with an algebraic view of query languages. During optimization,
a query is transformed into a QEP represented as a binary tree which captures
the order in which a sequence of physical algebraic operations are going to be
executed. The leaves represent data files or indices, internal nodes represent alge-
braic operations and edges represent dataflows between operations. Examples of
algebraic operations include data access (FileScan or RowAccess), spatial selec-
tions, spatial joins, etc. As mentioned above we use as a common framework for
query execution, a demand-driven process with iterator functions [Gra93]. Each
node (operation) is an iterator. This allows for a pipelined execution of multiple
operations, thereby minimizing the system resources (memory space) required
for intermediate results: data consumed by an iterator, say I, is generated by
its son(s) iterator(s), say J. Records are produced and consumed one-at-a-time.
Iterator I asks iterator J for a record. Therefore the intermediate result of an
operation is not stored in such pipelined operations except for some specific
iterators called blocking iterators, such as sorting.

This design allows for simple QEP creation by “assembling” iterators to-
gether. Consider the QEP for a spatial join R X S implemented by the simple
scan-and-index (SAI) strategy (Fig. 2.a): scan R (FileScan); for each tuple r in
R, execute a window query on index Is with key ».M BR. This gives a record
ID RecordID2 !. Finally read the record with id RecordID2 in S (RowAccess).

! As a matter of fact each index (leaf) access returns an IndexEntry, i.e., a pair [MBR,
RecordID]. For the sake of simplicity, we do not show this MBR on the figures.

The refinement step not represented in the figure can then be performed on the
exact spatial object available in Recordl and Record?2.

<Recordl, Record2>

<Recordl, Record2>

RowAccess
" Sort ! next <Recordl, RecordID2>
' 20" _r - - 4 <Recordl, RecordID2>

RowAccess

TSegSort L <RecordID1, RecordID2>

SAI Join

next next

Recordl

RecordID2

a. A scan-and-index join b. A build and match join

Fig. 2. Query execution plans

This is a fully pipelined QEP: therefore the response time (e.g., the time to
get the first record) is minimal. It is sometimes necessary to introduce blocking
iterators in a QEP which require the consumption of all input data before any
output is possible. Then significant memory is necessary for intermediate results.

As an example, one can introduce a Sort blocking iterator in the QEP of
Fig. 2.a in order to sort the data flow output by the SAI join on the PageID of
the RecordID2 component. This allows to access only once the pages of S instead
of issuing random reads to get the S records, which might lead to several accesses
to the same page. However no record can be delivered to the user before the join
is completely processed.

As a more complex (and realistic) example, consider the QEP of Fig. 2.b. It
implements a different join strategy: an index already exists on S, another one
is built on the fly on R (iterator Build)?, and an STT join is executed. Such a
join delivers pairs of RecordID, hence two further RowAccess, one per relation,
are necessary to complete the query (refinement step). Build is blocking: the
join cannot be started before index Ir has been completely built. In addition,
the maximal amount of available memory should be assigned to this iterator to
avoid as much as possible to flush pages on disk during index construction.

It may happen that a QEP relies on several blocking iterators. In that case
the management of memory is an important issue. Consider the QEP of Fig. 2.b.
The STT node delivers pairs of RecordID, [r;, s;], which resembles the join index
upon non clustered data, as described in [Val87]. The naive strategy depicted
in Fig. 2.b alternates random accesses on the datafiles R and S; then the same
page (either in R or S) will be accessed several times, which leads to a large

2 R can be an intermediate result delivered by a sub-QEP.

number of page faults. The following preprocessing algorithm is proposed in
[Val87] and denoted segmented sort (SegSort) in the sequel: (1) allocate a buffer
of size B; (2) compute the number n of pairs (Recordl,RecordID2) which can
fit in B; (3) load the buffer with n pairs (RecordID1, RecordID2); (4) sort on
RecordID1; (5) access relation R and load records from R (now the buffer is
full); (6) sort on RecordID2; load records from S, one at a time, and perform
the refinement step. Repeat from step (3) until the source (STT join in that
case) is exhausted. Hence, this strategy, by ordering the pairs of records to be
accessed, saves numerous page faults.

