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Abstract Assorted bibliometric indices have been proposed leading to ambiguity in

choosing the appropriate metric for evaluation. On the other hand, attempts to fit universal

distribution patterns to scientific output have not converged to unified conclusions. To this

end, we introduce the concept of fractal dimension to further examine the citation curve of

an author. The fractal dimension of the citation curve could provide insight in its shape and

form, level of skewness and distance from uniformity as well as the existing publishing

patterns, without a priori assumptions on the particular citation distribution. It is shown that

the notion of fractal dimension is not correlated to other well-known bibliometric indices.

Further, a thorough experimentation of the fractal dimension is presented by using a set of

30,000 computer scientists and more than 9 million publications with over 38 million

citations. The distinguishing power of the fractal dimension is investigated when com-

paring the impact of scientists and when trying to identify award winning scientists in their

respective fields.
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Introduction

During the last decade we have witnessed an explosive growth in the topic of com-

puterized evaluation of the performance of scientists and publications. The result of this

growth was the development of a variety of scientometric indicators. From simple

measures such as the (average) number of citations (measuring the impact) as captured

by the Impact Factor (Garfield 1955), and measures such as the number of papers

(measuring the productivity), the community proposed more sophisticated indicators.

Examples of these include the indicators which act as a proxy of impact and produc-

tivity, as captured by the family of the h-index (Hirsch 2005) indicators, centrality

indices that measure the strategic position of an element (scientist or journal) within a

complex network of citations as captured by the variations of the PageRank (Brin and

Page 1998) (e.g., the Scimago1 and the Eigenfactor2 indicators) and so on. All these

efforts aim towards developing more accurate measures of quality in order to facilitate

decisions about faculty promotions, personnel hiring, fund allocation and article sub-

missions, since these tasks have attracted a growing interest from the scientific com-

munity (Glänzel et al. 2016). What is more, they have proven to be extremely delicate

tasks due to the variety of criteria that need to be considered and also time-consuming

due to the large number of candidates (scientists or publications).

At the heart of all these indicators, conventional and novel, we can recognize an effort

to summarize the wealth of information carried by a citation curve into a single number.

For instance, the total number of citations is the zeroth moment of the citation distribution

(i.e. curve), the average citation rate is the first moment of the distribution, the h-index is a

lower bound of citations, the PageRank-like indicators are the principal eigenvector of a

Markovian chain over the (enhanced) citation network, etc. In practice, this effort has been

proved challenging, and this is the reason that a number of organizations have decided

(Callaway 2016) to move on to publishing the whole citation curve instead of single

number summaries.

The present article employs the concept of fractal dimension of a point set to allow

for a single number indicator that can incorporate geometric information of the citation

curve in an accurate and representative manner. This way information about the pub-

lishing patterns could be revealed without a priori assumptions on the distribution of

citations e.g., being a power law, or a predefined relationship between different parts of

the curve. We present the new indicator and results about its performance using citation

data of individual scientists; however the methodology developed can be applied to

journal citation curves as well.

Motivation and contributions

Consider an author i with p publications and Cmax number of citations received by her/

his most cited publication. The citation curve is not continuous but rather a set of points;

therefore, a curve is fitted to connect them and graphically illustrate the distribution of

the number of citations to an author’s publications. The area defined by the two axes and

the citation curve corresponds to the total number of citations, Ctot, acquired by all p

publications of author i. Ideally, the maximum h-index would occur when the citation

1 http://www.scimagojr.com/.
2 http://www.eigenfactor.org/.
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curve becomes a straight line parallel to the axes of publications. For the purposes of the

present work we refer to this curve as the ‘‘maximum citation curve’’, since it indicates

that every publication of a particular author has received citations equal to Cmax. In

practice, this case is rarely met, because there are always publications with fewer cita-

tions than the most cited paper. Consequently, as some papers fail to acquire Cmax

citations, the citation curve starts approximating the curves in Fig. 1 indicated as line 1,

line 2, etc. There comes a point at which the citation curve reduces to line t forming a

triangle with the two axes. Any citation curve that lies below this line, becomes

increasingly skewed indicating the existence of a few highly cited publications, an h-core

and a long tail with low or zero cited publications. This constitutes the most common

case for citation curves.

The more a citation curve differs from the maximum citation curve, the more

skewed it becomes. Citation curves significantly different from line t and closer to the

origin of the axes represent a heavily-tailed and skewed publishing behavior. Therefore,

the concept of fractal dimension could be utilized to convey this geometrical infor-

mation of the citation curve. The fractal dimension provides a statistical index of the

complexity of a geometrical object by comparing how much the detail in a pattern

changes with the scale at which it is measured. As the citation curve is not in reality a

continuous curve but a set of discrete points, the fractal dimension can better represent

it than any metric that attempts to quantify parts of the citation curve and the rela-

tionship between them. Moreover, it provides an insight on the degree the curve differs

Fig. 1 Citation curves representing different levels of scientific impact with the same number of

publications (p) and maximum citations received by individual papers (Cmax)
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from a uniform distribution, how self-similar, dynamic and exponential it is through a

single number metric. That could prove useful for several data mining tasks performed

on bibliometric data (extracting top scientists from a group, ranking, clustering scien-

tists in groups, etc.), because, by utilizing the fractal dimension, information about the

geometrical features of the citation curve can be incorporated as numerical input to

these tasks. In addition, the fractal dimension could assist in a more reliable distinction

amongst authors in very densely populated areas of h-index and citation scores (see

‘‘Experimentation’’ section).

