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Abstract. This paper describes the design of the BASIS prototype sys-
tem, which is currently under implementation. BASIS stands for Benchmarking
Approach for Spatial Index Structures. It is a prototype system aiming
at performance evaluation of spatial access methods and query process-
ing strategies, under different data sets, various query types, and differ-
ent workloads. BASIS is based on a modular architecture, composed of
a simple storage manager, a query processor, and a set of algorithmic
techniques to facilitate benchmarking. The main objective of BASIS is
twofold: (i) to provide a benchmarking environment for spatial access
methods and related query evaluation techniques, and (ii) to allow com-
parative studies of spatial access methods in different cases but under a
common framework. We currently extend it to support the fundamental
features of spatiotemporal data management and access methods.
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1 Introduction

Spatial data management has been an active area of research over the past
ten years [LT92,G94]. A major component of such research efforts has been,
and continues to be, concerned with the design of efficient spatial data index-
ing methods which reduce query response time during spatial query processing
[Gut84,SRF87,HSW89,? KF94]. Some promising proposals have been reported
in the literature aimed at enhancing these indices with additional, specific query
handling capabilities [FBF77,Are93,BKS93,RKV95]; a spatial data index may
be specifically redesigned to support region queries, nearest-neighbor queries or
spatial join queries. Another direction is the establishment of robust cost models
for specific indices and query processing algorithms, i.e functions which estimate
the cost of processing spatial queries. As spatial data management develops, par-
ticularly in spatiotemporal applications, we expect further proposals for indexing
methods to appear.
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Greek bilateral protocol.



The various index methods, then, behave differently according to certain
settings, such as the buffering strategies and query profiles. Therefore, for any
comparative performance test, the tester must be careful when declaring a clear
winner. Moreover, all these methods have been proposed independently and,
consequently, there is a lack of a general framework under which an extensive
comparative study can be performed. Although several comparative studies have
been performed, there is a lack of a spatial benchmark that could be used as a
yardstick towards spatial indexing method design, implementation and perfor-
mance evaluation.

As a solution to this problem, we are constructing an integrated benchmark
development and execution environment: Benchmarking Approach for Spatial
Index Structures (BASIS). This is a platform which facilitates the incremental
integration of multiple indexing methods, query algorithms, and data sets for use
in benchmark runs. So far, the type of benchmarks supported are those designed
to test only indexing methods and query processing algorithms.

Related work can be divided in three categories: (i) benchmarking for DBMS,
(ii) generic index support environments, and (iii) recent benchmarking plat-
forms. The first one has the longer history. To test relative performance of
different DBMS, the research and industry community has sought a standard
benchmark for all systems. Early benchmarks for DBMS included DebitCredit
[Anon et al.85] and Wisconsin [BDT83] which measured the number of trans-
actions per second (TPS) and produced price/performance ratings for systems
in $/TPS. Later, the Transaction Processing Performance Council (TPC) pub-
lished a number of benchmarks for specific application domains such as OLAP
[TPCCI7] and decision support systems [TPCD95]. With the emergence of ob-
ject data bases a number of new benchmarks appeared; see [Cha95] for an an-
notated bibliography. This type of benchmark differs from the type supported
by BASIS in that they attempt to test entire systems. More specifically, BASIS
supports researchers working on particular modules of a complete system: index
and query processor.

Other related systems include the DEVise environment [LRB97]. This is a
visualization tool for index structures. The GiST project [HNP95] has produced
a generic software package which can be used to generate different tree index
structures based on the B-tree paradigm.

Systems with a similar scope to that of BASIS include A La Carte [GOPT98]
and TimelT [KS95]. The former is a benchmarking environment for testing spa-
tial query processing algorithms. BASIS generalizes this objective by allowing
the testing of index structures as well. TimelT is a benchmarking environment
for testing algorithms for temporal query processing.

The rest of the paper is organized as follows. The next section lists and
discusses requirements for a benchmarking environment. Section 3 illustrates the
architecture of BASIS. Section 4 discusses issues for spatial and spatiotemporal
data management. An example benchmark is explained in Section 5. Finally,
Section 6 concludes the paper.