The resulting QEP includes two blocking iterators (Build and SegSort) be-
tween which the available buffer memory must be split. Basically there are two
strategies for memory allocation for such QEPs:

1. Flush intermediate results. This is the simplest solution: the total buffer
space M allocated to the QEP is assigned to the Build iterator, the result of
the join (STT) is flushed onto disk and the total space M is then reused for
SegSort. The price to be paid is a possibly very large amount of write and
read operations onto (from) disk for intermediate results.

2. Split memory among iterators and avoid intermediate materialization. Each
of the iterators of the QEP is assigned part of the global memory space M.
Then intermediate results are kept in memory as much as possible but less
memory is available for each iterator [BKV98,ND98].

4 Spatial Join Query Processing

Using the above platform, our objective is to experimentally evaluate strategies
for queries involving one or several spatial joins in sequence.

Fig. 3 illustrates two possible QEPS for processing query Ry X Ry ... X R,,,
using index Iy, I,...I,., which both assume (i) the optimizer tries to use as
much as possible existing spatial indices when generating QEPs and (ii) that
the n-way join is first evaluated on the MBRs (filter step) and then on the ex-
act geometry: an n-way join is performed on a limited number of tuples of the
cartesian product R; X Ry X ...R,, (refinement step, requiring n row accesses).
Both QEPS are left-deep trees [Gra93]. In such trees the right operand of a join
is always an index, as well as the left operand for the left-most node. Another
approach, not investigated here, would consists in an n-way STT, i.e., a synchro-
nized traversal of n R-trees down to the leaves. See [MP99] for a comprehensive
study.

The first strategy (Fig. 3.a) is fully pipelined: a STT join is performed as the
left-most node, and a SAI join is executed for the following joins: at each step
a new index entry [MBR, RecordID] is produced. The MBR is the argument
of a window query for the following join. The result is a tuple i1,1%2,...%, of
record id: the records are then retrieved with RowAccess iterators, one for each
relation, in order to perform the refinement step on the n-way join but on a
limited number of records. The second strategy (Fig. 3.b) uses instead of SAI
the Build-and-Match strategy.

R,<—=[] RowAccess R, <——=[| RowAccess

R, HD RowAccess Match

T g el é \@

a. A left-deep tree with pipelined iterators b. A left-deep tree with blocking iterators

Fig. 3. Two basic strategies for left-deep QEPs

Evidently, the QEPs shown in Fig. 3 are extreme cases. Depending on the
estimated size of output(s), a merge of both strategies can be used for a large
number of joins. More importantly, the refinement step can be done prior to
the completion of the query if it is expected that the candidate set contains a
large number of false hits. By computing the refinement step in a lazy mode, as
suggested in Fig. 3, the cardinality of intermediate results is larger (because of
false hits) but the size of records is smaller.

We do not consider the case of bushy trees since they involve joins algorithms
upon non-indexed relations. As an example of bushy-tree QEP, consider the
following QEP for the join of 4 relations Ry, R2, R3, R4: Ry and R, are joined
using STT as well as Rs and Ry4. The two (non-indexed) intermediate results
must then be joined. In the case of n<3 (only one or two joins) which will be
considered here, only left-deep trees can be generated.

Join strategies

We describe in this section the three variants of the same strategy called
Build-and-Match (Fig. 3.b) which consists in building on the fly an index on a
non indexed intermediate relation and to join the result with an indexed relation.
When the structure built is an R-tree, then the construction is followed by a
regular STT join. The rationale of such an approach is that even though building
the structure is time consuming, the join behind is so efficient that the overall
time performance is better than applying SAI. Of course the building phase is
implemented by a blocking iterator and requires memory space.

STJ

The first one is the Seeded Tree Join (STJ) [LR98]. This technique consists in
building from an existing R-tree, used as a seed, a second R-tree called seeded
R-tree. The motivation behind this approach is that tree matching during the
join phase should be more efficient than if a regular R-tree were constructed.
During the seeding phase, the top k levels of the seed are copied to become the
top k levels of the seeded tree. The entries of the lowest level are called slots.

During the growing phase, the objects of the non indexed source are inserted
in one of the slots: a rectangle is inserted in the slot that contains it or needs
the least enlargement. Whenever the buffer is full, all the slots which contain at
least one full page are written in temporary files.

