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Abstract. In this paper, we introduce the categorical (a.k.a. chromatic)
range queries (CRQs) in the context of large, disk-resident data sets, mo-
tivated by the fact that CRQs are conceptually simple and emerge often
in DBMSs. On the basis of spatial data structures, and R-trees in par-
ticular, we propose a multi-tree index that follows the broad concept
of augmenting nodes with additional information to accelerate queries.
Augmentation is examined with respect to maximal/minimal points in
subtrees, the properties of which are exploited by the proposed search-
ing algorithm to effectively prune the search space. Detailed experimen-
tal results, with both real and synthetic data, illustrate the significant
performance gains (up to an order of magnitude) due to the proposed
method, compared to the regular range query (followed by the filtering
w.r.t. categories) and to a naive R-tree augmentation method.

1 Introduction

Range queries, that find all tuples intersected (covered, etc.) by a query region,
are commonplace in all kinds of database systems today. In a large number
of applications, however, database objects can come aggregated in (disjoint)
groups. Therefore, what becomes of interest is range queries searching for groups
(instead of individual objects themselves) intersected by the query region. This
type of query is denoted as Categorical Range Query (CRQ)1 and the attribute
that the grouping is based upon is called categorical attribute. CRQs have been
comprehensively studied in the research fields of computational geometry and
main-memory data structures [2, 9, 10, 11, 17, 18, 20, 23]. In contrast, much less
attention has been given to supporting CRQs in large databases. Nevertheless,
CRQs arise in many DBMSs. For instance: consider a set of locations, where each
one is associated with its spatial coordinates and its soil type (a common case
of thematic layers in GIS). A typical CRQ is to find all soil types of locations
that are within a query window.
1 Another common name is Chromatic Range Query, which corresponds to the same
acronym.
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CRQs can be easily specified in any SQL-like language, including SQL ex-
tensions for spatial DBMSs. Nevertheless, the problem of query optimization for
CRQs should be also taken into account. Despite their conceptual simplicity,
CRQs present requirements for query optimization that are not addressed by
current DBMSs. Considering the existing processing techniques, a CRQ will be
processed by first executing the regular range query, i.e., the finding of individ-
ual objects (not categories) satisfying the range condition, followed by filtering
its output set to select the distinct categories. The aforementioned approach
does not take into account the difference between the selectivity (i.e., size of
output set) of the CRQ and the one of the regular range query. In several real
applications data tend to belong to categories and to be clustered along the cat-
egorical attributes. As a result, the selectivity of the CRQ can be much larger
(i.e., smaller output size) than the one of the regular range query. By first pro-
cessing the plain range query and then filtering with respect to the categorical
attribute, a lot of cost is spent. Moreover, the domain size of the categorical
attribute (i.e., the number of all its possible values) may be large enough, e.g.,
several hundreds or even thousands. This is prohibitive for a quick-fix solution
that partitions objects based on their category (e.g., using independent indexes)
and processes them separately.
The previously discussed issues have also been taken into account by ap-

proaches in computational geometry and main-memory data structures. Never-
theless, they have payed little attention to secondary memory, giving emphasis
on worst-case asymptotic performance and requiring significant storage redun-
dancy [19]. For large databases on secondary storage, high redundancy is pro-
hibitive due to large space and update time overhead.
In this paper, we introduce the problem of categorical range queries in the

context of large databases. Since CRQs find important applications in spatial
data (e.g., GIS), we concentrate on this field, focusing, in such a way, on a con-
crete application framework. On the basis of spatial data structures, we develop
a multi-tree index that integrates in an efficient way the spatial dimensions and
the categorical attribute. This approach is based on the broad concept of the
augmentation of nodes with additional information to accelerate queries [26].
The paper makes the following technical contributions:

– We develop novel techniques for spatial data structures and R-trees in par-
ticular (because they have been included in several commercial DBMSs [21]),
which address the efficient query processing of CRQs in large databases.

– We provide a detailed experimental study, comparing the proposed method
with two base-line algorithms: (i) the regular range query, and (ii) a naive
method of incorporating the categorical attribute in the R-tree nodes. The
results illustrate the significant gains (up to an order of magnitude) due to
the proposed method.

– As another contribution, we discuss the issue of developing estimators for
the selectivity of CRQs.

The rest of this paper is organized as follows. In Section 2 we give the related
work. Section 3 describes the proposed approach, whereas Section 4 contains the
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experimental results. Finally, Section 5 presents the conclusions and directions
of future work.