2 Requirements for a Benchmarking Environment

The general requirement for a benchmarking environment is to aid a user to set
up, run, and analyze the results of a benchmark. This process is decomposed
into the following more specific requirements:

provide a rich variety of data sets of different data object types,

integrate different index structures,

integrate different query processing algorithms,

facilitate the analysis of benchmark results,

provide visualization methods for viewing data sets, index structures, and
benchmark results
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In the sequel, we discuss each topic in detail.

2.1 Datasets

The first fundamental requirement for a database benchmark is data. A bench-
marking environment must provide the benchmark designer with as much data
from the appropriate application domain as he may need. The nature of the data
used in a benchmark run can greatly influence results. In the spatial application
domain, some index structures are specifically designed for point data. Other
index structures outperform the previous set of indexes when the data represent
objects with extension, such as lines and regions. The benchmarking environ-
ment must therefore provide a variety of data to accommodate this aspect of
benchmarking. At least part of the data must be real-life data. However, with
the current poverty of large scale public real-life data, artificial data may also
be provided.

2.2 Index structures

The environment should contain a number of different index structures. They
might be provided as part of the platform (for instance, we already implemented
several variants of the R-trees) or be added by some user to perform new ex-
periments and comparisons. This involves some design issues. First, one must
be able to use an existing structure without requiring a detailed knowledge of
its internal implementation. ;From a practical point of view, this means that
all structures should share a common design for the essential operations: data
loading, scan, point and window queries, etc.

Second, at a lower level, the platform must provide the building blocks to
create a new structure with minimal effort. This is necessary because, one the one
hand, we want to save the tedious task of programming the memory management
and I/0 functionalities, and because, on the other hand, a strong integration of
the new structure in the platform implies first that the design is made according
to some generic “pattern”, and second that the implementation takes advantage
as much as possible of low-level existing functionalities.



2.3 Query processing

As with indices, the environment should contain a number of different query
processing algorithms. Again, these should accumulate within the environment
without penalty to the implementation eflort. Moreover, the techniques and
algorithms already integrated should benefit to any researcher who wants to
extend the platform.

A significant ambition of the current work is to provide an open query proces-
sor which proposes a set, of commonly used operators (such as external sorting for
instance) and simultaneously allows to integrate the existing operators with new
algorithms. We consider this requirement as very important because it does not
limit the benchmarking work to the comparison of some isolated structures or
algorithms, but permits to build arbitrarily complex algorithms by “branching”
together some operators extracted from the available library.

We illustrate this approach with two examples. Imagine first that we want
to compare to algorithms, 4; and Ao, but the result of A; consists of records
sorted on some attribute, while the result of Ay consists of record ids (i.e, the
address of each record on the disk). Clearly, a performance comparison of both
algorithms is not fair: we must complete 4> with two operators, namely a first
one which fetches the records on the disk, and a second one which sorts the set
of records.

More generally, in a context of spatiotemporal databases, one must be ready
to mix several structures and algorithms on spatial, temporal and spatiotemporal
data. The design of a benchmarking environment should allow such a merge of
techniques issued from different fields, hopefully in a clean and elegant setting
which permits an accurate reporting of results. We propose in BASIS a query
execution model which is general enough to encompass relational and spatial
data and makes easy the integration of new methods.

2.4 Analysis of benchmark results

A benchmark may be intended to show the consumption of various system re-
sources, such as disk accesses, as a function of some variable, e.g. data set size.
The environment should allow a benchmark to produce statistics covering vari-
ous variables in the benchmark and a variety of resources. It may also provide
statistics on the performance of individual index functions, such as building,
update, insertion, and search times.

The conventional representation of benchmark results is to plot a graph on
the use of one resource against some varying parameter. Typically, such a graph
shows that one index progressively outperforis the other as the size of the data
set increases. Thus the investigator can justify claims about such relative perfor-
mance. However, it is becoming increasingly important to be able to explain the
reasons of differing performance. For instance, which factors cause the inferior
index to eventually require almost double the number of disk accesses?

The authors in [KS97] considered this question. Their response is an example
of the form of results analysis that BASIS is designed to support. They compared



the performance of two spatial index structures, R*-tree and SR-tree, with a
large number of nearest-neighbor queries. The main difference between the two
methods is that R*-tree groups objects into minimum bounding rectangles while
SR-tree groups them into minimum bounding circles. They found that SR-trees
outperform the former structure. The authors then investigated this difference
by re-analyzing the benchmark data and calculating the average volume and
diameter of the bounding shapes in the leaf nodes of the structure. Here the
diameter of a rectangle is its diagonal. This produced two further graphs of
volume against data size and diameter against data size.