Copy

Slots

temp. file

Seeding tree Seeded tree

Grown subtree
a. The seeding phase b. The growing phase ¢. Build and cleanup phase

Fig. 4. Seeded tree construction

When the source has been exhausted, the construction of the tree begins: for
each slot, the objects inserted in the associated temporary files (as well as the
objects remaining in the buffer) are loaded to build an R-tree (called a grown
subtree): the slot entry is then modified to point to the root of this grown subtree.
Finally a cleanup phase adjusts the bounding boxes of the nodes (Fig. 4), as in
classical R-trees.

The grown subtrees may have different heights: hence the seeded tree is not
balanced. It can be seen as a forest of relatively small R-trees: one of the expected
advantages of the method is that the construction of each grown subtree is done
in memory.

There is however an important condition to fulfill: the buffer must be large
enough to provide at least one page to each slot. If this is not the case, the pages
associated to a slot will be read and written during the growing phase, thus
rendering the method ineffective.

STR
The second Build-And-Match variant implemented, called Sort-Tile-Recursive
(STR), constructs on the fly a STR packed R-tree [LEL97]. We also experimented
the Hilbert packed R-tree [KF93], but found that the comparison function (based
on the Hilbert values) was more expensive than the centroid comparison of STR.
The algorithm is as follows. First the rectangles from the source are sorted®
by z-coordinate of their centroid. At the end of this step, the size N of the
dataset is known: this allows to estimate the number of leaf pages as P = [N/c]
where c is the page capacity. The dataset is then partitioned into [\/]_3] vertical
slices. The [v/P].c rectangles of each slice are loaded, sorted by the y-coordinate

® The sort is implemented as an iterator which carries out a sort-merge algorithm
according to the design presented in [Gra93].

of their center, grouped into runs of length ¢ and packed into the R-tree leaves.
The upper levels are then constructed according to the same algorithm. At each
level, the nodes are roughly organized in horizontal or vertical slices (Fig .4).

_ g sort/flush Leaves ©slice
_ p load/merge
1

’3?‘ﬁ

a. The sort phase b. Rtree level

Fig.5. STR tree construction

SaM

The third Build-And-Match variant called Sort-and-Match (SaM) is novel. It
uses the STR algorithm but the construction is stopped at the leaf level, and
the pages are not written onto disk. As soon as a leaf [has been produced, it is
joined to the existing R-tree Ir: a window query with the bounding box of [is
generated which retrieves all I leaves I’ such that .M BR intersects I'.M BR. |
and [are then joined with the plane-sweep algorithm already used in the STT
algorithm.

An interesting feature of this algorithm is that, unlike the previous ones, it
does not require the entire structure to be built before the matching phase thus
saving the flushing of this structure onto disk, resulting in much faster response
time.

5 Performance Evaluation

The machine used throughout the experiments is a SUN SparcStation 5 with
32 MB of memory, running SunOS 4.1. We use in our experiments synthetic
datasets, created with the ENST rectangle generator [GOP*98]. This tool* gen-
erates a set of rectangles according to a statistical model whose parameters (size,
coverage, distribution) can be specified. The 3 following statistical models were
used sharing the same 2D universe (map):

1. Counties (called Biotopes in [GOPT98]) simulates a map of counties; rectan-
gles have a shape and location uniformly distributed, and the overlap (ratio
between sum of the areas of the rectangles and map area) is 100%.

* Available at http://www-inf.enst.fr/ bdtest/sigbench/.

Nb records|Pages|Size (MB) Dataset |Pages|Levels|Root entries
20K 769 3.1 COUN20 | 169 2 166
40K 1539 6.3 COUN40 | 330 3 3
60K 2308 9.4 COUNG60 | 483 3 4
80K 3078 12.6 COUNS80 | 650 3 6
100K 3846 15.7 COUN100| 802 3 8
Datafiles R*trees

Fig. 6. Database sample

2. Cities [GOP198] simulates a map of cities: the map contains small rectangles
whose shape is normally distributed (around the square shape) and whose
location is uniformly distributed. The overlap is equal to 5%.

3. Roads simulates a map of roads: rectangles location and shape is uniform as
in Counties but overlap is 200%.

For each of the statistical models, 5 datasets have been generated, with a
size ranging from 20 000 to 100 000 objects referred to as DATxx, where DAT
is in COUN, CIT, ROA and xx ranges from 20 to 100. For example, COUN20
stands for Counties with 20 000 rectangles.

Join strategies are evaluated on the query Clities X Counties in the case of
single joins and the query Clities X Counties X Roads for two-way joins.