Given the above framework, the contribution of this work is twofold. Firstly, given the

current state of a scientist (i.e. p;Cmax;Ctot), the fractal dimension expresses how much this

particular state differs from the maximum citation curve. In other words, it indicates with a

single number to what extend an author has a productive and highly cited portfolio relative

to their career length through measuring the skewness of her/his citation curve. The second

contribution of our proposal is revealing the distinguishing power of the fractal dimension

especially for common values of p;Ctot and h-index. To this end, a series of experiments

were performed by using a data set of 30,000 authors in a network containing more than

9 million publications and over 38 million citations. More specifically, the fractal

dimension calculated by the boxcount method was used to identify the different publishing

patterns and scientific impact of each author. Groups of scientists that have received

awards in their respective fields were used to explore the distinguishing power of the

fractal dimension as a means for identifying elite scientists.

The rest of the paper is organized as follows. ‘‘Related work’’ section summarizes

related work; ‘‘The fractal dimension and its calculation’’ section introduces the basic

principles of fractal analysis and an overview of the uses of the fractal dimension in the

literature. ‘‘From power laws to the fractal dimension of the citation curve’’ section con-

nects the power law nature of the citation curve with fractal dimension, whereas ‘‘Ex-

perimentation’’ section presents the experiments conducted to validate the fractal analysis.

‘‘Conclusions and future work’’ section concludes the article.

Related work

A lot of research has focused on studying the process according to which citations are

accumulated. There are two different approaches to the analyses of citation dynamics, the

microscopic and the macroscopic one, with the first referring to the study of individual

citation curves, whereas the latter refers to the citation distribution across a large set of

points (scientists, publications, etc.).

The microscopic approaches entail identifying particular characteristics of the citation

curve of an author. Either for individual authors (Wildgaard et al. 2014) or for more

complex networks of authors (Nykl et al. 2014) the citation curve has been used to quantify

scientific productivity and impact. Jorge Hirsh focused on the citation curve and its

intersection with a 45� line to define the popular h-index (Hirsch 2005). Variations of the

h-index examined other areas defined by this intersection: the h-core area, the excess area

and the tail area. The h-core is the square of size h defined by the projections of the

intersection point on the two axes, whereas the excess area lies between the upper side of

the core-square and the citation curve itself. The tail area includes the space on the right of

the core-square including the papers with less than h citations. The tail-core ratio has been

connected to the power law nature of citation distributions (Ye and Rousseau 2010). These
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areas have been further used to define indices such as: the e-index (Zhang 2009), and the

Perfectionism Index (PI index) (Sidiropoulos et al. 2015) focusing on a new area, the tail

complement area. As can be seen in Fig. 1, the tail complement area measures how far are

the low cited publications from receiving h citations each and contributing to the author’s

h-index.

Among other variations of the h-index, we mention the following ones: the contem-

porary h-index (Sidiropoulos et al. 2007), the individual h-index (Batista et al. 2006), the

A- and R- indices (Jin et al. 2007), which utilize information carried by the size of the h-

core. On the other hand, indices like the aforementioned PI index exploit the relative size

of different areas in the citation curve and try to combine them in one metric. Indices like

s- or entropy index (Silagadze 2010), w-index that creates classes for the citation count

(Wohlin 2009) and hm-index (Miller 2006) attempt to incorporate citations from all the

areas of the citation curve, thus, tapping into the information the citation curve carries as a

whole. However, all these indices do not describe the actual distribution of the citation

curve neither do they convey information about the geometry of the entire curve (shape,

form, steepness, skewness, etc.). Instead, they break down the curve to individual parts and

then attempt to combine them.

From a macroscopic point of view citation distributions have been modelled and

analyzed multiple times over the years (Stringer et al. 2010; Wallace et al. 2009;

Radicchi and Castellano 2012), mainly as a complex network of citations. The dynamics

of citation distribution have been analyzed and the possible models that could be fitted to

describe them—such as power law, log-normal and shifted power laws—have been

introduced in Eom and Fortunato (2011). Analogous work has been conducted in

Radicchi et al. (2008) to identify a universal scaling parameter and re-scale citation

distributions from different fields on a common universal scale. In Gupta et al. (2005)

the authors focused on fitting a Tsallis (power law) model to the distribution of the total

citation index over a number of publications, whereas other researchers have focused on

adapting similar models to the individual citation curve. A two-phase model has been

adapted to describe both the exponential parameter and the power law tail of the citation

curve in an attempt to quantify ‘‘the rich getting richer’’ phenomenon in citation dis-

tribution (Peterson et al. 2010). However, these attempts are defined at a publication-

level and do not provide distinguishing properties at author-level based on an author’s

entire portfolio. Recently, the power law models for citation distribution have been

subjected to scrutiny and their applicability over a range of citation networks has been

questioned. An empirical study has been conducted over a very large dataset across

different disciplines to compare various long tailed distributions and identify the ones

that better describe the citation network, with distributions like Gumbell and Yule law,

proving more fitted than power laws (Brzezinski 2015). Moreover, fitting a distribution

to the citation data with a satisfying goodness of fit typically requires a large set of data

(publications-citations), which is not attainable for individual authors with a limited

number of articles published.

