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Abstract

R-trees, since their introduction in 1984, have been
proven to be one of the most well-behaved practical data
structures for accommodating dynamic massive sets of ge-
ometric objects and conducting a diverse set of queries on
such data-sets in real-world applications. In this paper we
introduce a new technique for merging two R-trees into a
new one of very good quality. Our method avoids both
the employment of bulk insertions and the solution of bulk-
loading, from scratch, the new tree using the data of the
original trees. Additionally, unlike previous approaches,
it does not make any assumptions about data-set distribu-
tions. Experimental results provide evidence on the runtime
efficiency of our method and illustrate the good query per-
formance of the produced indices.

1. Introduction

During the last years, several applications appeared that
call for the efficient manipulation of massive sets of geo-
metric objects like points, lines, areas or volumes in one or
more dimensions; this is particularly evident in Geographi-
cal Information Systems, in CAD/VLSI design, and in mo-
bile object movement detection and prediction. Databases
that accommodate this kind of objects are called spatial and
they employ data structures capable of answering various
geometric queries, like range queries that ask for all objects
lying within a given region, or nearest-neighbour queries
that seek the object closest to a given object, or join queries
that question for all pairs of objects satisfying a given pred-
icate on the set of objects that they accommodate.

The “diverse query types” requirement, combined with
the massive volume of the involved data-sets, was the main
reason why practical, general-purpose data structures are in
fact used in almost all real-world applications. This also jus-
tifies why R-trees [13] became so popular from the research
point of view as proved by the so many variants [20]. In

short, an R-tree is a height-balanced tree similar to a B+-
tree; actually, it can be considered an extension of the latter
structure for multi-dimensional data. The minimum bound-
ing rectangle (MBR) of each geometric object, along with a
pointer to the address where the object actually resides, are
stored into the leaves. Each internal node entry consists of
a pair (pointer to a subtree T, MBR of T), with the MBR of
a tree T defined as the MBR enclosing all the MBRs stored
in T. Like in B+-trees, each node contains at least m and at
most M entries, where m ≤ M/2. On the other hand, unlike
B+-trees, a search query may activate several search paths
from the root to the R-tree leaves, resulting, in the worst
case, in a linear to the size of data-set performance just to
retrieve a few objects.

Each one of the proposed variants of the R-tree aims at
improving the performance by adjusting some parameters.
For example, in R*-trees of Beckmann et al. [3], which are
widely accepted as achieving the best performance, a num-
ber of heuristics were proposed, like forced re-insertions
during insertions (as in the case of deletions), buffering and
optimization criteria for splitting/merging nodes and adjust-
ing the involved MBRs. Still, in spite of the intensive re-
search, a hard fact remains: the construction of any R-tree
version by using repeated insertions does not necessarily
mean that a “good” tree is produced in terms of query per-
formance. In fact, the linear worst-case query time com-
plexity cannot even be avoided.

On the other hand, there are numerous applications that
generate large amounts of data. That data must either be
accommodated in an existing index or be used to build a
new index from scratch. The first problem is known as bulk
insertion, while the second one as bulk-loading. Finally,
there exists a third case of dealing with large amounts of
data, in which one needs to unify data-sets indexed by sepa-
rate (auxiliary) data structures into a single indexed data-set.
This operation is usually called merging. In this paper, we
deal with merging.

While the problem of merging is a common one in main
memory data structures, like, for example, priority queues



or red-black trees [11, 21], there exists limited research in
the database area. Actually, to our knowledge, the only
works dealing with merging database indices —R-trees, to
be specific— in a rather restricted context are those of Run-
densteiner et al. [7, 8, 9], despite the practical nature of the
operation. For instance, consider the situation of the consol-
idation of two companies; it is reasonable for one to expect
that the existing (separate) spatial indices must be merged.
Or the case where a research institute department maintains
geological data-sets concerning adjoining areas which must
be combined into larger ones for research purposes.

One can argue that the problem of merging can be treated
with either bulk-inserting the data of one tree into the other
or just bulk-loading, from scratch, a new tree using simply
the data of the two old ones. Both actions ignore the useful
information that the existing trees already carry. Further-
more, superlinear time complexity is needed to accomplish
the task in either case. These observations were the starting
point of the present work, which aimed at devising an effi-
cient merging algorithm for R-trees, not only from the time
complexity perspective though; additionally, the produced
indices are well-behaved.