2 Related Work

Jarardan and Lopez [20] introduced this new type of problems that are of sig-
nificant theoretical interest and rich in applications (e.g., document retrieval,
internet packet categorization). Solutions for standard problems yield output-
insensitive solutions for their generalized chromatic counterparts. For this rea-
son they attracted a lot of research [2, 9, 10, 17, 18, 14, 23, 24]. These papers
present a number of efficient, mainly theoretical, algorithms that are tailored to
the main-memory context. Disk-resident data were considered in [15] for specific
chromatic problems that are reductions of problems related to the indexing of
2-dimensional strings. However, [15] simply uses regular range queries, which are
sufficient in their context, since the distribution of the resulting (transformed)
data sets guarantee singleton categories with very high probability (greater than
0.9). As it will be described in the following, in the context of spatial data this
assumption may not hold, and the regular range query can present significant
limitations in several cases.
[17, 20] provided a uniform framework that yields efficient solutions for chro-

matic problems on iso-oriented objects. Their techniques consist of geometric
transformations of generalized problems into equivalent instances of some stan-
dard problems and the use of persistence as a method for imposing range re-
strictions to static problems. New improved bounds, as also extensions to the
non-iso-oriented geometrical objects case, were given in [9, 18, 11], whereas [10]
treated the red-blue categorical reporting problem (we are given a set Q1 of
“red” categorical objects and a set Q2 of “blue” ones and we want to report
all intersecting pairs between “red” and “blue” objects). Recently, Agarwal et
al. [2] presented solutions for chromatic objects with grid co-ordinates. [15, 24]
considered the applications of colors in document retrieval and [14] studied the
chromatic queries in the case of internet packet categorization. Also, approxi-
mate colored nearest neighbor search queries were studied in [23].
Finally, loosely related to this work can be regarded papers considering either

the adaptation of main-memory data-structuring techniques to the disk (I/O)
context (see, for example, [4, 5, 12, 16]) or following the node augmentation
paradigm to solve geometric intersection query problems (e.g., [27, 29]).

3 Proposed Method

In this section, we describe our solution to the problem of processing CRQs in
large databases. Since a number of commercial database systems have developed
spatial extensions and R-tree indexes for the management of spatial data, the
usefulness of any solution is increased if it is based on this infrastructure.
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3.1 Maximal/Minimal Points

Assuming that the points of a data set are indexed with an R-tree, a straight-
forward method to augment its nodes with information about categories is to
store in the entries of intermediate nodes all categories that are present in the
corresponding subtrees (using a bitmap, where each bit position corresponds to
a category). Let q be a query rectangle. During a CRQ, we maintain an array A
indicating the presence or absence of each category in rectangle q; initially, all
categories are absent. Let also e be an entry in an intermediate node N . If q
intersects e.MBR, then we find, through the bitmap of e, the categories that are
present in the subtree of e. If the subtree contains any categories that are still
absent from the result, then we descent to search in the subtree. Otherwise, we
can prune the searching to this subtree. When reaching a leaf, we can determine
the categories of its points that are covered by q, and, therefore, we can up-
date A. Notice that analogous methods have been used in structures for regional
data, e.g., quadtrees [22].
The aforementioned approach is simple and requires the addition of only one

bitmap to each entry of intermediate nodes. It can avoid the searching to subtrees
that are not going to contribute to the result, nevertheless it has the disadvantage
that it can determine the actual existence of categories in the query rectangle
only at the leaves. Due to this fact, one may not expect significant reductions in
the I/O overhead, because the searching has to reach the leaf level many times.
Also, the corresponding bitmaps will tend to be saturated and may indicate the
presence of most of the categories. Henceforth, we denote the aforementioned
approach as Naively Augmented R-tree (NAR).
To be able to determine the presence/absence of categories within the query

rectangle at the upper levels as well, solutions in main-memory data structures
and computational geometry are based on indexing schemes that, at each entry e
of internal nodes, allow for the replication of all points stored at the subtree of e.
Evidently, in the context of secondary storage and R-trees, such assumptions lead
to prohibitive space and time overhead [19]. We, therefore, require a solution
between these two extremes, i.e., the NAR approach, which does not store any
points at internal nodes, and the aforementioned approaches which need to store
all points of the subtrees. For this reason, we focus on the maximal/minimal
points.