The fractal dimension and its calculation

A set of points is considered to be fractal (Gouyet 1996) if it exhibits self-similarity over all

scales and deviates from uniformity in a geometrical space. Point sets that exhibit these

properties exist often in the real world, such as the curve of a coast-line, the shape of a
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cloud, etc. Point sets that display self-similarity present the need for a non-integer

dimension value, the fractal dimension. Essentially, it is a ratio providing a statistical index

of complexity, comparing how detail in a geometrical pattern changes with the scale at

which it is measured. To fully comprehend the concept of the fractal dimension for a real

data set, we must first distinguish between the embedding and intrinsic dimension of a

dataset.

Definition 1 The embedding dimension E of a dataset is the dimension of its address

space. In other words, it is the number of attributes of the dataset. The dataset can have an

embedding dimension lower than the dimension of the space where it’s embedded. For

instance, a line has an embedding dimension of 1, even if it is represented in a higher

dimensional space.

Definition 2 The intrinsic dimension D of a dataset is the dimension of the object

represented by the dataset, regardless of the space where it is embedded.

If a dataset actually represents a real Euclidean object, then its intrinsic dimension

would be equal to its embedding dimension (D ¼ E). As it is often the case, the embedding

dimensionality of the dataset hides its actual characteristics and does not provide any real

insight into the geometry of the object represented by the dataset, when this object fails to

obviously resemble a known Euclidean one. The basic properties of the fractal dimension,

which expresses the intrinsic dimensionality of an object, are listed below.

Property 1 The fractal dimension of a Euclidean object corresponds to its Euclidean

dimension and is always an integer.

A point has fractal dimension of 0, whereas a line has a fractal dimension of 1.

Property 2 The fractal dimension of a dataset cannot be higher than the embedding

dimension.

The fractal dimension can be calculated both for infinite curves and finite datasets.

Various techniques have been contemplated for the calculation of the fractal dimension:

• the boxcount dimension (Feng et al. 1996),

• the correlation dimension (Osborne and Provenzale 1989), and

• the information dimension (Ashkenazy 1999).

The most widely used technique to calculate the fractal dimension of real datasets is the

boxcount method, and this is the method employed in the present article.

The correlation dimension is calculated for any set x of m points in a D-dimensional

space as:

DC ¼ lim
m!1

p

m2
ð1Þ

where p represents the total number of point pairs which have a distance between them that

is less than distance e. As the number of points tends to infinity, and the distance between

them tends to zero, the value of DC approximates the following relationship:

NðeÞ� e
DC ð2Þ

The slope of the log–log plot of the differential of DC versus distance e will yield an

estimate of the correlation dimension DC. The values for distance e are chosen with respect

to the density and dimensionality of the set x. However, this approximation works only for
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higher dimensional objects and for points that tend to be evenly distributed, thereby

constituting the correlation dimension unsuitable for calculating the fractal dimension of

the citation curve.

Another way to calculate the fractal dimension is to use the information dimension

which is defined as:

DI ¼ lim
m!1

SðxmÞ

log2 m
ð3Þ

where SðxmÞ is the entropy of the discrete values of set x in a D-dimensional space. The

information dimension is generally lower in value compared to the boxcount dimension

and higher in value than the correlation dimension. This method for calculating fractal

dimension is more suitable for a higher dimensional space, as it usually assigns the vector a

dimension much lower than the space in which it is embedded. Furthermore, its calculation

requires a large vector containing enough points, so that the limit can have a finite and

unbiased value. For the purposes of calculating the fractal dimension of the citation curve

we opt for the boxcount method, which will be presented at length in ‘‘The boxcount

method’’ section.

The fractal dimension for real finite datasets has found many applications in several data

mining tasks, such as describing complex networks (Zhang et al. 2014), or reducing a

dataset’s dimensionality by identifying redundant attributes that do not affect the fractal

dimension of the dataset (Traina Jr et al. 2010). The property of self-similarity in complex

networks was first addressed in Song et al. (2005), where it was proven that they consist of

self-repeating patterns on all length scales by dividing the complex system into boxes

containing nodes within given sizes, i.e. the boxcount method. Fractal dimension has also

been employed to describe sets of points that follow non-uniform distributions and fail to

comply with known distributions, such as Gaussian, Zipf, Yule, Tsalis, etc (Faloutsos and

Kamel 1997). Next, we will present the boxcount method for calculating the fractal

dimension of a real dataset.