The rest of the paper is organized as follows: Sec-
tion 2 presents the (closely) related problems of bulk- in-
sertion/loading while discussing the previous solution of
Rundensteiner et al. In Section 3 we present the algorithms
for merging two R-trees. Section 4 gives the performance
study, while Section 5 concludes our work.

2. Related work

Various techniques for R-trees have been introduced
which, by exploiting an a priori knowledge of the static
data-sets, build the structure from scratch and achieve bet-
ter utilization and search performance in the average case
than construction by repeated insertions would achieve. The
majority of them apply a pre-sorting on data, according to
some total order, and then bulk-load the index: [24] was
one of the first attempts on bulk-loading R-trees. In [16] a
Hilbert sorting technique was used to first sort data before
building the R-tree. [18] extended this approach, employing
a more elaborate technique, according to which successive
sorting and division of data into slabs for each of the dimen-
sions is applied. In [4, 6] a recursive top-down algorithm is
employed, which, operating in a manner similar to quick
sort, determines the tree topology (height, fan-out, etc.) and
uses a split strategy to bisect the data in secondary storage
and construct the index directory in a depth-first, post order
way. Here we must note that bulk-loading algorithms for
other categories of indices than R-trees do exist; the inter-
ested reader could, for instance, consult [10, 12, 14, 15].

As for bulk insertions in R-trees, [5, 2] proposed the
building of indices with repeated block-wise insertion,

where buffers are attached to index pages. During the in-
sertion, each object is inserted into the buffer of the root.
When the root buffer overflows, all objects are dispatched to
the next level and so on, until the leaf level is reached. Al-
ternative approaches, based on sorted-wise insertions, were
presented in [17, 22, 23]. Finally, [7, 8] presented algo-
rithms for merging two R-trees, in the context of bulk in-
sertions, under rather strict conditions: When one wants
to bulk-insert a moderate number of new data, one con-
structs a small R-tree and then tries to identify a suitable
index entry in the existing large tree, into which the root
of the small one is inserted, and then handles the overflow
that may occur. As the authors state, their approach, termed
Small-Tree-Large-Tree (STLT), “. . . is a solution for bulk
insertion of skewed data sets but not for non-skewed data
insertions”. The STLT approach, which relates remotely to
the Seeded R-tree spatial joins [19], was also employed to
cope with bulk insertions in [9], where the GBI method is
introduced, which, firstly, finds the clusters of the input set
with a k-means clustering algorithm, and then repeatedly
applies STLT to accommodate the identified clusters.

In the following section we will present our solution,
which, given two R-trees, constructs a new one, their union,
by a linear top-down traversal of the smallest one. Our ap-
proach does not make any assumptions on data distribution;
it just capitalizes on the information that the input R-trees
carry: whole subtrees of one of the input trees are accom-
modated whenever possible, while the entirety of the tree
can be inserted as a single entry in the ideal case. This
process is driven by applying certain criteria for deciding
whether each handled subtree is going to be left intact or
decomposed to its individual entries.

3. Description of our method

3.1. Prerequisites

In this section we will describe a series of individual al-
gorithms that, when combined together, accomplish merg-
ing two R-trees into one. However, before we can do that, it
is necessary to lay the groundwork, to explain the concepts
that will aid the comprehension of all that follows.

The merging is performed in an asymmetric manner.
That is, the two trees are not treated equally during the pro-
cess; on the contrary it is always assumed that one of them
is to be inserted into the other. Still, the algorithms are de-
fined in such a way that it is perfectly possible for any R-tree
to be inserted in any other, so that the role of the two trees
is chosen based solely on performance considerations. The
tree on which the insertion is performed and the tree which
is being inserted will henceforth be called the receiving tree
and the giving tree, respectively.