We assume a page size of 4K and a buffer size ranging from 400K (100 pages)
to 2.8MB (700 pages). The record size is 158 bytes and the buffer policy is LRU.
Fig. 6 gives some statistics on the generated database (data file and index). Only
the information on Counties is reported. Indeed the sizes do not depend on the
statistical model, so C'ities and Roads have almost identical characteristics. The
fanout (maximum number of entries/page) of an R*tree node is 169. We give the
number of entries in the root since it is an important parameter for the seeded
tree construction.

The main performance criteria are (i) the number of I/0, i.e., the number of
calls (page faults) to the I/O module and (ii) the CPU consumption.

The latter criteria depends on the algorithm. It is either measured as the
number of comparisons (when sorting occurs), or the number of rectangle in-
tersections (for join) or the number of unions (for R-tree construction): see Ap-
pendix A. The parameters chosen are the buffer size, the data set size and of
course, the variants in the query execution plan and the join algorithms.

Single Join

When there is a single join in the query and both relations are indexed, a
good candidate strategy is STT. Part of our work below is related to a closer
assessment, of this choice. To this end, we investigate the behavior of the can-
didate algorithms for single joins, namely SAI and STT. Fig. 7 gives for each
algorithm, the number of I/Os as well as the number of rectangle intersection

tests (NBI), for a buffer set to 250 pages (1 MB). STTr4 stands for a QEP
where the join is followed by a RowAccess operator, while STT is a stand alone
join. Indeed, SAT and STTg4 deliver exactly the same result, namely pairs of
[Record, RecordID], while STT only yields pairs of RecordID.

As expected, the larger the dataset, the worse is SAI performance, both in
I/Os and NBIs. There is a significant overhead as the R*tree size is larger than
the available buffer. This is due to the repeated execution of window queries
with randomly distributed window arguments.

STT outperforms SAI with respect to both I/Os and NBI. But as explained
above, the comparison to be done is not between SAI and STT but between SAI
and STTg4. Then, looking at Fig. 7, the number of I/Os is of the same order
for the two algorithms. Furthermore, it is striking that the RowAccess cost is
more than one order of magnitude larger than the join itself for STT (e.g., for
a dataset size of 100K, there are 104 011 I/Os while the join phase costs only 1
896 I/0s)!

The RowAccess iterator in the QEP implementing STT g4, reads the pages
at random. Then a large number of pages are read more than once. The number
of I/Os depends both on the buffer size and on the record size (here 158, which
is rather low) and can be estimated according to the model in [Yao77].

Since STT’s performance (without RowAccess) is not very sensitive to an
increase in the index size, it should not be very sensitive to a decrease in memory
space. This justifies that most of the buffer space available should be dedicated
to the RowAccess iterator in order to reduce its extremely large cost.

Dataset size
40 000 60 000 80 000 100 000
I/Os | NBI [I/Os [NBI | I/Os [NBI [I/Os | NBI
SAT 19 76111 741]49 885[20 399[81 20627 032[114 805[33 855
STTra |37 557| 2 576 |59 826| 4 000 |81 165| 5 431 |104 011] 6 898
STT 755 257610844 00015705431 1896 |6 898
|Result size:] 116 267 | 171343 | 228332 [288846 |

Fig. 7. Left-most node: join Cities-Counties, buffer size = 250 pages

To reduce the number of datafile accesses, we insert in the QEP a SegSort
iterator before the RowAccess. Pages whose ids are loaded in the SegSort buffer
can then be read in order rather than randomly. The efficiency depends on the
size SGB of this buffer.

Fig. 8 displays the number of I/Os versus the data size, for SAT and STT,
for several values of the parameter SGB. The total buffer size is 250 pages, and
is split into a buffer dedicated to SegSort and a ’global’ buffer whose size is 250
- SGB. STT-xx stands for the STT join where SGB=xx. In order to compare
with the results of Fig. 7, we only access one relation. The larger SGB, the
larger the gain. This is due to the robustness of STT performance with respect

1/0s

to buffer size: its performance is not significantly reduced with a small dedicated
buffer size.

140000

120000

100000 /:

= 5TTra
—— 3TT-40

——5TT-100
50000 =K —— STT-140

/

==

20K 40K BOK BOK 100k
Dataset size

Fig. 8. SegSort experiment

Figure 8 illustrates the gain from sorting the pages to be accessed: for a large
data set size, the gain with STT-200 is almost 3, compared to STTg4.