The boxcount method

The boxcount method is one of the most commonly used techniques to calculate the fractal

dimension of a set x in a Euclidean D-dimensional space RD. The aforementioned D-

dimensional space is divided into cubic grid cells of size r. Let N(r) denote the number of

these cells that contain at least one point from the dataset. The boxcount dimension or

fractal dimension is defined as:

DF ¼ lim
r!0

log ðNðrÞÞ

log ð1=rÞ
: ð4Þ

This definition is applied to fractals of infinite number of points. For real data sets with

finite number of points, the slope of the boxcount plot is used to quantify the fractal

dimension of the set. In other words, the slope of the log–log plot of N(r) versus r gives the

estimate of the fractal dimension of the point set as absolute value. If the point set exhibits

self-similarity in the range ðr1; r2Þ, then the plot is almost a straight line. For a point set

with self-similarity the following relationship holds:

NðrÞ ¼ No � r�DF: ð5Þ
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In Eq. 5 No represents the initial box size. In case that the point set significantly differs

from a self-similar pattern, then N(r) will represent the highest deviation from the

embedding dimension of the point set, i.e. the resulting DF value is the upper limit of

fractal dimension for the given set.

Using the Sierpiński triangle, a known object with non-integer fractal dimension that

exhibits a self-similar and non-uniform distribution, we plot the number of boxes to the

size of the box in doubly logarithmic scales. Figure 2a is the log–log plot for the number of

boxes to the size of each box, whereas Fig. 2b depicts the plot of the differential of

logðNðrÞÞ to logðrÞ versus the size of boxes r, called the boxcount plot. The Sierpiński

triangle is often used in literature Falconer and Lammering (1998) as a representative

example of fractal dimension calculation and as a comparison standard for the expected

form of the log–log plot. The slope of its boxcount plot approximates a straight line for the

box size in range [1, 100], which comes in accordance to its properties of non-uniformity

and self-similarity and based on this slope the Sierpiński triangle’s fractal dimension takes

the value of 1.75.

The algorithm to calculate the fractal dimension is given below. In particular, the

algorithm presented can be used to calculate the fractal dimension of any D-dimensional

array C where D ¼ 1; 2; 3; . . .d; for d 2 R. The number N of D-dimensional boxes of size r

that are needed to cover the elements of C embedded in a D-dimensional space is cal-

culated for each box size r. The box sizes are powers of 2, r ¼ 1; 2; 4; 8; . . .2p, where p is

the smallest integer such that maxðsizeðCÞÞ� 2p and represents the maximum number of

generations of different box sizes. If the size of C over each dimension is smaller that 2p,

then C is padded with zeros to achieve size 2p over each dimension. Vectors N and r are of

size pþ 1 and N scales as r�DF, based on Eq. 5.

(a) (b)

Fig. 2 Log–log and boxcount plots of the Sierpiński triangle. a Log–log plot of number of boxes versus the

size of each box for the Sierpiński triangle. b Plot of the differential of log(N(r)) to log(r) versus the size of

boxes r for the Sierpiński triangle
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Next, we will focus on the relationships of the fractal dimension with the well-known

power law and the information it expresses about the citation curve. In the experimental

section we will present the boxcount fractal dimension calculated for our dataset and its

relationship with well-known metrics, like the h-index.

From power laws to the fractal dimension of the citation curve

The calculation of the boxcount dimension assumes that there is a power law relationship

between the number of boxes and their respective size. However, this relationship does not

require that the dataset itself obeys a pure power law model; it simply implies skewness

and deviation from uniformity. It is undeniable though that fractal dimension and power

laws are related. In our context we particularly focus on the power law qualities of an

individual scientist’s citation curve. Recall that a power-law is expressed as follows:
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pðxÞ ¼ c� x�a; ð6Þ

where x is the quantity that follows the power-law and a is the scaling parameter (or

exponent). Constant c is simply a normalization constant.

Even though there are solid studies that show power laws are not a perfect fit for citation

distributions (Brzezinski 2015; Garanina and Romanovsky 2016), or that the power law

applies after a xmin point of the distribution, the existence of a pure power law is not a

prerequisite for the existence and calculation of the fractal dimension of a dataset. Power

law-like behaviour is usually detected over large datasets, for instance the citations of all

publications in a journal, but the trend towards a power law behavior can be detected even

in smaller sets of publications belonging to individual authors (Komulainen 2004).

Using the fractal dimension to describe the shape and form of the citation curve, instead

of calculating a power law exponent, is preferable due to the applicability of the fractal

dimension over the entire range of points. It can be applied both for scientists displaying

heavy tailed distributions and the ones with more uniform patterns. We represent an

individual scientist’s portfolio as an 1-D vector C ¼ ðc1; c2; . . .; cmÞ, in which ci � cj if i\j

and ci is equal to the total number of citations accumulated by the i-th publication.

Graphically this vector depicts a set of points which, if connected, form a skewed and non-

uniform curve, i.e. the citation curve.

As can be deduced, the citation curve lies between a set of individual points and a line,

meaning that it constitutes of discrete points which are fitted to a curve to express the

distribution of citations. Therefore, it is expected that the fractal dimension of a citation set

will lie in the range [0, 1], where values close to 0 mean that the distribution is highly

skewed and the points vary from a few high values to a series of zeros. On the other hand,

values close to 1 indicate that the citation curve tends to fit a line further away from the

origin of the axes and, as it is less skewed, the defined area among the two axes becomes

larger resulting in a dense and consistent citation space.