Now, in order to insert one of the trees into the other, the
availability of certain auxiliary structures in external mem-
ory is deemed necessary. More specifically, two buffers
need to be attached to every node of the receiving tree that is
accessed during the merging process. Note that they are not
required to have been allocated beforehand, but instead they
can be created and reused as needed. In addition, it should
be noted that these are variable-size buffers, expanded and
contracted according to the number of elements that are
stored within. These two buffers will henceforth be called
the insertion queue and the local insertion queue. In partic-
ular, the insertion queue of a node may store entries that are
destined to the node itself or to its children, while the local
insertion queue may only store entries that are destined to
the node itself. It should be obvious from their definition
that the two queues are one and the same on the leaves.

During the merging process, there are certain queues that
have to be accessed at any time. In particular, the insertion
queue of the current node is read from and written into, the
insertion queues of the child nodes are written into, and the
local insertion queue of the current node is written into as
well. Queues are read from sequentially, from the begin-
ning to the end, and are always written into beyond their
end, where new entries are appended. Thus, if M is the
maximum number of entries inside a node, at least M + 3
pages of main memory need to be available for the queues
to be accessed in an optimal fashion: 2 pages for the node’s
insertion queue, M for the child nodes’ insertion queues,
and 1 for the node’s local insertion queue. In other words,
one page is needed for reading, storing the page that con-
tains the current entry, and one page for writing, storing the
tail of each queue.

All this means that merging the trees requires more
memory compared to the elementary R-tree algorithms,
which only need one page at a time that stores the current
node. In addition, in accordance with those algorithms, it
is preferred to keep the entire current path of the receiving
tree in main memory, thus increasing its usage somewhat
more. If the total available memory is more than the min-
imally required amount (and it usually is), the rest can be
used as a cache for the nodes of the giving tree as well as
for the various queues. On the other hand, it is not neces-
sary to cache the nodes of the receiving tree, since each of
them is accessed at most once during the merging process.

After covering these prerequisites, we can now proceed
with the description of the algorithms that result in the
merging. We will work our way bottom-up, gradually build-
ing the whole out of the parts. Therefore each algorithm
presented will only depend on the ones that will have al-
ready been presented, so as to assist its comprehension.

3.2. Generalised split

The splitting algorithm used for the merging of the trees
is the split of the R*-tree [3]. As with all splitting algo-
rithms that have been proposed for the R-tree and its vari-
ants, the algorithm separates the M+1 entries of an overfull
node into two parts. No other quantity of entries needs to be
taken into account, since the elementary insertion algorithm
always inserts one element at a time.

However, during merging there is a significant quantity
of elements that are inserted to the receiving tree, and the
way the algorithms operate makes it perfectly possible, and
likely, that multiple elements are inserted into one node at
the same time. Therefore, the split of a node needs to be
generalised, in order to be able to handle nodes with an ar-
bitrary number of entries.

Fortunately, such a generalization is not very hard to con-
ceive; all we have to do is redefine the minimum and maxi-
mum number of entries that each of the two resulting nodes
may receive. It is reminded here that, when dealing with
M +1 entries, each of the resulting nodes may receive from
m to M+1−m out of those, where m is the minimum num-
ber of entries that a node can contain. So, in the generalised
case of L entries contained inside the overfull node, we need
to find the minimum l and maximum L− l number of entries
that each of the new nodes may contain.

One of the simplest solutions to this problem, which is
also the one that was chosen as the preferred one, is to keep
the minimum number of entries in the new nodes and the
total number of entries of the overfull node under a constant
ratio, and make this ratio be the same as in the original, non-
generalised case. Or, in other words, l =

⌊
Lm

M+1

⌋
. This way,

the original case remains as it is, and after that there is a
gradual increase of the minimum value.

All that remains to be explained is how this generalised
split behaves with regard to the amount of available main
memory. That is, in order to function properly, it first has
to be able to load into main memory all the entries which
are destined to the node that is being operated upon. For-
tunately, thanks to the minimum requirements of the whole
process that have already been presented, it will almost al-
ways be possible to do exactly that. Nevertheless, when this
is not the case, the following method is used: The maximum
possible number of entries is loaded into main memory, and
the split is performed based on those. Then the rest of them
are distributed among the two new nodes, according to the
well-known criterion of minimising the area of the mini-
mum bounding rectangle (MBR) of the nodes.