These graphs showed that the average volume of the rectangles was smaller
than the circles but that the average diameter of the rectangles was larger. Put
another way, R*-tree groups the points into small volume regions while SR-tree
groups them into small diameter regions. All the queries of the benchmark were
nearest-neighbor queries. Since short diameter is more significant for such queries
than small volume, SR-tree is superior.

This work can be considered to be an ad hoc data mining process on bench-
mark results. A benchmarking environment should support such analysis as well
as the simple conventional performance graphs.

2.5 Visualization

Visualization is a requirement in three areas: data sets, index structures, and
results data. A user chooses data sets for a benchmark run that are appropriate
for that benchmark. In particular, if artificial data are used, it is very difficult to
verify that these data are appropriate. Some tool to give a visual representation
of the space distribution of the data can aid the user greatly. Also, it can be
of benefit to be able to view the structure of an index, for example tree fanout
or height, when analyzing results. Finally, clear visual presentation of complex
results is a key factor in their understanding and acceptance.

This is the set of requirements which have influenced the design of the BA-
SIS system. So far the emphasis has been targeted to the first four requirements
which are considered fundamental. The fulfillment of the last one is considered as
future work. In the next sections we explain the way our system attempts to sat-
isfy the fundamental requirements by illustrating the architecture and describing
the internal components.

3 The BASIS Architecture

This section describes the fundamental components of the BASIS architecture.
An outline of the architecture is depicted in Fig. 1. The platform has been
implemented in C++ and runs on top of UNIX or Windows NT.

The platform is organized in three modules (Fig. 1), namely (1) the storage
manager provides I/Os and caching services, (2) the SAM toolkit is a set of com-
monly used SAMs (Spatial Access Methods) and defines some design patterns
which support an easy development of new structures, and finally (3) the query



processor is a library of algorithms whose design follows the general framework
of the iterator model, to be described below.
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Fig. 1. The BASIS architecture

Each module defines a level in the architecture: this design allows an easy
customization and extension. Depending on the query processing experiment,
each level is easily extendible: the designer may add a new SAM, add a new
spatial operator or algorithm at the query processor level, or decide to implement
its own query processing module on top of the buffer management (I/O) module.

3.1 The storage manager

The storage manager is essentially in charge of managing a database. A database
is a set of binary files which store either datasets (i.e., sequential collection of
records) or SAMs. A SAM or index refers to records in an indexed data file
through record identifiers.

Any binary file is divided into pages with size chosen at database creation.
A page can be viewed (and accessed) as an array of bytes, but we provide a
more structured and easy-to-use page representation. Under this second point of
view, a page is structured as a header followed by an array of fixed-size records.
Therefore, a page is formatted and this allows for an easy access to any record
by its rank. Therefore, the interface to a formatted page is safer because invalid
operations (such as an access beyond the limits of the pages) can be prevented.

Any information to be put in page is a CStorable object. The CStorable
class defines the minimal behavior expected from such objects: essentially they
must be able to dump/load their content to/from a given location. The storage
manager provides a predefined list of such storables, including the atomic types
CString, CInt, CDouble, the class CRecordRef which holds the address of a
record, and the CRect class representing a bounding-box. By sub-typing the
class CStorable, one can easily extend the storable types.

A record can now be built as a tuple of CStorable objects. Records are the
main objects that BASIS deals with: a query execution plan, as described above,



can essentially be seen as a tree of operators which consume and produce records.
BASIS also provides a dynamic type management: any CRecord object knows
its type and delivers this type as a CType object on demand. Conversely, any
CType object can dynamically instantiate records.

The buffer manager handles one or several buffer pools: a data file or index
(SAM) is assigned to one buffer pool, but a buffer pool can handle several indices.
This allows much flexibility when assigning memory to the different parts of a
query execution plan. The buffer pool is a constant-size cache with LRU or FIFO
replacement policy (LRU by default). Pages can be pinned in memory. A pinned
page is never flushed until it is unpinned.

All algorithms requiring page accesses uniformly access these pages through
the interface provided by the bufler manager.

3.2 The SAM toolkit

Here are now the two main types of files which are handled by the storage
manager:

1. Data files are sequential collections of formatted pages storing records of a
same type. Records in a data file can either be accessed sequentially (with a
FileScan iterator, described below), or by their address (RowAccess iterator
in the sequel).