In conclusion, the combination of STT with a SegSort operator (or any other
mean to reduce the cost of random I/Os, for instance spatial data clustering)
outperforms SAI.

We now compare the performance of the 3 Build-And-Match candidate algo-
rithms (STJ, STR and SaM). Both the Build and the Match phases are consid-
ered, but we do not account for any FileScan. In other words, as stressed above,
we restrict to the case where the join is executed on an intermediate result in
which each tuple is produced one at a time.

Figure 9.a displays the cost of the 3 algorithms for 4 data set sizes. The case
of STJ deserves some discussion. Note first that it is very unlikely that we can
copy more than the root of the seeding tree because of the large fanout (169)
of the R*tree. Indeed, in copying the first level also, the number of slots would
largely exceed the buffer size.

In copying only the root, the number of slots may vary between 2 and 169.
Actually, in our database the root is either almost full (dataset size 20K) or
almost empty (dataset size > 40K). See Figure 6.

_MSTR_mS3aM_[0STJ ESTR ®mSaM ST

50 40 4
45 - 15
.-.l"o | —30
B35 i - ‘
4 o |
£ R 21 |
20 4 — | =15
10 |
5 | 5T
0 L ' 0
40K 80K 100K 40K 100K
Dm‘.usetslze
I/0s
ESTR mSaM 0STJ
90
80
=70 + 1
g |
260

o N

‘wal

Dm.uset slze

Total

Fig. 9. Build and match joins

When the number of slots is large, one obtains a large number of grown R-
trees (one per slot) whose size is small. Then the memory utilization is very low:
an almost empty root with 2 or 3 leaves®. If the number of slots is small, then
there is a small number of large R-trees, each of them requiring a significant
construction time. In all cases, the CPU construction cost is high, although the
I/Os cost is low because each grown subtree can be built in memory.

STR and SaM are extremely efficient with small dataset sizes (40K). Indeed
the construction of the index is entirely done in main memory. Even for large
data sets, SaM is very efficient. Compared to STR, the number of rectangle
intersections is the same, but since the tree is not constructed the number of
I/Os is smaller, the more the data set size increases (it is 20 % smaller than for
STR with a dataset size greater than 80K).

During the match phase, SaM is also efficient: in fact it can be seen as a
sequence of window queries, with two major improvements: (i) leaves are joined,
and not entries, hence one level is saved during tree traversal, and (ii) more
importantly, two successive leaves are located in the same part of the search
space. Therefore the path in the R-tree is likely to be already loaded in the
buffer.

® We do not pack the roots of grown subtrees, as proposed in [LR98]. This renders the
data structure and implementation complex, and has some further impact on the
design of the STT.

We now test the robustness of the algorithms performance with respect to
the buffer size. In Figure 10, we measure the performance of the algorithms by
joining two 100K datasets and letting the buffer size vary from 100 pages (400K)
to 700 pages (2.8 MB). RowAccess is not taken into account. We do not include
the cost of STJ for the smallest buffer size since buffer thrashing cannot be
avoided in that case.

©000 4

5000 o
e
—
4000 ¢ — — i ————
—_— —— 8.
— —
e . _
... — ——5TT
& zom0 | N — B-si
9 - SaM
—#—5TJ
-
L -
2 000 -
e o«
e ——— .

1000

100 pages 260 pages 400 pages 580 pages 700 pages
Buffer size

Fig. 10. JOIN Cities 100K - Counties 100K, varying buffer

Looking at Figure 10, the following remarks are noteworthy: (i) the sort-based
algorithms benefit from large buffers; this is less clear for STJ; (ii) as expected,
STT performance is robust with respect to buffer size; this is important since
algorithms whose memory requirement is known and reasonable in size allow for
more flexibility when assigning memory among several operators, as shown in
the next section. Observe also that when the Build phase can be performed in
memory, the Join phase of SaM outperforms STT; (iii) the larger the buffer size,
the more SaM outperforms the two other Build-And-Match strategies: while its
gain over STR is only 20% for small buffer size, it reaches three for a buffer
capacity of 700 pages.