3.3. Multiple split

Having defined the generalised split, we quickly notice
the following: because the node that is to be split may con-



tain an arbitrary number of entries, likewise the resulting
nodes may, too, contain an arbitrary number of entries; thus
they can be overfull themselves, just like the original node.
So the splitting process has to work in such a way, that in
the end all we are left with are valid nodes, nodes with an
acceptable number of entries.

Same as before, an extremely simple approach turns out
to be quite adequate: execute recursively the generalised
split for the nodes that it itself produces, until all the nodes
that remain contain no more than M entries. Thus works the
multiple split algorithm, as can be seen in Figure 1, so that
an overfull node can be split into multiple new nodes, to the
degree that something like that is necessary, of course.

If the current node contains more than M entries:
Execute the generalised split for the node.
For each of the two resulting nodes:

Execute the multiple split.

Figure 1. Multiple split

Naturally, the exact interaction of the algorithm with ex-
ternal memory has to be explained as well. First of all, if
the entries belonging to the current node are already in main
memory, or it is possible to load all of them into it (mean-
ing, those contained in the node itself, as well as those con-
tained in the node’s local insertion queue), then the whole
splitting process can continue in main memory, with all the
resulting nodes being written out to external memory at the
end. In practice, this is exactly what will happen in most
cases. However, in the rare case when there is not enough
main memory available, the generalised split is performed
for as many entries as possible, with the rest of them be-
ing distributed among the resulting nodes afterwards, as ex-
plained in the previous subsection. Note that, in this case,
only the local insertion queues of the resulting nodes need to
be created and not the nodes themselves, because it is cer-
tain that the nodes will be overfull as well, thus requiring
further splits.

3.4. Tree insertion

We are now ready to describe the main algorithm of the
merging, the tree insertion. This algorithm is presented here
in a recursive form, where each instance always operates on
one particular node of the receiving tree. The insertion be-
gins at the root of the tree, and recursively descends it until
it reaches the leaf level. With this algorithm however, and
unlike the R-tree single element insertion, multiple paths
can be followed inside the tree, since a massive quantity of
elements is inserted, organised as an already existing tree.

The general idea behind the algorithm is the following:
The algorithm attempts to insert whole subtrees of the giv-

ing tree whenever possible, while the entirety of the giv-
ing tree can be inserted as a single entry in the ideal case.
Nevertheless, in each node of the receiving tree for which
the algorithm is executed, certain criteria are used to decide
whether each handled subtree of the giving tree is going to
be left intact or decomposed to its individual entries, which
can point to smaller subtrees or single elements. The criteria
used are the following:

Area criterion. If the subtree is destined to a lower level
of the receiving tree than the current one, the follow-
ing procedure is followed: The subtree is routed to the
child node whose MBR admits the least area enlarge-
ment to include it, and that enlargement is recorded.
Then, each of the individual entries of the subtree is
likewise routed to the child where it causes the least
area enlargement, and the sum of area enlargements
caused to each child (not the sum of area enlargements
caused by each entry) is recorded as well. If the first
recorded value is less or equal to the second, then the
subtree is propagated as a whole to the suitable child;
otherwise, it is decomposed to its entries.

Overlap criterion. If, on the other hand, the subtree is des-
tined to the current level, thus to the current node, a
different approach is followed: First, the overlap en-
largement that would be caused to the current node,
if the subtree were inserted into it, is recorded. Then,
just like in the previous case, the entries of the sub-
tree are distributed to the children where they would
cause the least area enlargement, and the overlap en-
largement that is caused to the current node by such
a distribution is recorded. If the first recorded value
is less or equal to the second, and additionally less or
equal to the area of the subtree’s MBR, then the subtree
is inserted as a whole to the current node; otherwise, it
is decomposed to its entries.

It needs to be mentioned that, when a subtree is decom-
posed to smaller subtrees, the latter are then examined ac-
cording to the above criteria inside the same node; that is,
they are not automatically forwarded to the next level.

Figure 2 presents the tree insertion algorithm. It should
be noted that, wherever inside the algorithm’s description
there is a reference to the suitable child to receive an entry,
the child whose MBR needs the least area enlargement to
include the entry’s MBR is actually referred to. This defini-
tion is kept out of the figure in order to save space and avoid
undue repetition.