2. SAMs are structured collections of IndexEntry. An index entry is a built-in
record type with two attributes: the key and a record address. The key is
the geometric key, usually the MBR.

The currently implemented SAMs are a grid file, an R-tree, an R*-tree and
several packed R-trees. Fig. 2 shows some of these variants, built on the
hydrography dataset of the Connecticut State (Tiger Data)

R-tree R*-tree STR. packed R-tree

Fig. 2. R-tree variants (MBRs of leaf nodes) in BASIS

3.3 The query processor

One of the important design choices for the platform is to allow for any ex-
perimental evaluation of query execution plans (QEP) as generated by database



query optimizers with an algebraic view of query languages. During optimiza-
tion, a query is transformed into a QEP represented as a binary tree which
captures the order in which a sequence of physical algebraic operations are going
to be executed. The leaves represent data files or indices, internal nodes rep-
resent algebraic operations and edges represent dataflows between operations.
Examples of algebraic operations include data access (FileScan or RowAccess),
spatial selections, spatial joins, etc.

We use as a common framework for query execution, a demand-driven process
with iterator functions [Gra93]. Each node (operation) is an iterator. This allows
for a pipelined execution of multiple operations, thereby minimizing the system
resources (memory space) required for intermediate results: data consumed by an
iterator, say I, is generated by its son(s) iterator(s), say J. Records are produced
and consumed one-at-a-time. Iterator I asks iterator .J for a record. Therefore
the intermediate result of an operation is not stored in such pipelined operations
except for some specific iterators called blocking iterators, such as sorting.

Each iterator comes with three functions: open, next and close: open pre-
pares each input source and allocates the necessary system resources, next runs
one iteration step of the algorithm and produces a new record and close ends
up the iteration and relaxes resources. This design offers two major advantages:

1. First it allows for simple QEP creation by “assembling” iterators together.

2. Second it is fairly easy to extend BASIS by adding a new iterator: providing
that it defines the convenient interface as open, next and close (we provide
the necessary C++ support for that), its integration in the BASIS iterator
library is trivial.

We illustrate this feature with two examples of QEP on a same spatial join
query R X S (Fig. 3). We assume the existence of a spatial index Tg.

First (left of the figure), the QEP follows a the simple scan-and-index (SAT)
strategy: relation R is scanned with a FileScan iterator, and for each tuple 7 in
R, the SATjoin iterator executes a window query on index I's with key r.M BR.
This gives a record ID RecordID2. Finally the record with id RecordIDZ2 in the
datafile S is accessed with the RowAccess iterator.

Observe that BASIS dynamically constructs the type of the result: knowing
the types of the records in the datafile R and the index Ig, respectively, a simple
bottom-up type inference allows to know the type of the records manipulated by
each iterator, including the intermediate ones. This automatic type management
is an important feature which facilitates the specification of QEPs.

Now, assume that a new join algorithm is proposed, which constructs some
structure and matches it with the existing index. Then it suffices to reuse all
the iterators, save the SAIjoin one, which is to be replaced by NEWJoin (Fig. 3,
right part).

In both cases, the query is executed by using the sequence open, {next},
close on the root of the QEP (iterator RowAccess), where next denotes the
retrieval of one record, involving a propagation of the operations down the tree.
BASIS allows to collect the statistics on page faults and various other perfor-
mance parameters during execution.
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Fig. 3. Query execution plans

The platform also provides some basic modules such as sorting: the Sort
iterator takes any flow of record, a comparison function, and performs an external
sort/merge. As an example, one can introduce a Sort iterator! in the QEP
of Fig. 3 to sort the data flow output by the SAI join on the PagelD of the
RecordID2 component. This allows to access only once the pages of S instead of
issuing random reads to get the S records, which might lead to several accesses
to the same page.

In summary, this query execution model permits the construction of an ex-
tendible library which defines a physical algebra for query evaluation. The modu-
lar design and the support for type inference and iterator development allows for
an easy integration of new components and provides a convenient framework for
new experiments. We currently enrich the platform with temporal (cooperation
with the MUST group [DFS98]) and spatiotemporal structures and algorithms.