The merit of this approach can be indicated via the following example. Scientist A has

62 publications with a citation vector [22, 20, 19, 15, 15, 14, 14, 13, 11, 11, 10, 10, 8, 7, 6,

6, 6, 6, 6, 5, 5, 5, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0] whereas scientist B has a citation vector of [54, 41, 35, 26, 24, 15,

15, 15, 14, 13, 9, 4, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. It can be easily calculated that both

scientists have 271 citations with 62 publications and h-index equal to 10. These con-

ventional bibliometric indices cannot identify differences between the two scientists. It is

necessary to examine the whole citation vector and calculate the size of the areas of excess

citations or the tail area. If we applied the boxcount method for the two scientists A and B,

we could derive their fractal dimension values as 0.890 and 0.671, respectively. Figure 3

shows that the insight provided by the fractal dimension is actually depicted graphically

when we plot the citations of a scientist in descending order. Indeed, both scientist A and B

start off with a set of well cited papers and they present a set of similarly cited papers in the

h-core area. However, scientist B displays a more steep fall and a heavy tailed curve with

numerous zero cited papers, whereas scientist A preserves a performance level with a

higher number of publications in the h-core area and with several publications receiving

close to ten citations each. This observation could indicate that scientist A is closer to

raising her/his h-index, thereby displaying higher potential.

The fractal dimension captures the tendency of the citation distribution and provides an

estimation of the pattern it would follow if it were to evolve over time. In reality, this is

what happens with most scientists’ portfolios. They tend to expand dynamically over time

Scientometrics

123

Author's personal copy



and continue acquiring citations following a pattern. As a result, the fractal dimension

utilizes the current dataset at the given time to estimate the trend it is going to follow

should it continue to expand in a similar pattern. It provides an element of continuity and

timelessness in citation distribution and this is why it can assign relatively high values even

to scientists with smaller h-index values. Since citation acquisition is a dynamic process, it

constitutes an oversimplification to focus statically on individual parts of the distribution,

as is often the case with most bibliometric studies.

In the next section, more cases of individual authors will be tested to determine the

validity of using fractal dimension to describe citation curves and add geometric distinc-

tions amongst a set of authors.

Experimentation

Dataset description

The dataset used in the experiments consists of 30,000 computer scientists according to the

categorization of Microsoft Academic Search (MAS) that have an h-index higher than 8 as

calculated by MAS. The main reason for choosing MAS for data collection is its open

access policy and the provision of an API with structured metadata. This allows accessing

data for scientists based on the publication field, their h-index as calculated by MAS and

their number of total publications and citations. Moreover, MAS provides a detailed

domain categorization, where each domain is comprised of subdomains that allow for an

efficient field specific search. The collected data include information up to the year 2013.

The most densely populated time period for the data provided by MAS are the years

Fig. 3 Citation curves of scientist A displayed with blue circles and scientist B with red ones. (Color

figure online)
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1970–2013. The h-index threshold of 8 (in the year 2013) was selected to avoid scientists

with limited publication count and consequently very small citation curves. The boxcount

method can be used for scientists with h-index smaller than 8, but the result would

introduce bias given the small number of points in the curve resulting in uncertainty in any

geometrical estimation about the curve. Another dataset with scientists explicitly acquiring

an h-index lower than 8 according to MAS was selected for additional experimentation,

In the CS dataset described above we have identified three subsets of award winning

scientists in Computer Science in general and the domains of Databases and Networks and

Communications in particular:

• the ACM Turing award winners of the years 1980–2015,3

• the ACM SIGMOD award winners in the Database domain of the years 1992–2015,4

• the ACM SIGCOMM award winners in the Networks and Communications domain of

the years 1992–2015.5

In addition, we have identified the scientists that have been awarded as ACM Fellows.6 Out

of the 1000 ACM Fellows that are displayed on the ACM website we have extensive

publication records for 862 of them in our dataset. It is noted that for a number of the

aforementioned award winners not enough data were available in the MAS database, as

some of them have had a more industrial profile or made their contributions before the

1970s, a period for which the data in MAS are not as rich. The datasets of the award

winning scientists are employed as a comparison set. The values and ranking of the award

winning scientists according to the fractal dimension are compared with the ones acquired

using other bibliometric indices (such as the h-index) to help identify the distinguishing

power of the fractal dimension. Table 1 displays the basic statistics of the datasets utilized

in the experimental section. The column ‘‘CS dataset’’ contains the full records from MAS

for the 30,000 computer scientists, whereas the other four columns refer to the selective

datasets of awarded scientists and the last ones contains scientists with h-index less than 8.

In Table 1 the average citation rate represents the average number of citations per paper

(i.e. citation rate) received by the authors of the dataset and the highest value is achieved

by the Turing award winners, who appear to receive on average 158 citations per paper. On

the other hand, they also present low publication rate (number of publication per author)

compared to the other groups of award winners, which could indicate that Turing award

winners produce a small number of seminal and influential publications. Nonetheless, all of

the award winning teams display a very high value of fractal dimension (over 0.9) whilst

the average h-index does not present an analogously high value for all award winning

groups. For instance, the SIGCOMM award winners display an average h-index value of

36, which is almost half of the respective value for ACM Fellows. The dataset named LH

contains random scientists from the Computer Science field with an h-index lower than 8,

as calculated by MAS. This group displays the lowest values in all metrics. These

observations and the differences in the spread of fractal dimension compared to traditional

metrics will be further investigated in the experimental section below.