3.5. Tree merging

All that remains to describe is the tree merging algorithm
itself, which, directly or indirectly, uses all the other algo-



Beginning with the root of an R-tree as the current node C, insert all the entries that are contained in the insertion queue of
C.

If C is not a leaf:
For each entry E in the insertion queue of C:

If E refers to a single element:
Insert E into the insertion queue of the suitable child of C.

If E refers to a subtree:
If E/subtree has a smaller height than the level of C, and the area criterion is satisfied:

Insert E into the insertion queue of the suitable child of C.
If E/subtree has an equal height to the level of C, and the overlap criterion is satisfied:

Insert E into the local insertion queue of C.
If E/subtree has a greater height than the level of C, or contains less than m entries, or none of the two
above conditions were satisfied:

Insert all the entries of E/subtree into the insertion queue of C.
For each entry E in T:

If the insertion queue of E/child is not empty:
Recursively execute the algorithm for C ← E/child.

Execute the multiple split for C.
If new sibling nodes have been created because of splits:

Insert suitable entries for them into the local insertion queue of the parent of C.

Figure 2. Tree insertion

rithms that have been described so far. This algorithm ac-
cepts two R-trees as its input, and produces a new one as its
output, which contains the union of the elements of these
two trees. To be exact, after the algorithm has finished its
execution, one of the two input trees (the giving tree) has
become empty, while the other (the receiving tree) has been
converted to the output tree. The algorithm is presented in
Figure 3.

Choose the tree with the greatest height as the receiv-
ing tree. If both tree have the same height, choose the
one with the largest number of elements.
Insert the root of the giving tree into the insertion
queue of the root of the receiving tree.
Execute the tree insertion for the root of the receiving
tree.
While there are new nodes that have been created be-
cause of splitting the root of the receiving tree:

Create a new root for the receiving tree.
Insert the old root as well as the new nodes into
the local insertion queue of the new root.
Execute the tree insertion for the new root.

Figure 3. Tree merging

It is worth mentioning that, at the final stage of the al-
gorithm’s execution, the height of the receiving tree might
need to be increased more than once. Therefore this stage is
treated in an iterative fashion, until there is no longer a need

for further expansion of the tree. Otherwise, the operation
of the algorithm does not require any particular clarifica-
tions.

Thus ends the description of the algorithms that accom-
plish merging two R-trees. In the following section, an
experimental evaluation of their performance will be pre-
sented. Before that though, this section will be concluded
with a brief note about the R*-tree, a popular variant of the
R-tree, and its relation to these algorithms.

3.6. Merging R*-trees

Since R*-trees have the same internal structure as R-
trees, the algorithms that have been presented in this sec-
tion can be applied on any of these two variations, without
the slightest change in their behaviour. In fact, all the im-
provements that the R*-tree introduces are contained in the
element insertion process, and in particular, these improve-
ments are: (a) a different strategy for choosing the best leaf
an element should go to, (b) forced reinsertion of elements
before attempting to split, to achieve global reorganization
of the data, and (c) a wholly new node splitting algorithm.
The reader is referred to [3] for the details.

It has already been stated that the tree merging process
utilises the R*-tree split, since it behaves a lot better, pro-
ducing nodes with much less overlap. The other two meth-
ods, on the other hand, are deliberately ignored and ex-
cluded from the process, for the following reasons:

Reinsertion, to begin with, is very closely tied to the no-



tion of a single element being inserted at a time. Thus, it
would be quite difficult to generalize it in order to fit in our
framework, where a massive quantity of elements is inserted
at a time, and multiple node splits can occur on each level
of the tree.

Now, when it comes to choosing a suitable leaf for an
element, the situation is somewhat different. This time, it
would be perfectly possible to adopt the R*-tree approach,
and try to minimize the overlap enlargement when choos-
ing the right leaf. However, because of the significantly
increased CPU cost associated with this calculation, and
the massive quantity of elements that can be subjected to
it while merging, using this strategy turns out to be practi-
cally infeasible, since it would completely monopolize the
running time of the merging process.

4. Experimental evaluation

4.1. Test setup

In this section we present a series of tests that demon-
strate the behaviour of the proposed method. Since there is
no direct alternative to our method of merging two R-trees,
a comparison is made against discarding the existing struc-
ture and using the union of the data-sets of the two trees
to bulk-load a new tree from scratch. For that purpose, the
bulk-loading algorithm presented in [4, 6] is used. The same
algorithm is also used for constructing the two trees that are
merged out of their respective data-sets.