4 Spatial and Spatiotemporal Data Handling

Access method performance varies considerably by modifying the characteristics
of the data. For example, highly clustered data usually degrades performance
as opposed to uniformly distributed data. In the BASIS project we support two
fundamental types of data:

— real-life data (e.g. Sequoia 2000 [SFGM93], TIGER /Line [Tiger%4], etc),
— synthetic data, obeying various distributions (e.g. uniform, normal, expo-
nential, etc).

! This iterator is blocking: almost all the job is done during the open operation. See
Appendix B for a short description.



From one point of view, real-life data captures the characteristics of the
data that real-life applications manipulate. However, to be able to change the
data properties (population, distribution, coverage, etc.) synthetic data must be
supported also. Table 1 summarizes the most important properties of synthetic
data.

Property Description

data type points, rectangles, line segments, polygons

population how many objects are generated

distribution |uniform, normal, exponential, fractal

dimensionality [ number of dimensions of address space (2-d, n-d)

coverage how many objects cover a point of the address space
Table 1. The most important properties of a synthetic data set.

Generally speaking, it is required to make the generated data seem less artifi-
cial than a simple uniformly distributed random placement of rectangles. Statis-
tical properties of the generated data should be under the control of the user. In
particular the user should exercise some control over the distribution of the ob-
jects in space and the size and shape of the objects. The data generator described
in [GOP'98] meets these requirements. The data are generated by controlling
the fundamental parameters, and a large number of different data sets can be
generated. These data are ported into BASIS internal representation to be part
of the database. Real-life datasets can be used in the same way. This enables the
generation of benchmarks based on real-life and synthetic but realistic data sets.
If the user is not satisfied with the available data, new data sets can be generated
and ported into BASIS. The performance evaluation reported in [GOP98] and
[PRS99] is based on data sets generated by using the generator of ENST.

Spatial or spatiotemporal index structures can be build to support the under-
lying data sets. Currently, BASIS supports Grid-Files, R-trees and R*-trees in
1-D, 2-D or N-D spaces. Supporting multidimensional spaces is considered very
important, since some applications require data manipulation in more than 2
or 3 dimensions. For example, some proposed spatiotemporal index mechanisms
can be evaluated. The exploitation of 3-D R-trees is a straightforward solution
to index multimedia objects, where the third dimension is time. BASIS supports
such an index directly, by instantiating an R-tree or R*-tree in 3-D and passing
as an input parameter the filename which contains the spatiotemporal data (z,
y, time). Alternatively, a 2-D R-tree can be constructed to index the spatial
attributes of the data and a 1-D R-tree can be utilized to index time intervals.
Moreover, overlapping R-trees and RT-trees [XHL90] can be implemented very
easily by performing modifications to the R-tree implementation.

Some primitive data types have been defined to enable indexing and query
processing (see Fig. 4). The fundamental data types currently supported are
points, rectangles, line segments and point trajectories. The point trajectory can



Fig. 4. Primitive data types supported.

be viewed as a collection of consecutive positions in the space. The main pur-
pose of this type is to support spatiotemporal benchmarking for moving point
databases. For example, a database of moving points can be generated by in-
stantiating a number of point trajectories. Each trajectory corresponds to a
collection of records. The user can use these predefined types to generate new
ones. For example, rotated MBRs can be generated by inheriting from the CRect
class and adding some new member variables (e.g. rotational angle). During in-
stantiation of an object the dimensionality must be specified. The corresponding
class definitions are implemented as templates, enabling an arbitrary number of
dimensions with strict type checking.

Each spatial or spatiotemporal data type integrates some useful methods that
enable processing. For example, the intersects method can be invoked between
two rectangles or point trajectories to determine if they intersect or not; inclusion
can be invoked to test if a point is enclosed by a rectangle. Since it is impossible
to include every method that one may need, new methods can be defined using
appropriate inheritance from the corresponding base classes.

So far the majority of benchmarks performed by several research efforts focus
on spatial data only. We are currently working on performance evaluation of
spatiotemporal access methods, and more specifically we focus on the case of
moving point databases. In a moving point database each object is characterized
by a point trajectory. The challenge is to index these trajectories to efficiently
support spatial-only, time-only, and spatiotemporal queries. The first issue we
raise is if the index should be sparse or dense. If a separate index entry is
created for each object position then a dense index is created. On the other
hand, if several consecutive trajectory positions are grouped together a sparse
index is created. Evidently, a dense index occupies more space than a sparse
index which is very critical when the database need to be updated frequently,
and the number of moving objects is relatively large. On the other hand, the fact
that a dense index holds every position of the trajectory, eliminates the need to
search the trajectory itself during query processing, because all information is
maintained in the index. Tt is not evident which strategy is best suited for the
three aforementioned query types.