Definition 1 (Domination). Let p1 = (x1, . . . , xd) and p2 = (y1, . . . , yd) be
two d-dimensional points. We define that p1 dominates maximally p2 (denoted
as Dommax(p1, p2)), when xi > yi, ∀1 ≤ i ≤ d. We also define that p1 dominates
minimally p2 (we denote Dommin(p1, p2)), when xi < yi, ∀1 ≤ i ≤ d.

Definition 2 (Maximal/Minimal Points). Let S be a set of points.
A point pi ∈ S is maximal (minimal, resp.), if there does not exist any other
point pj ∈ S such that Dommax(pj , pi) (Dommin(pj , pi), respectively).

Figure 1.a illustrates an example of a set of two-dimensional points and the
corresponding maximal/minimal points. If the set S contains n points, then the
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Fig. 1. Example of: (a) maximal/minimal points, (b) the different cases

calculation of maximal/minimal points can be done in O(n logn) time [8, 28].
Regarding the number of maximal (minimal, resp.) points, it is easy to see that
in the worst case it is equal to n (for points placed in a diagonal line) and in
the best case it is equal to one, i.e., a point at the upper-right (lower-left, resp.)
corner. For the case of uniform placement, at random, of n points in a subset P
of the plane, in [6] it was shown that the number of maximal points is normally
distributed, with average value ∼ m

√
λ, λ being the density and m a constant

depending on P .2

For a set S of points, we denote as Smax and Smin the set of its maximal and
minimal points respectively. Smax and Smin can be considered as a representation
of S, which, given a rectangle q, allows for testing if q contains any points
of S. Let qll and qur denote the lower-left and the upper-right corner of q.
The following lemma is evident, since for each p ∈ Smax (equivalently, for each
p ∈ Smin) it also holds that p ∈ S.

Lemma 1. If there exist a point p such that p ∈ Smax or p ∈ Smin, and p is
contained in a rectangle q, then q contains at least one point from S.

For instance, see the case of rectangle q1 in Figure 1.b, which contains a max-
imal point (maximal and minimal points are depicted as shaded). Due to the
properties of maximal/minimal points, it is also easy to prove that:

Lemma 2. If there does not exist any p ∈ Smax (p ∈ Smin, resp.) such that
Dommax(p, qll) (Dommin(p, qur), resp.), then there does not exist any point s ∈ S
such that s is contained in q.

For an instance of the latter case regarding maximal points, see rectangle q2 in
Figure 1.b, where its lower-left corner dominates maximally all maximal points.
2 The aforementioned results mainly focus on spaces with moderate dimensionality,
which are the “target” of structures belonging to the R-tree family. In Section 5 we
discuss the case of very high dimensionality.
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In the cases of Lemmata 1 and 2, we get an exact answer to the question
whether q contains any points of S. However, a third case exists, when none
of the aforementioned conditions holds. Then, q may or may not contain any
points from S. For instance, see rectangles q3 and q4 in Figure 1.b, where there
exist points contained in q4, but no point is contained in q3. In order to avoid
false-dismissals, we consider that q possibly contains points (evidently, this as-
sumption may lead to a false-alarm, as it is depicted for the case of q3). Therefore,
from all previous cases, it follows that:

Theorem 1. Given a set of points S and a rectangle q, Smax and Smin repre-
sent S without resulting to false-dismissals for the question whether q contains
any points of S.

The representation with the maximal/minimal points is between the two
extreme cases (i.e., NAR and storing all points) and helps deciding about cate-
gories at internal nodes as well. Although in the worst case all points of a subtree
may be maximal/minimal (leading to the second extreme), as explained, in the
average case, only a small fraction of points are maximal/minimal. The details
of how augmentation is applied with this type of representation are given in
the following. Finally, we notice that the generalization for objects with spatial
extent is immediate: after approximating them with iso-oriented geometrical ob-
jects (e.g., MBRs), one can work with the resulting upper and lower “corner”
points; the choices can be made according to accuracy-time trade-offs.