3 http://amturing.acm.org/byyear.cfm.
4 http://www.sigmod.org/sigmod-awards/.
5 http://www.sigcomm.org/awards/sigcomm-awards.
6 http://awards.acm.org/fellow/year.cfm.
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Experimental results

In this section, we present the experiments conducted to validate the use of the fractal

dimension. Essentially, the fractal dimension constitutes a normalized metric with values

in the range [0, 1]. Table 2 displays the statistics of the fractal dimension for the CS

dataset; the values of the fractal dimension are densely centered at an average value of

0.75. It is obvious that the fractal dimension displays a very narrow range of values, as

expressed by the small standard deviation and the values of the four quartiles. This comes

in accordance to the fact that the citation curve displays a common basic geometry for the

majority of scientists. Even though the differences between authors may be considered

small in value, the inherent information provides valuable insights. Since bibliometric

indices display very different values, any kind of ranking or data mining operation

employed on bibliometric data would require normalization to a range of [0, 1] for any

index involved in order to facilitate fair comparisons.

Figure 4 displays the empirical cumulative distribution and the fitted distributions to the

probability density function of the fractal dimension values of our dataset. As expected, the

conclusions drawn from the statistics of Table 2 comply with the distribution plot. Also, it

can be seen that the fractal dimension values obey a tailed distribution like most biblio-

metric indices and the best fitted distribution for it is extreme value or generalized extreme

value. This can be explained as fractal dimension values are both upper and lower limited,

and concentrated in a range [0.6, 0.9].

We observe that a fractal dimension value equal to 1 (or almost 1) is rather scarce. Such

a value reveals that the author has achieved minimum skewness in their citation curve with

the majority of their publications receiving high citation count. On the other hand, the latter

fact does not necessarily imply that these authors have the highest number of total cita-

tions. In other words, high values in the fractal dimension are observed both for moderate

citation counts and for highly cited scientists. Consequently, the fractal dimension can

prove helpful in distinguishing amongst scientists with similar citation counts or similar h-

index, particularly in the densely populated groups of scientists with moderate perfor-

mance. Apparently, values smaller than 0.6 would be common for the fractal dimension

Table 1 Statistics of the datasets utilized in our experiments

CS dataset SIGMOD

winners

SIGCOMM

winners

Turing

winners

ACM

Fellows

LH

dataset

Number of authors 30,000 22 33 71 862 350

Number of publications

written by authors of the set

2,260,796 3434 5306 9044 277,893 3574

Number of publications

including citing papers

9,541,133 120,880 101,022 324,000 11,005,791 10,320

Number of publications per

author

75 157 161 127 322 11

Number of citations 38,657,715 304,932 226,937 1,138,584 21,103,115 27,174

Average citation rate of all

authors

25 56 50 158 48 8

Average h-index 14 52 36 39 60 4

Average fractal dimension 0.75 0.95 0.91 0.92 0.95 0.61
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given that many scientists have acquired a low number of citations. But in the CS dataset

the authors with very low h-index have been excluded and the behavior of fractal

dimension in the lower ranges will be explored further by the end of this section.

Next, we will explore the fractal dimension’s relationship with well-known bibliometric

indices. Figure 5 depicts the quantile plots of the fractal dimension (y axis) and ten other

well-known bibliometric indices (x axis). The indices that were selected for comparison

include basic citation metrics, such as the h-index and variations, as well as indices taking

into account all the areas around the citation curve. More specifically, the indices con-

templated here include: the average number of citations, the total number of citations and

the number of publications of an author, the g-index (Egghe 2006), the r2 index (Gago-

lewski and Grzegorzewski 2009), the h-index, the hnor-index (Sidiropoulos et al. 2007), the

hw-index (Egghe and Rousseau 2008) and finally the PI and v-index (Riikonen and Vihinen

2008). As can be seen in Fig. 5, the fractal dimension follows a considerably different

distribution compared to other bibliometric indices. As a quantile we define the fraction (or

percent) of points below the given value. A 45� reference line is also plotted. If the two sets

of values follow similar distribution, the points should fall approximately along this ref-

erence line. The greater the departure from this reference line, the less correlated the values

of the two indices.

Table 2 Statistics of the fractal dimension for the CS dataset

Mean SD Min Max 1st-quartile 2nd-quartile 3rd-quartile 4th-quartile

0.75 0.108 0.226 1 0.686 0.760 0.828 1

(a) (b)

Fig. 4 Distribution of fractal dimension values for the CS dataset. a Empirical cumulative distribution

function for fractal dimension. b Distribution fitted to fractal dimension values
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Interestingly, there is a resemblance in the distribution of fractal dimension with the

respective one for hnor- and v-index, which is explained because these two indices incor-

porate information about the entire citation curve. A number of the quantile plots, for

instance the ones with g-index, h-index and hw-index appear to be very similar, as these

indices display a high degree of similarity with each other in their distribution. Therefore,

compared with fractal dimension, they produce highly similar quantile plots. Other indices

that follow a significantly different distribution, such as the PI index, produce a unique

quantile relationship with the fractal dimension values. The r2 index, which has been

introduced as a geometrical generalization of various bibliometric indices, appears to

follow a more similar distribution to fractal dimension especially in moderate value range;

however, for higher values of fractal dimension the quantile distribution deviates signifi-

cantly from the r2 values.