The second interesting issue that needs investigation is the type of the index.
There are several side effects if a 3-D dense R-tree is used to index a moving
point database. Treating time as another dimension in such an index has the
following consequences:

— MBRs are continuing to grow larger even if the data do not change their
position from one time slot to the other.



— The MBR enlargement is critical to the performance of the index, due to
more overlaps among the nodes.
— The index grows rapidly, independently of the mobility of the objects.

We are studying these issues with respect to some important system and
database parameters like the size of the database, the mobility of the objects, the
number of moving objects, the size of the available buffer space, the complexity
of the query execution plan.

5 An Example Benchmark

In this section we present, some results with respect to the proposed benchmark-
ing environment. The aim is to give some hints about how a benchmark can
be generated and how the various iterators are combined together to produce a
query execution plan. We illustrate how a two-way join can be modeled and ex-
ecuted in BASIS and give some experimental results regarding the performance
evaluation of the various approaches. See [PRS99] for a more detailed treatment
of spatial join processing.

5.1 Benchmarking Spatial Join Processing

Fig. 5 illustrates two possible QEPS for processing a two-way join By X Ry X Rg,
using R*-trees I, I> and I3. For the sake of illustration, we assume that (i)
the optimizer tries to use as much as possible existing spatial indices when
generating QEPs and (ii) that the 2-way join is first evaluated on the MBRs
(filter step) and then on the exact geometry (refinement step, requiring 3 row
accesses). Both QEPs are left-deep trees [Gra93]. In such trees the right operand
of a join is always an index, as well as the left operand for the left-most node.
Another approach, not investigated here, would consists in an n-way STT, i.e.,
a synchronized traversal of n R-trees down to the leaves.

The first strategy (Fig. 5.a) is fully pipelined: an STT (Synchronized Tree
Traversal) join is performed as the left-most node, involving I1 and I>. Then an
SAT (Scan-and-Index) join is executed for the following join: it takes a pair of
IndexEntry from the STT iterator, and uses one of the MBR as an argument
of a window query on I3. The result is a 3-tuple record id: the records are
then retrieved with RowAccess iterators, one for each relation, to perform the
refinement step.

The second strategy (Fig. 5.b) uses instead of SAT a Build-and-Match strat-
egy: since the repeated execution of window queries can be expected to be slow,
one can imagine to organize first the result of the STT join (for instance by
constructing an index) before performing the second join. Of course the building
phase is implemented by a blocking iterator and requires memory space.

These two strategies fit easily in the query execution model of BASIS. More-
over, by considering the whole QEP, one gets an accurate view of the possible
shortcomings of each method. For instance, the first strategy is fully pipelined
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Fig. 5. Two basic strategies for left-deep QEPs

and enjoys minimal memory requirements while the second one is memory con-
suming and enforces to wait for the completion of the STT join before proceeding
with the second one.

Also, the refinement step could be done prior to the second join if it is ex-
pected that the candidate set contains a large number of false hits. By computing
the refinement step in lazy mode, as suggested in Fig. 5, the cardinality of inter-
mediate results is larger (because of false hits) but the size of records is smaller.
All these “implementation details” are quite useful to determine whether an
approach is realistic or not.

The benchmark outlined above allows to compare the relative efficiency of
several solutions for the build-and-match strategy. We briefly describe three
variants and report the experimental result.

STJ (Seeded-Tree Join)

The first one is the Seeded Tree Join (STJ) [LR9§]. This technique builds from
an existing R-tree, used as a seed, a second R-tree called seeded R-tree (i.e, the
seeded-tree is built on the result of the STT join (Fig. 5) using I3 as the seeding
tree).

The motivation behind this approach is that tree matching during the join
phase should be more efficient than if a regular R-tree were constructed. During
the seeding phase, the top k levels of the seed are copied to become the top k
levels of the seeded tree. The entries of the lowest level are called slots. During
the growing phase, the objects of the non indexed source are inserted in one of
the slots: a rectangle is inserted in the slot that contains it or needs the least
enlargement. Whenever the buffer is full, all the slots containing at least one full
page are written in temporary files.