Two way joins

This section relies on the above results for the evaluation of QEPs involving
two joins. In the sequel, the left-most node of the QEP is always an STT al-
gorithm performed on the two existing R*trees (on Cities and Counties) which
delivers pairs of index entries [i1,i2]. The name of a join algorithm denotes the

B0 mCPU EI0 mCcPU

g 8
T
g8

§120 : 51000 |
£100 - H | |
Ew- . Sl |
fo | 1
F o D i o400 —— |
20 - 200 -
J . . Tl e
SAl STR SaM sTJ SAl STR SaM sTY
40K 100K

Fig.11. Two way joins

second join algorithm, which takes the result of STT, builds a structure and
performs the join with the index on Roads.

Note that in that case one does not save a RowAccess with SAI for the
refinement step. Indeed as the Build-And-Match strategies, SAI reads as an
entry only an index entry [RecordID,MBR] from the STT join. The result is, in
all cases, a set of triplets of index entries.

The datasets Counties, Cities and Roads, have equal size, and a fixed buffer
of 500 pages has been chosen. We make the experiments for the medium size of
40K and the larger size of 100K. The latter 2 way-join yields 865 473 records,
while the former 314 617 records.

Figure 11 gives the response time for SAI and the three variants of Build-
And-Match algorithms. Let us look first at SAI performance. For a small dataset
size (40K), the index fits in memory, and only few I/Os are generated by the
algorithm. However the CPU cost is high because of the large number of inter-
section tests. For large dataset sizes, the number of I/Os is huge, rendering this
algorithm definitely not the right candidate.

STJ outperforms SAT for large datasets. But its performance is always much
below that of SaM and STR. The explanation of this discrepancy is the following.
For a 40K size, the first level of the seeding tree could be copied, resulting into
370 slots. The intermediate result consists of 116 267 entries. So, there is an
average of 314 entries per slot: each subtree includes a root with an average of
two leaves, leading to a very bad space utilization. A large number of window
queries are generated due to the unbalance of the matched R-tree. In the case
of 100K datasets, only 8 slots can be used, and the intermediate result consists
of 288 846 records. Hence we must construct a few, large R-trees, which is very
time consuming.

SaM significantly outperforms STR, mostly because it saves the construction
of the R-tree structure, and also because the join phase is very efficient. It is
worth noting, finally, that SAI is a good candidate for small datasets sizes,
although its CPU cost is still larger. One should not forget that SAI is, in that
case, the only fully pipelined QEP. Therefore the response time is very short, a

parameter which can be essential when the regularity of the data output is more
important than the overall resource consumption.

Discussion
By considering complete QEPs, including the I/O operations for the refine-

ment step, we were able to identify the bottlenecks and the interactions between
the successive parts of a QEP.

The efficiency of the commonly accepted STT algorithm is natural: an index
is a small, structured collection of data, so joining two indices is more efficient
than other strategies involving the data files. The counterpart, however, is the
cost of accessing the records after the join for the refinement step, whose cost
is often ignored in evaluations, although several papers report the problem (see
for instance [PD96] and the recent work of [AGPZ99]). It should be noted that
in pure relational optimization, the manipulation of RecordID lists has been
considered for a long time to be less efficient than the (indexed) nested loop join
[BE77]. Even nowadays, the ORACLE DBMS does use a SAI strategy in the
presence of two indices [Ora]. In the context of spatial databases, though, SAI
provides a prohibitive cost as soon as the index size is larger than the buffer
and the number of window queries is high. Whenever STT is chosen, we face
the cost of accessing the two relations for the refinement step. When data is not
spatially clustered, the present experiment suggests to introduce a scheduling of
row accesses through a specific iterator. We used the algorithm of [Val87], but
other techniques are available [Gra93]. The combination of STT and SegSort
outperforms SAI for large datasets, in part because of the robustness of STT
with respect to the buffer size.

For two-way joins, the same guidelines should apply. Whenever we intend
to build an index for subsequent matching with an existing R-tree, the build
algorithm performance should not degrade when there is a shortage of buffer
space, since most of the available space should be dedicated to the costly access to
records after the join. We experimented three such Build-And-Match strategies: a
top-down index construction (STJ), a bottom-up index construction (STR) and
an intermediate strategy which avoids the full index construction (SaM). Several
problems were encountered with STJ, while the classical solutions based on
sorting appear quite effective. They provide a simple, robust and efficient solution
to the problem of organizing an intermediate result prior to its matching with an
existing index. The SaM algorithm was shown to be a very good candidate: it can
be carried out with reasonably low memory space and provides the best response
time since its Build phase is not completely blocking: records are produced before
the build phase is completed.