Compared with these indices, the fractal dimension follows a rather unique distribution,

which we further explore in a temporal context in Figs. 6 and 7. We acquired from MAS

the data concerning the same set of authors in earlier years (of course, a number of authors

is not included in all the contemplated years depending on academic age) and in particular

Fig. 5 Collective QQ plots of the fractal dimension with ten other well-known indices
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the years 2003, 1993 and 1983. In the following, we examine the spread of the fractal

dimension and h-index over all the authors in our set for these four snapshots in time.

As can be seen in Figs. 6 and 7, both the h-index and the fractal dimension get higher

values in the more recent years. Although there is an increasing pattern in both metrics, it is

observed that the h-index has a number of extremely high values, whereas the majority of

authors lie in a lower value range [10, 25], which becomes even lower in earlier years. On

the other hand, the fractal dimension places a large number of authors in the mediocre

value range [0.6, 0.8], which indicates that for scientists of moderate h-index values the

fractal dimension manages to distinguish a set of scientists that consistently gather cita-

tions. In the earlier years examined (i.e. 1983, 1993), since the filtering of h-index values

higher than 8 was applied only for year 2013, there exist authors with almost zero fractal

dimension, meaning there are not sufficient points in their citation curves to apply the

boxcount method.

The observations about the spread of the fractal dimension values over time provide an

insight in its distinguishing power, especially in identifying high quality scientists for

various levels of h-index values. In this direction, we have conducted an experiment

concerning the distribution of the minimum and maximum value of the fractal dimension

for each unique h-index value in our dataset. The results are depicted in Fig. 8, where the

blue line represents the minimum value of the fractal dimension, whereas the magenta line

Fig. 6 Spread of h-index in years 1983, 1993, 2003 and 2013 over all authors of the Computer Science

dataset
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represents its maximum value. Since these lines are fitted using polynomial regression,

they appear to start from the beginning of the axes even though the h-index values in our

dataset do not include such low values. The circles of different colors represent the award

winning scientists of the three mentioned ACM awards (Turing, SIGMOD and SIG-

COMM). As can be observed, the award winning scientists have all scored values of fractal

dimension close to the maximum, despite the fact they may display various levels of h-

index values, citation counts, g-index values, etc. From our experiments a pattern arises

suggesting that distinguished scientists, even if they have not acquired very high values of

citation counts in absolute terms, they manage to score high fractal dimension values,

meaning they tend to have less skewed citation curves and gather citations consistently

following a less heavy-tailed citation distribution.

Another issue arising when exploring how fractal dimension represents the different

publishing patterns is the ability to also distinguish moderately performing scientists. In

Fig. 7 Spread of the fractal dimension in years 1983, 1993, 2003 and 2013 over all authors of the Computer

Science dataset
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other words, it is reasonable that top scientists like ACM award winners have a distin-

guishable value in most bibliometric indices; is it possible though to find similar patterns in

well performing scientists who have not been awarded? To answer this question, we have

identified the scientists with the highest fractal dimension values in each distinct h-index

value for the range [26, 50]. The results are displayed in Table 3 where it can be observed

that many of the top scientists according to fractal dimension for each h-index value are

high impact scientists, but have not been awarded with any of the particular prizes. For

instance, Victoria Bellotti (CSL/PARC), Roland Chin (Hong Kong University) and André

DeHon (University of Pennsylvania) have achieved higher fractal dimension values

compared to those of award winning scientists (like David Maier or Donald Knuth) with

lower h-index values. Analogous examples include Ratul Mahajan (Microsoft Research)

and David Dobkin (Princeton University), who have achieved top values in the fractal

dimension ([0.99). Surely, award winners of ACM are also included, especially for higher

h-index values, such as Liskov Barbara and David Maier. From these results, we can

deduce that a high h-index and high fractal dimension constitutes a pattern for increased

Fig. 8 Curve fitted distribution of the fractal dimension minimum and maximum values for all values of

four bibliometric indices: publication, citation count, h-index and g-index. Red, green and yellow circles

represent SIGMOD, SIGCOMM and Turing award winners respectively. (Color figure online)
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academic impact and complies with the criteria of peer assessment. Further, a high fractal

dimension value for moderate citation counts (and h-index values) could indicate academic

potential and may assist peer decisions in award or grant allocation, tenure committees, etc.

It is noted that the most highly populated groups of computer scientists display values of h-

index between 15 and 35 and it constitutes a real challenge to distinguish a number of high

impact scientists in these groups. To this end, fractal dimension may be utilized to dis-

tinguish scientists in these densely populated areas based on the geometrical features of

their citation curves.