3.2 The R-tree Augmentation Scheme

The proposed approach considers a multi-tree indexing scheme. It is based on
a regular R-tree, which is augmented with auxiliary data structures that are
maintained at each internal node entry. Each entry e in an internal R-tree node
is of the form: 〈e.MBR, e.pointer, e.max btree, e.min btree〉, where e.max btree
and e.min btree are pointers to the roots of B+-trees that store the maximal and
minimal, respectively, points in the subtree of e (the other two elements, e.MBR
and e.pointer, have their regular meaning). It has to be noticed that each present
category in the subtree has its own maximal/minimal points (i.e., maximality
and minimality is determined only between points of the same category).
Within the B+-trees, the maximal and minimal points are ordered accord-

ing to their category values, which comprise the search-keys in each B+-tree.
Therefore, the two B+-trees of a node entry e are probed with respect to cate-
gory values, and the maximal and minimal points can be retrieved. Figure 2.a
illustrates a sample data set (the description of categories is also depicted) and
Figure 2.b the corresponding multi-tree index (R-tree nodes are depicted with
solid line whereas the B+-tree ones with dashed). The points in the leaves of the
R-tree are stored along with their category, however, there is no ordering with
respect to the category values. In contrast, in the B+-tree nodes the entries are
the maximal/minimal points and they are ordered with respect to their category
value. For instance, in node P , the maximal points for category 1 are points p3
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Fig. 2. (a) Example of a data set. (b) The corresponding augmented R-tree

and p4, and for category 2 it is point p5. For the same node, the minimal points
are: p1 for category 1 and p6 for category 2.
Let Q be a query rectangle, where Qll and Qur denote its lower-left and

upper-right corner. We maintain a boolean array A[1..C], where C is the total
number of categories (which, in general, is not constant). A[i], 1 ≤ i ≤ C, being
true denotes that we need to search for category i in the currently visited node,
otherwise we do not. The processing of a CRQ commences from the root of the
R-tree, and initially all elements of A are set to true. When being at an internal
node, we first find all its entries whose MBRs intersect Q. For each such entry e,
we probe e.max btree and e.min btree to find the maximal and minimal points of
all categories c for which A[c] is true. According to the description in Section 3.1,
we have to examine a set of cases for each such category c. The algorithm that
processes CRQs with criteria based on the aforementioned cases is called M2R
(Maximal/Minimal R-tree) and is given in Figure 3 (the category of a point p is
denoted as p.category, and the i-th entry of a node N is denoted as N [i]).
The categories included in Q are maintained in the global variable outputSet

(which is assumed to be empty before the execution of M2R). An array A is
separately used for each node entry N [i] (step 7 of M2R), since the absence of
a category in an entry does not induce the absence in the other entries as well.
When descending to a lower level, the contents of array A are passed from the
father to the child node through argument FA. However, step 13 affects all other
entries of node N , since we do not need to search for this category any more. For
this reason FA is updated at step 16. It has to be noticed that it is necessary to
test, at steps 21 and 8, if a category has been included in the output set of the
CRQ, due to the depth-search manner that the searching proceeds. (We have
also tried a breadth-first variation, but it performed purely because it results to
many false-alarms.)

3.3 Management of B+-trees

Firstly, we estimate the overall space complexity of B+-trees. As previously
mentioned, in [6] was proven that in the case of uniform placement at random
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Procedure M2R(Rect Q, Node N, Array FA)

1. if N is leaf
2. foreach p in N such that Q contains p
3. outputSet ← outputSet ∪ p.category
4. else
5. SI = {N[i] | N[i] ∩Q �= ∅}
6. foreach N[i] ∈ SI
7. Array A← FA
8. foreach c such that A[c] = true and c �∈ outputSet
9. Nc

max[i] ={p in N[i].max btree | p.category = c}
10. Nc

min[i] = {p in N[i].min btree | p.category = c}
11. if Nc

max[i] = ∅ and Nc
min[i] = ∅

12. A[c]← false
13. else if ∃p ∈ Nc

max[i] ∪Nc
min[i] such that Q contains p

14. outputSet ← outputSet ∪ c
15. A[c]← false
16. FA[c]← false
17. else if ( � ∃p ∈ Nc

max[i] : Dommax(p,Qll))or( � ∃p ∈ Nc
min[i] : Dommin(p,Qur))

18. A[c]← false
19. end if
20. end for
21. if ∃c such that A[c] = true and c �∈ outputSet
22. M2R(Q,N[i].pointer, A)
23. end for
24.endif
end M2R

Fig. 3. The M2R algorithm

of n points in a subset P of the plane, the number of maximal points is normally
distributed, with average value ∼ √

λ, λ being the density. So, assuming w.l.o.g
the normalized data space (where each coordinate is in the [0, 1] range), one
expects that the number of maximal points at level 0 (root) node is O(

√
n),

at a level 1 node is O(
√

n/B) (B is the page capacity), at a level 2 node is
O(

√
n/B2), and generally, at a level i node is O(

√
n/Bi). Summing up we have

the following lemma:

Lemma 3. Let S be a set of n points stored in an augmented R-tree T . In
case of uniformly distributed data, one expects that the B+-trees of T demand
O(n/B1.5) pages.