When the source has been exhausted, the construction of the tree begins: for
each slot, the objects inserted in the associated temporary files (as well as the
objects remaining in the buffer) are loaded to build an R-tree (called a grown



subtree): the slot entry is then modified to point to the root of this grown subtree.
Finally a cleanup phase adjusts the bounding boxes of the nodes, as in classical
R-trees.

The grown subtrees may have different heights: hence the seeded tree is not
balanced. It can be seen as a forest of relatively small R-trees: one of the expected
advantages of the method is that the construction of each grown subtree is done
in memory.

There is however an important condition to fulfill: the buffer must be large
enough to provide at least one page to each slot. If this is not the case, the pages
associated to a slot will be read and written during the growing phase, thus
rendering the method ineffective.

STR (Sort-Tile-Recursive)

The second variant of Build-And-Match algorithm implemented, called Sort-
Tile-Recursive (STR) and proposed in [LEL96], constructs on the fly a packed
R-tree. We also experimented the Hilbert packed R-tree [KF93], but found that
the comparison function (based on the Hilbert values) was more expensive than
the centroid comparison of STR.

The algorithm is as follows. First, the rectangles from the source are sorted
by z-coordinate of their centroid. At the end of this step, the size N of the
dataset is known: this allows to estimate the number of leaf pages as P = [N/c]
where ¢ is the page capacity. The dataset is then partitioned into [\/]_3] vertical
slices. The [v/P].c rectangles of each slice are loaded, sorted by y-coordinate of
their center, grouped into runs of length ¢ and packed into the R-tree leaves.
The upper levels are then constructed according to the same algorithm. At each
level, the nodes are roughly organized in horizontal or vertical slices (see Fig. 2).

SaM (Sort-and-Match)

The third Build-And-Match variant called Sort-and-Match (SaM) was proposed
in [PRS99]. It uses the STR algorithm but the construction is stopped at the leaf
level, and the pages are not written onto disk. As soon as a leaf [ has been pro-
duced, it is joined to the existing R-tree Ig: a window query with the bounding
box of [ is generated which retrieves all Iy leaves I’ such that [.M BR intersects
I!."MBR. |l and I’ are then joined with the plane-sweep algorithm already used
in the STT algorithm.

An interesting feature of this algorithm is that, unlike the previous ones, it
does not require the entire structure to be built before the matching phase thus
saving the flushing of this structure onto disk, resulting in much faster response
time.

5.2 Two way joins

We now report the results of a performance evaluation with BASIS on the two-
way join benchmark previously described. In the sequel, the name of the algo-
rithm denotes the second join algorithm, which takes the result of STT, builds
a structure and performs the join with Is.
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Fig. 6. Two way joins

We use three datasets from the ENST generator, which simulate respectively
Counties, Cities and Roads datasets [GOPT98]. The experiments are performed
for the medium dataset size of 40K records and the larger size of 100K. The
latter 2 way-join yields 865,473 records, whereas the former produces 314,617
records. A fixed buffer of 500 pages has been chosen.

Fig. 6 gives the response time for SAI and the three variants of Build-And-
Match algorithms. Let us look first at SAI performance. For a small dataset
size (40K), the index fits in memory, and only few I/Os are generated by the
algorithm. However the CPU cost? is high because of the large number of inter-
section tests. For large dataset sizes, the number of 1/0s is huge, rendering this
algorithm definitely not the right candidate.

The results illustrated for STJ are not encouraging. STJ outperforms SAI for
large datasets. But its performance is always much below that of SaM and STR.
The explanation of this discrepancy is the following. For a 40K size, the first level
of the seeding tree could be copied, resulting into 370 slots. The intermediate
result consists of 116 267 entries. Thus, there is an average of 314 entries per
slot: each subtree includes a root with an average of two leaves, leading to a very
bad space utilization. A large number of window queries are generated due to

2 For a detailed description of the cost calculation and the datasets used see [PRS99].



the unbalance of the matched R-tree. In the case of 100K datasets, only 8 slots
can be used, and the intermediate result consists of 288,846 records. Hence we
must construct a few, large R-trees, which is very time consuming.

SaM significantly outperforms STR, mostly because it saves the construction
of the R-tree structure, and also because the join phase is very efficient. It is
worth noting, finally, that SAI is a good candidate for small datasets sizes,
although its CPU cost is still larger. One should not forget that SAI is, in that
case, the only fully pipelined QEP. Therefore the response time is very short, a
parameter which can be essential when the regularity of the data output is more
important than the overall resource consumption.