6 Conclusion and Future Work

The contribution of this paper is three fold: (i) provide an evaluation platform
general enough to experimentally evaluate complex plans for processing spatial
queries and to study the impact on performance of design parameters such as
buffer size, (ii) show that in build-and-match strategies for spatial joins it was

not necessary to completely build the index before the join: this resulted into a
join strategy called SaM that was shown in our experiment to outperform the
other known build-and-match strategies, (iii) show that physical operations that
occur in the query execution plan associated with a join strategy have a large
impact on performance. For example, we studied the impact of record access
after the join, which is a very costly operation.

The performance evaluation stressed the importance of memory allocation
in the optimization of complex QEPs. The allocation of available buffer space
among the (blocking) operators of a QEP, although it has been addressed at
length in a pure relational setting, it is still an open problem. We intend to
refine our evaluation by studying the impact of selectivity and relation size on
the memory allocation. Some other parameters such as the data set distribution
or the placement of the record access in the QEP may also have some impact.
The aim is to exhibit a cost model simple enough to be used in an optimization
phase to decide for memory allocation.

References

[AGPZ99] D. Abel, V. Gaede, R. Power, and X. Zhou. Caching Strategies for Spatial
Joins. Geolnformatica, 1999. To appear.

[APRT98] L. Arge, O. Procopiuc, S. Ramaswami, T. Suel, and J. Vitter. Scalable
Sweeping Based Spatial Join. In Proc. Intl. Conf. on Very Large Data
Bases, 1998.

[BE77] M. Blasgen and K. Eswaran. Storage and access in relational databases.
IBM System Journal, 1977.

[BKK96] S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree: An Index Structure
for High-Dimensional Data. In Proc. Intl. Conf. on Very Large Data Bases,
1996.

[BKS93] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of Spatial
Joins Using R-Trees. In Proc. ACM SIGMOD Symp. on the Management
of Data, 1993.

[BKSS90] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R*tree : An
Efficient and Robust Access Method for Points and Rectangles. In Proc.
ACM SIGMOD Intl. Symp. on the Management of Data, pages 322-331,
1990.

[BKSS94] T. Brinkhoff, H.P. Kriegel, R. Schneider, and B. Seeger. Multi-Step Process-
ing of Spatial Joins. In Proc. ACM SIGMOD Symp. on the Management of
Data, pages 197-208, 1994.

[BKV98] L. Bouganim, O. Kapitskaia, and P. Valduriez. Memory Adaptative Schedul-
ing for Large Query Execution. In Proc. Intl. Conf. on Information and
Knowledge Management, 1998.

[GOP*98] O. Gunther, V. Oria, P. Picouet, J.-M. Saglio, and M. Scholl. Benchmarking
Spatial Joins A La Carte. In Proc. Intl. Conf. on Scientific and Statistical
Databases, 1998.

[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Comput-
ing Surveys, 25(2):73-170, 1993.

[GS87] R.H. Giiting and W. Schilling. A Practical Divide-and-Conquer Algorithm
for the Rectangle Intersection Problem. Information Sciences, 42:95-112,
1987.

[Gun93|

[Gut84]

[HIRI7]

[KF93]
[KS97]

[LEL97]

[LR96]

[LROS

[MP99]

[ND9S]

[NHS84]

[Ora]

[Ore86]

[PDY6]

[RL85]

[SRF87]

[Valg7]

[VGO8]

[Yao77]

O. Gunther. Efficient Computation of Spatial Joins. In Proc. IEEE Intl.
Conf. on Data Engineering, pages 50-59, 1993.

A. Guttman. R-trees : A Dynamic Index Structure for Spatial Searching. In
Proc. ACM SIGMOD Intl. Symp. on the Management of Data, pages 45-57,
1984.

Y.-W. Huang, N. Jing, and E.A. Rudensteiner. Spatial Joins Using R-trees:
Breadth-first Traversal with Global Optimizations. In Proc. Intl. Conf. on
Very Large Data Bases, 1997.