In the case of dynamic insertions/deletions of points, the proposed multi-tree
indexing scheme can easily update the augmented information. For the insertion
of a point p, it is initially inserted in the R-tree leaf N that is determined by
the regular R-tree insertion algorithm. What has to be additionally taken into
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account is that some of the maximal or minimal points in the father-entry of N
may no longer be valid. This happens only in the case when p is a new maximal
or/and minimal point in N .3 In this case, we have to probe the corresponding
entries of the maximal/minimal B+-trees, to find the ones that have to be re-
moved, and to insert p. Since p may also invalidate maximal/minimal points
at upper levels as well, the previous procedure is repeated for all R-tree nodes
invoked during the insertion of p. Considering a deletion of a point p from a
leaf N , if it is a maximal or a minimal point in N , then we have to remove it
from all B+-trees in the root-to-leaf path corresponding to N , and additionally
to insert the possible new maximal or minimal points from N , which may result
after deleting p.
The case of semi-dynamic data sets (when only insertions are permitted) can

be analyzed by standard amortization arguments [26, 4].4 Omitting the proof
due to space constraints, we have:

Lemma 4. In the case of a semi-dynamic data set, an update operation has
O(log2B n) amortized cost.

When the underlying data set is fully dynamic, then one cannot prove better
than O(n) worst-case bounds. However, in the average case, is easy to see that
only an O(

√
n) fraction of inserted/deleted points will require an update of the

augmented information leading to an O(
√

n) worst-case average performance. In
practice one can experience much better performance.
As an additional optimization, we consider the case where in a node N , the

roots of the B+-trees of N ’s entries tend to have low utilization (their minimum
allowed utilization is two entries). Therefore, when possible, such roots with few
entries are kept packed into a single node. This reduces the required space and
the processing time. The packing is done separately for maximal and minimal
B+-trees. Moreover, we utilized a scheme of storing, when possible, these packed
roots at consecutive pages with that of node N , by trying to pre-allocate consec-
utive space for the two B+-tree roots. Experimenting with the aforementioned
optimizations, we found that they result to significant performance improve-
ments, thus they are incorporated in the proposed method.

3.4 Selectivity Estimation

The relative selectivity (RS) is defined as the ratio between the sizes of output
sets of the CRQ and the regular range query, when both are performed with the
same query rectangle (RS is in the range [0, 1]). Let us consider the processing
of a CRQ by filtering the output set of the regular range query so as to select
the distinct categories in it —this method is henceforth denoted as Plain Range
query Filtering (PRF). The performance difference between M2R and PRF de-
pends on the value of RS. When RS is high, PRF does not waste much cost,
3 A point p can be both maximal and minimal when it is the only point of p.category.
4 This case corresponds to data warehousing applications, where data are historical
(i.e., they are not deleted).
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whereas the processing of the augmented structures for M2R may not pay-off.
In contrast, when RS is not high, PRF spends a large cost to first find many
points that satisfy the regular range query but will be filtered out later on. In
most cases of interest (see Section 4), data are clustered with respect to the
categorical attribute, and RS does not have high values.
It follows that the optimization of CRQs can be advocated by the estimation

of RS. Although several methods have been proposed for estimating the selec-
tivity of regular range queries, e.g., [1], up to our knowledge, no results have
been reported for estimating the selectivity of a CRQ. As an initial approach
towards this direction, we used the approximation of spatial data with index
partitionings [1], which exploits the division of data space achieved by the R-
tree (an analogous approach can be found in [3, 25]). By keeping track of the
distinct categories within each partition, we can process all partitions, find those
intersected by Q, and determine how many categories from each of them will
be assigned to the output set.5 Experiments with the aforementioned approach
resulted to estimation error less than 1% for CRQs with large query rectangles,
and around 15-25% for small ones. We are currently working on the development
of an algorithm for RS estimation based on the Min-Skew algorithm [1], con-
sidering the distribution of the values of the categorical attribute instead of the
density alone. Clearly, by using such an approach, a more accurate estimation is
expected to be achieved.
Based on the RS estimation, the query optimizer will be able to decide

whether the use of augmented structures will pay-off compared to the PRF
method. In the extreme cases where there exist no actual grouping of points
with respect to the categorical attribute, and so RS is high, the optimizer can
reduce the overhead resulting from the augmented structures. This can be done
by adapting M2R to: (i) either consider only a fraction of them, e.g., by select-
ing every k-th augmented structure in the node instead of each one; a technique
denoted as reduction), or (ii) entirely avoid to use them —in this case M2R and
PRF become equivalent.