6 Concluding Remarks and Future Work

BASIS is a prototype system aiming at performance evaluation of spatial access
methods and spatial queries under a common framework. In the previous sections
we discussed the fundamental issues behind the design and implementation of
the BASIS system.

Currently we proceed with the extension and improvement of the core BASIS
components, as well as with the design and implementation of new ones. We
plan to deliver a public release of BASIS to get some feedback from researchers
working in spatial and spatiotemporal databases. Our second target is to study
the performance of proposed spatiotemporal access methods, using BASIS as
the benchmarking platform. Recall that although spatiotemporal access methods
have been proposed, there is a lack of a thorough performance evaluation of these
methods. Finally, we aim at providing flexibility in query evaluation plans, by
incorporating dynamic plans and integrating the modules by means of a friendly
user interface.
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Appendix A - Fundamental Classes

BASIS is composed of a set of classes. Some of the most important ones are
illustrated in Table 2, with a short description.

Appendix B - Iterators

We give in this appendix a description of the iterators. Each iterator comes
with three functions: open, next and close: open prepares each input source
and allocates the necessary system resources, next runs one iteration step of
the algorithm and produces a new record and close ends up the iteration and
relaxes resources.

To illustrate this, consider the trivial example of the FileScan iterator which
sequentially accesses a data file. It is implemented as follows: (i) Open opens the
data file, and sets a cursor to the beginning of the file, (i) Next reads the file page
addressed by the cursor, returns the current record to the father node iterator,
and sets the cursor to the next record, (iii) Close closes the file. The following
table summarizes the iterators used in this study.



|Class |Descripti0n

CStorageManager| Abstraction of a simple page-oriented storage manager

CBufferManager |Implementation of a page-oriented buffer manager. Manages a number of buffer pools.
CFileManager Manages a number of BASIS files, that comprise the database.

CFile Abstraction of a file.

CStorable Abstract base class for objects that need to be serialized on disk.

CRecord Abstraction of a fixed-length record.

CRecordType Allows the creation of records with different attribute types.

CPage Page abstraction. A CPage object can contain anything that inherits from CStorable.
CSAM Abstract base class for spatial access methods.

Clndex Abstract base class for indexes.

CDatafile Manages a database file which contains a dataset.

CRitree Inherits from Clndex and implements an R-tree.

CRstar Inherits from CIndex and implements an R*-tree.

CGrid Inherits from Clndex and implements a Grid-file access method.

CApprox The record part which is used for indexing.

CRect Abstraction of an N-D rectangle.

CPoint Abstraction of an N-D point.

CLineSegment  |Abstraction of an N-D line segment.

CTrajectory Abstraction of an N-D trajectory. Contains a collection of line segments.
CStatistics Contains information about the performance of a method (e.g. disk accesses).
Clterator Used to construct query execution plans.

Table 2. Fundamental classes of BASIS.



open

next

close

FileScan

Open the file;

Retrieve the record;
Advance the cursor;

Close the file

RowAccess|Open input; Call next on input; Close input
Open the file; Read the record; Close file
Sort Open input Process one merge step [Release the

Repeat: fill the

buffer from input; sort the
buffer; flush in runs.
Merge until only one

step is left.

Close input.

buffer and tmp files

SegSort |Open input. Take the next pair Close input
Prepare: put records in the buffer;
in the buffer from input; read the record from S
sort on R record ids;
read records from R, Buffer empty? Then
sort on S record ids. execute Prepare
STT Open R-trees; Get next pair Close both inputs
Init. the paths of entries;
in each R-tree; When a page is scanned:
Pin and sort unpin, get the next one,
pages as required. sort and pin.
STJ Open input; Same as STT Close right input
Build the seeded tree
from input. Close left input
Init. as in STT.
STR Open input; Same as STT Close right input
Build the STR from input;
close left input;
Init. as in STT
SaM Open input; Get next pair of Close both inputs

SQort on r. Sort

the first slice on y.
Get the first matching
leaf in the R-tree;

sort it (on y)

oantriog
SIurics.

Event.: get the next

leaf in the R-tree; sort it
Event.: get the next
slice on y

Table 3. Description of iterators.