I. Kamel and C. Faloutsos. On Packing Rtrees. In Proc. Intl. Conf. on
Information and Knowledge Management (CIKM), 1993.

N. Koudas and K. C. Sevcik. Size separation spatial join. In Proc. ACM
SIGMOD Symp. on the Management of Data, 1997.

S. Leutenegger, J. Edgington, and M. Lopez. STR: a Simple and Efficient
Algorithm for Rtree Packing. In Proc. IEEE Intl. Conf. on Data Engineering
(ICDE), 1997.

M.-L. Lo and C.V. Ravishankar. Spatial Hash-Joins. In Proc. ACM SIG-
MOD Symp. on the Management of Data, pages 247-258, 1996.

M.-L. Lo and C.V. Ravishankar. The Design and Implementation of Seeded
Trees: An Efficient Method for Spatial Joins. IEEE Transactions on Knowl-
edge and Data Engineering, 10(1), 1998. First published in SIGMOD’94.
N. Mamoulis and D. Papadias. Integration of spatial join algorithms for
joining multiple inputs. In Proc. ACM SIGMOD Symp. on the Management
of Data, 1999.

B. Nag and D. J. DeWitt. Memory Allocation Strategies for Complex De-
cision Support Queries. In Proc. Intl. Conf. on Information and Knowledge
Management, 1998.

J. Nievergelt, H. Hinterger, and K.C. Sevcik. The Grid File: An Adapt-
able Symmetric Multikey File Structure. ACM Transactions on Database
Systems, 9(1):38-71, 1984.

Oracle 8 Server Concepts, Chap. 19 (The Optimizer). Oracle Technical
Documentation.

J. A. Orenstein. Spatial Query Processing in an Object-Oriented Database
System. In Proc. ACM SIGMOD Symp. on the Management of Data, pages
326-336, 1986.

J.M. Patel and D. J. DeWitt. Partition Based Spatial-Merge Join. In Proc.
ACM SIGMOD Symp. on the Management of Data, pages 259-270, 1996.
N. Roussopoulos and D. Leifker. Direct Spatial Search on Pictorial
Databases Using Packed R-Trees. In Proc. ACM SIGMOD Symp. on the
Management of Data, pages 17-26, 1985.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+Tree: A Dynamic
Index for Multi-Dimensional Objects. In Proc. Intl. Conf. on Very Large
Data Bases (VLDB), pages 507-518, 1987.

P. Valduriez. Join Indices. ACM Trans. on Database Systems, 12(2):218-
246, 1987.

V.Gaede and O. Guenther. Multidimensional Access Methods. ACM
Computing Surveys, 1998. available at http://www.icsi.berkeley.edu/ oliv-
erg/survey.ps.Z.

S. B. Yao. Approximating Block Accesses in Data Base Organizations.
Communication of the ACM, 20(4), 1977.

Appendix A

We give below a simple cost model for estimating the response time of an al-
gorithm (query), which includes both I/Os and CPU time. For the I/O time
calculation, we just assume that each I/0O, i.e., that each disk access has a fixed
cost of 10msec. Therefore, if nb;o denotes the number of I/Os, the time cost (in
seconds) due to the disk is:

Tdisk =nb_o-0.01 (].)

In order to estimate CPU time, we restricted to the following operations: rect-
angle intersections, rectangle unions and sort comparisons. The parameters are
then: (a) the number of rectangle intersections nb_inter, (b) the number of num-
ber comparisons nb_comp and (¢) the number of rectangle unions nb_union.
Since we consider a two-dimensional address space (generalizations are straight-
forward), each test for rectangle intersection costs four CPU instructions (two
comparisons per dimension). Also, each rectangle union costs four CPU instruc-
tions. Finally, each comparison between two numbers costs one CPU instruction.
If MIPS denotes the number of instructions executed in the CPU per second,
then the time for each operation is calculated as:

nb_inter - 4

—6
MIPS 10)

Tinter =

nb_union - 4

- -6
nb_comp _
Teomn = S7pg 107 W
The CPU cost is thus estimated as
Tproc = Tinter + Tunion + Tcomp (5)

In addition to the above CPU costs, we assume that each read or write opera-
tion contributes to a CPU overhead of 5000 CPU instructions for pre and post
processing of the page:

nb_io - 5000 _
Torer = Zhirps 10)
The total CPU cost is then
TCPU - Tprep + Tproc (7)

The response time of a query is then estimated as:

Tresponse =Teopu + Taisk (8)