4 Experimental Results

This section describes the results on the experimental comparison of: (i) the
proposed algorithm (M2R); (ii) the algorithm that first performs a plain range
query and then filters w.r.t. category values (PRF); and (iii) the algorithm that
is based on the naive augmentation of R-trees (NAR). We also examine why
independent R-trees, one for each category, are not a viable solution. Our ex-
periments consider both synthetic and real data sets. We study the impact of:
the relative selectivity (RS) values, the domain size, the query and buffer sizes.

5 For instance, we can first find the ratio r (0 < r ≤ 1) between the volume of the
intersection and the volume of an intersected partition. Next, if t is the number of
distinct categories in the partition, we can select r · t categories (uniformity assump-
tion), and filter those that have already been included in the output. Nevertheless,
further discussion on this issue is out of the scope of this paper.
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In the remaining of this section, we first describe the experimental setting and
then we give the results.

4.1 Experimental Setting

All examined methods were implemented in C using the same components. The
experiments have been conducted on a computer with a Pentium III processor
at 1.6 GHz. We used the R∗-tree variant [7].
We used both synthetic and real data sets. The real data sets we consider

are: Sequoia, Cover, and Census. The first one is from the Sequoia database6 and
contains 62,556 2-d points corresponding to California place names, along with
their textual description. We cleaned the descriptions (e.g., by spell checking,
removing empty ones, etc) and performed a grouping according to their type
(e.g., a bar, beach, etc). This resulted to 180 distinct categories. The other two
data sets belong to the UCI Machine Learning Repository7. The Cover data
set contains 581,012 points and is used for predicting forest cover types from
cartographic variables. From its 54 attributes, we used the spatial information
to get the 2-d points corresponding to the locations. As categorical attribute
we used the soil type information, which contains 40 distinct category values.
Although Cover contains other possible categorical attributes, we selected soil
because the others resulted to a much smaller number (less than ten) of distinct
values. Finally, the Census-Income data set, denoted as Census, is a fragment of
the US Census Bureau data and contains 199,523 records, from which we derived
two separate sets: (i) the Census3d, having as dimensions the age, income and
weeks worked; and (ii) the Census5d, having as additional dimensions the wage
per hour and the dividends from stocks. As categorical attribute we selected,
in both cases, the occupation type, that has 47 distinct values in total, because
other possible ones would result to very small domains. Both the Cover and
Census data sets have also been used elsewhere (e.g., in [13]).
To examine different characteristics of the data, we also considered synthetic

data sets. Their generation was based on the following procedure. We specified
a number of points that were the centers of overlapping 2-d normal (gaussian)
distributions; since related work on main memory structures focused on the 2-
d case, we use synthetic data sets of this dimensionality so as to examine the
viability of the proposed method for this case, whereas we examine more dimen-
sions with the Census data set. For each one of them, we generated a number
of points that is given as a fraction of the total number of the points in the
data set. This factor is called replication factor and corresponds to the size of
each distribution. All points of a distribution are assigned to the same category.
The total number of categories is pre-specified. We tested both the random (i.e.,
following uniform distribution) and skewed (i.e., following zipfian distribution)
assignment of categories to points. However, both lead to qualitative similar re-
sults, thus we herein present results on the former. The coordinates in the data
6 Available (also) at:
http://dias.cti.gr/~ytheod/research/datasets/spatial.html

7 Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html
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Fig. 4. Execution time (a) and RS (b) w.r.t. replication factor, for query size
0.05%

space were normalized in the range [0,1] and the standard deviation that was
used in the normal distributions was equal to 5%.
The page size was set to 4 K and the default buffer size was set to the

20% of the data set size. For the queries we examined both uniform and biased
workloads. With the former, queries corresponded to squares, the center of which
follows a uniform distribution in the data set space. With the latter, the centers
of the queries were points from the data set itself, thus they follow the data
distribution. In our synthetic data sets we used uniform workloads, whereas for
the real ones we used biased workloads. This is because the synthetic data have
a good coverage of the entire data space, whereas the real ones are more skewed
and the biased workload comprise a more realistic assumption. The query size
is given as percentage of its size with respect to the size of the data space. The
main performance metric was the total (wall-clock) execution time, measured in
seconds, which includes I/O and CPU times for processing CRQs and the time
to write the result.