Both construction time and query performance of the re-
sulting trees are measured. More specifically, the method-
ology employed is the following: For each of the tests, two
data-sets are to be unified. Initially, two R-trees are con-
structed out of them using bulk-loading. Then the time
needed to merge the two trees is measured, as well as the
time needed to construct a new tree from scratch, using
bulk-loading, out of the union of the data-sets. To measure
query performance, 500 window queries are performed on
each of the two resulting trees, and the average number of
external memory accesses needed is measured. Six differ-
ent window sizes are utilised: 0.01%, 0.02%, 0.05%, 0.1%,
0.2% and 0.5%.

All tests were conducted on a PC with the AMD-K6-
2/500MHz processor and 768MB of main memory, under
the Debian GNU/Linux operating system. The R-tree struc-
ture and all the relevant algorithms are implemented in C++
and compiled with g++ (GCC’s C++ compiler).

As far as the tree parameters are concerned, the maxi-
mum number of entries per node M is page size specific,
which in turn is data-set specific, chosen so that the result-
ing trees are neither too deep nor two shallow. Nevertheless,
the minimum number m is always set to 40% of the maxi-
mum, while for bulk-loading the initial space utilization of
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the tree is set to 70%. The amount of main memory avail-
able is always enough to hold about 5–10% of the available
data, depending of their total amount but regardless of the
way they are actually stored on disk.

4.2. Test results for real data

The real data we used are geographical data of Greece,
taken from the R-tree portal [25]. In particular, the data-sets
of the roads, rivers and lakes of Greece were used, all of
which contain two-dimensional, non-point data. The data
contained therein are far from uniform, and pose quite a
challenge to the algorithms involved.

For the first test presented here, the data-sets of rivers and
roads were used, which have more or less the same number
of elements (24650 rectangles of rivers and 23268 rectan-
gles of roads). Since the data-sets are also situated in the
same area, such a test turns out to be a worst case scenario
for the merging algorithms, since it results to the complete
decomposition of the giving tree during the merging pro-
cess. Thus its also ideal for comparing the performance of
merging compared to other alternatives. The results of the
test are shown in Figure 4.

It is quite obvious that merging is significantly more ef-
ficient compared to bulk-loading, even for a worst case like
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this one, as the construction time for merging is almost an
order of magnitude smaller than for bulk-loading. On the
other hand, the query performance of the resulting trees
does not seem to differ much, if at all.

The other test that was performed with real data involves
merging the rivers and lakes data-sets. This time, one of
the two data-sets is extremely small compared to the other,
since there are only 77 lake rectangles. This test resulted in
the diagrams that are shown in Figure 5.

This time, the difference in performance is spectacular.
While bulk-loading requires building the whole tree struc-
ture from scratch, merging simply routes the lake rectan-
gles to the right position, inside the existing tree of rivers.
Moreover, just like before, there is not much difference in
the quality of the resulting trees, since queries once again
need to access the same number of pages, more or less.

4.3. Test results for synthetic data

All the synthetic data-sets that have been used for testing
are composed of two-dimensional rectangles (that is, non-
point data) that are uniformly distributed inside a square
area. The size of the rectangles is uniformly distributed as
well. Even though uniform data are not much of a challenge
for the various algorithms that operate on the R-tree, espe-

cially compared to real data, they allow us to measure the
behaviour of the algorithms relative to various parameters.
To be exact, four such parameters were measured during our
tests and are presented here. Each of them is examined for
five different values, all of which are presented together, in
order to aid drawing the relevant conclusions.

All of these four different cases share the worst test they
end up to, the one that is most difficult for the merging pro-
cess. Thus, for all of them, the last test (rightmost in all dia-
grams) consists of two data-sets that occupy the same area,
contain 1000000 rectangles in total (500000 each), and have
a rectangle density of 100%, meaning that, on average, all
the available space is occupied by one rectangle. For each
case then, the chosen parameter is what defines how the rest
of the tests deviate from that one.