4.2 Results

Our first experiment studies how the different values of RS affect CRQs. We used
synthetic data sets with varying replication factor, that directly impacts RS. This
happens because a larger replication factor results to a larger clustering with
respect to the categorical value, therefore points that are close in space are more
probable to belong to the same category. The data sets contained 100,000 points
and 100 categories. Figures 4.a and 5.a depict the execution time (in seconds)
with respect to replication factor, for query sizes 0.05% and 0.2% respectively.
Figures 4.b and 5.b depict the corresponding RS values.
As expected, low values of replication factor result to large values of RS.

In such cases, the PRF method performs well, since it does not spent too much
extra cost. Nevertheless, the execution time of M2R (also NAR) is similar to that
of PRF, since it is not outperformed significantly by PRF for query size 0.05%,
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Fig. 5. Execution time (a) and RS (b) w.r.t. replication factor, for query size
0.2%

and is slightly better for query size 0.2%. The reason is that for these cases,
M2R exploits the reduction technique described in Section 3.4. When moving
to medium and larger values of replication factor, RS reduces. The performance
of PRF, however, is not affected —in some cases its execution time increases,
whereas in others it reduces— since RS does not influence PRF. In contrast, as
RS reduces, M2R clearly outperforms PRF, whereas NAR comes second best.
This is easily explained, since in these cases M2R can perform a better pruning
with respect to the categorical attribute. Another thing that can be noticed
between Figures 4 and 5 is that in the latter, which corresponds to a larger query,
RS values are relatively reduced. Although the output set of CRQ increases with
increasing query size, the output set of the regular range query increases more
rapidly with increasing query size. This results to the relative reduction in RS
for the larger query size.
The aforementioned results verify the intuitive argument stated earlier in the

paper, that the regular range query followed by filtering (i.e., PRF) is expected
to waste a lot of cost in the cases when data are not randomly scattered along the
categorical attribute, and that the performance gains due to M2R are expected
to be significant. Moreover, when RS values are high (random scattering), the
results show that the overhead of M2R is not significant. Fortunately, most of real
data sets of interest (see the following) tend to be clustered along the categorical
attributes. Therefore, in such cases the output size of the CRQ is a very small
fraction of that of the regular range query.
Our next experiment examines the domain size of the categorical attribute,

i.e., the total number of distinct values for the categorical attribute. We used
synthetic data sets that were analogous to those used in the previous experiment.
The replication factor was set to 5% and the query size was set to 0.1%. These
values are selected so as to get a variety of different RS values w.r.t. the domain
size. The execution time is depicted in Figure 6.a, whereas Figure 6.b illustrates
the corresponding RS values.
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Fig. 6. Execution time (a) and RS (b) w.r.t. domain size of the categorical
attribute

The increase in the domain size of the categorical attribute results to an
increase in RS, since it increases the probability of more distinct categories to
exist within the query region. As expected, PRF is independent from the domain
size, because the result of the regular range query is the same in all cases. M2R
is only slightly affected by the increase in the domain size, and it outperforms
the other two algorithms in all cases. In contrast, the impact is more clear on
NAR, which for large domain sizes is outperformed by PRF. The aforementioned
result indicates that M2R scales well with respect to the domain size, even for
very large values (in the order of thousand).
To validate the conclusions drawn with synthetic data, we also examined real

ones. We first used the Sequoia data set. In this case, we also test the approach of
having independent R-trees, each one storing separately the points of a category,
which is denoted as IND. Figures 7.a and .b illustrate the execution time and
RS, respectively, for varying query size, given as a percentage of the data set
space. Similar to synthetic data sets, RS is decreased with increasing query size.
It has to be noticed that the earlier stated argument, that the output of a CRQ
is only a small fraction of the output of the regular range query, is verified by
the values of RS in Figure 7.b. Regarding execution time, it is clearly noticed
that IND presents the worst performance. This is because for every query it
probes all categories although only few of them will belong to the output set.
For this reason we do not examine IND in the following. Focusing on M2R, NAR,
and PRF, they perform similarly for very small query sizes. This is due to the
higher RS values for these query sizes, and also due to the small size of the
data set (about 62,000 thousand points) which renders all methods equivalent
for such small query sizes. In contrast, for medium and large queries (0.5–1%),
M2R compares favorably to the other two methods.
As mentioned, the Sequoia data set is not large. To have a more clear com-

parison, we now move on to examine the Cover data set, that is much larger.
Results on execution time for varying query size are depicted in Figure 8.a —RS
values were similar to those in the previous experiment, thus they are omitted for
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Fig. 7. Execution time (a) and RS (b) w.r.t. query size for the Sequoia real
data set
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Fig. 8. Execution time w.r.t. (a) query size, (b) buffer size, for the Cover real
data set

brevity. As shown, with increasing query size, PRF clearly looses out. Therefore,
the large size of data sets like Cover, renders the performance of PRF impracti-
cal, since for larger query sizes (1%) its execution time is an order of magnitude
larger than that of M2R. In contrast, M2R performs very well in all cases. NAR
comes second best, whereas the performance difference between M2R and NAR
is significant. Also, it has to be noticed that with increasing query size, the size
of the output set for a CRQ increases, because its selectivity reduces (i.e., more
categories are included in larger queries). Nevertheless, M2R is beneficial regard-
less of the selectivity, since it can better determine containment (or not) at the
higher R-tree levels, thus avoiding visits to the lower levels. This is the reason
for the relative decrease in the execution time of M2R for large query sizes. This
can also be noticed in Figure 7.a.
Evidently, the performance of all examined methods depends on the provided

memory size that is used for buffering. For this reason, we examined the impact
of buffer size on the execution time. We used the Cover data set, and the query
size was set to 0.1%. Figure 8.b illustrates the results for varying buffer size,
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Fig. 9. Execution time w.r.t. query size for the: (a) Census3d and (b) Census5d
real data sets

that is given as percentage of the data set size. Clearly, the execution time for
all methods reduces with increasing buffer size. Since the performance of PRF
is the worst among the three methods, it benefits more from increasing buffer
size. Nevertheless, M2R outperforms all other methods in all cases, even for very
large buffer sizes.
Finally, we evaluated the proposed approach with the Census3d and Cen-

sus5d data sets. The results for varying query size, given as a percentage of the
data space, are depicted in Figure 9. The time axis corresponds to the relative
execution times, normalized to those of M2R, so as to more clearly present the
performance differences between the two cases. For the Census3d (Figure 9.a),
M2R outperforms the other two methods by several factors, whereas NAR comes
second best, performing similar to PRF for small query sizes and better for
medium and larger ones. For the Census5d (Figure 9.b), the performance dif-
ference between M2R and the other methods is much more pronounced. This is
explained by the large skew that the additional two dimensions present, which
result to a large cost paid by PRF even for small query sizes. In contrast, M2R
is not affected as much by the skewness, due to the early pruning with respect
to categories.

5 Conclusions

This paper studied the problem of categorical range searching over large
databases, that is, the finding of categories, instead of objects themselves, exist-
ing within the query region. We have developed M2R, an algorithm that is based
on the augmentation of R-trees with structures organizing the maximal/minimal
points in subtrees. This approach follows the general paradigm of augmenting
tree nodes in order to facilitate searching. M2R is compared with the regular
range query and with a naive method for augmenting R-tree nodes. Detailed
experimental comparison with real and synthetic data illustrates the superiority
of M2R over the two base-line algorithms. Depending on the value of relative
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selectivity of the CRQ, M2R attains performance improvements up to an order
of magnitude, for large real data sets.
There exist several directions of future work, for instance, the examination of

data sets of very high dimensionality and the development of more sophisticated
estimators for the selectivity of CRQs. Regarding the first issue, a decomposi-
tion scheme, based on multi-level B+-trees that first narrow down the search
space of the high dimensional space and then apply the solution presented in
this work for moderate dimensions, seems a good candidate, demanding polylog-
arithmic overhead [26]. It is also interesting to consider that research on CRQs
can be extended to other analogous queries, like the categorical nearest-neighbor
queries [23] or the counting queries [17]. Such extensions can find interesting ap-
plications in large databases and, therefore, we consider the problem examined
in this paper as a first attempt towards this research direction.
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