It should be noted that, for the synthetic tests, the results
of the query performance measurements are shown only for
two of the six window sizes, namely for 0.01% and 0.1%.
This is done in order to save space in the diagrams, but also
because all these measurements lead us to the same con-
clusion: that there is no noteworthy difference in quality
between the trees produced by merging and bulk-loading.

As a first case, the performance of the algorithms was
measured for a variable number of elements for both data-
sets, with the two of them being equal to each other in size.
Thus the total number of elements varies from 20% to 100%
of the maximum 1000000 rectangles, with a corresponding
variance to the size of the containing area. The results of
the measurements are shown in Figure 6.

As can be seen in the results, bulk-loading performs
more or less as expected from its O(n logn) complexity. On
the other hand, merging exhibits an essentially linear be-
haviour, which means that its already obvious performance
advantage only gets bigger as the trees grow in size. At
the same time, there is no perceivable difference in quality
among the trees produced by the two methods.

Moving on to another case, this time the size of both the
data-sets and the containing area remain constant. However,
the two data-sets are no longer contained in the exact same
area, but one of the areas is moving along both axes, so that
their overlap varies from 20% to 100% of their total area.
The results of tests for the various settings of overlap are
shown in Figure 7.

As was expected, bulk-loading is not affected from the
overlap of the data-sets, since it unifies them before con-
structing the tree. On the contrary, merging takes advan-
tage of the presence of non-overlapping areas, since they
allow it to insert a lot of subtrees of the giving tree without
decomposing them. Once again, query performance is not
affected; the deviation at 40% seems like an isolated case,
which is not enough to cause any worries.

The next case is the only one where the number of el-
ements for the two data-sets is not equal, but one of them
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Figure 6. Number of elements

contains from 20% to 100% of the number of elements of
the other one. There is a similar variance for the contain-
ing area of this data-set, which is always situated inside the
containing area of the larger data-set though, so that, for
each of the two axes, its centre is situated at one third of the
distance between the limits of the larger area. The measure-
ments that result from such a set-up are shown in Figure 8.

Here we observe that the construction time for merging
is slightly more than linear to the size of the smaller data-
set, and thus only slightly worse to varying the size of both
data-sets. On the other hand, the construction time of bulk-
loading depends on the sum of the sizes of both data-sets, as
was expected. Furthermore, yet again query performance is
not affected much by the method used.

Finally, a batch of tests was performed in order to ex-
amine whether the algorithms are affected by the density
of the rectangles inside the available space. By varying the
size of the containing area, tests were performed with den-
sities from 20% to 100%. However, as can be seen in Fig-
ure 9, this particular parameter does not seem to affect either
method.

Afterwards, all tests with synthetic data were repeated
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Figure 7. Overlap of the areas

for three, four and five dimensions as well. As an indication
of the results, diagrams are included for the third case of our
tests, in three and four dimensions, as shown in Figure 10
and Figure 11, respectively. In general, the findings were
similar, so they are omitted due to limited space.

5. Conclusions

In this paper we present a novel method for merging two
R-trees into a new one of very good quality. Unlike generic
alternatives like bulk-loading and bulk insertion, our tech-
nique takes advantage of the existing structure of both of
the trees involved in the operation. In addition, unlike
other solutions such as the Small-Tree-Large-Tree (STLT)
approach, no assumptions are being made about data-set
distributions. Instead, our method attempts to accomodate
whole subtrees of one the two trees into the other, inserting
them in a way analogous to single-element insertion. Sim-
ple, well-known criteria of area and overlap enlargement
are used to decide whether each subtree is left intact or de-
composed to its individual entries. In order to handle the
massive quantity of data that might occur out of this de-
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Figure 8. Ratio of the data size

composition, dynamic, variable-size buffers are employed,
while the node-splitting algorithm is extended to handle an
arbitrary number of elements. The experimental evaluation
of our method indicates that it is very efficient speed-wise,
and also that the resulting trees maintain an excellent query
performance.

Future work on the subject will concentrate, among oth-
ers, on the following matters: First of all, finding ways to
better take advantage of the available main memory during
the merging process. In addition, we would like to research
the correlation between our method and buffer-based bulk
insertion techniques, compare their performance, and ex-
amine whether it is possible to combine the best of both
worlds.
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