We proceed to investigate the distribution of fractal dimension values in the set of

awarded ACM Fellows and discover possible differences in the patterns observed as

compared to the general CS dataset. Figure 9 depicts the spread of the fractal dimension

and h-index values for the 862 scientists that have been awarded as ACM Fellows. As can

be seen, compared to Figs. 6 and 7, the spread of fractal dimension values has decreased

significantly including only values higher than 0.83, whereas the h-index values have not

decreased in range. The moderate and high values of h-index ([40) are more densely

populated but the spread has not changed significantly compared to that of the entire CS

dataset. This observation indicates that the fractal dimension is more well adjusted to

identify distinguishing scientists compared to traditional metrics.

A more detailed view on the distinguishing ability of the fractal dimension is presented

in Table 4, where the top-10 (group 1) ACM Fellows that have scored the highest values in

Table 3 Top scientists accord-

ing to fractal dimension for h-

index values in the range [26, 50]

Scientists with an asterisk have

received at least one of the ACM

awards

Scientist name h-index Fractal dimension

Rob Glabbeek 26 0.882

Jean-Yves Potvin 27 0.912

Victoria Bellotti 28 0.954

André DeHon 29 0.959

Whang Kyu-Young* 30 0.997

Rudiger Urbanke 31 0.892

Ratul Mahajan 32 0.991

Moshe Tennenholtz* 33 0.971

Jill Mesirov 34 0.979

Tal Rabin 35 0.932

Helmut Boelcskei 37 0.941

Tova Milo* 38 0.963

Jeannette Wing 39 0.936

Margaret Martonosi 40 0.952

David Dobkin 41 0.995

Richard Ladner* 42 0.998

Edward Knightly 43 0.950

Tommi Jaakkola 44 0.973

David Maier* 45 0.927

Gao Lixin* 46 0.996

Donald Knuth* 47 0.943

Saul Greenberg* 48 0.965

Barbara Liskov* 49 0.974

Leslie Valiant* 50 0.960
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fractal dimension and the 10 ones (group 2) with the lowest fractal dimension value are

displayed. Even group 2 displays a fractal dimension higher than the average, but the truly

interesting observation is that there exists a wide range of h-index values for the ACM

Fellows dataset (from 20 to 120), which can be explained based on the different fields of

Computer Science each Fellow publishes in and the different time periods during which

their work was published (1970–2013). However, for the fractal dimension the values are

relatively high for all Fellows, either with high h-index values or with lower h-index

values. Despite the fact that several domains may attract a lower number of citation counts

due to their particularity or limited audience, whilst others attract broader interest and a

larger number of publications, the fractal dimension can help distinguish high impact

publishing behavior across fields. More specifically, in Table 4 we can identify scientists

whose seminal work was conducted in earlier decades (1970s) and focuses on fields like

compilers, computational algebra and mathematical concepts of computer science, where

publications are more scarce but nonetheless seminal. Scientists publishing in these areas,

such as Anthony Hearn and Allen Tucker, whose work was mostly mathematical, accu-

mulated a lower h-index value compared to other award winning scientists. In these cases,

the fractal dimension complies with peer review judgement and distinguishes such sci-

entists from their peers with analogous h-index values. In addition, on the top of our list

according to fractal dimension are ranked scientists with a long and consistent publishing

career. Here, a number of exceptionally high impact scientists can be identified, such as

Hector Garcia-Molina, Raghu Ramakrishnan and Paul Dourish. A pattern that arises

through the observation of the ACM Fellow dataset is that scientists who continue being

active until the end of our chosen time period are more likely to achieve a high fractal

dimension. This can be explained, as the addition of new but low cited publications would

(a) (b)

Fig. 9 Spread of h-index and fractal dimension for ACM Fellows included in our dataset for year 2013.

a Spread of h index in year 2013 for ACM Fellows. b Spread of fractal dimension in year 2013 for ACM

Fellows
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tend to lower their fractal dimension, but if they manage to continue adding high impact

publication their fractal dimension rises, compared to their peers that have stopped pub-

lishing. In this sense, the fractal dimension awards productivity but only when it is

accompanied by increased impact.

In a different direction, we have also examined the behavior of fractal dimension for

lower cited scientists, whose h-index is lower than 8 and a portfolio of 11 publications on

average. Generally, the smaller the citation curve the less it approximates a line and comes

closer to a set of discrete points. As a result, a pattern is difficult to be identified and there

may be bias present, since the approximation expressed by Eq. 5 becomes more precise as

more points are added (i.e. publications). However, calculating the fractal through the

boxcount method allows for more accurate estimations even in less densely populated

vectors (smaller portfolios) as compared to the other two methods, correlation and infor-

mation dimension (see ‘‘The fractal dimension and its calculation’’ section). The quantile

distribution of fractal dimension values in this dataset is represented in Table 5. As can be

seen, the values differ from the respective ones for the CS dataset (see Table 2) in the sense

that smaller values are more common for the low cited group of scientists. However, higher

Table 4 Top scientists (group 1)

and lowest ranking scientists

(group 2) according to fractal

dimension from the ACM Fel-

lows dataset with their respective

h-index and fractal dimension

values

Author name h-index Fractal dimension

Group 1

Hector Garcia-Molina 120 0.999

Raghu Ramakrishnan 75 0.999

Paul Dourish 59 0.999

Barbara Ryder 52 0.998

Richard Ladner 42 0.998

T.V. Lakshman 56 0.998

Lixin Gao 46 0.998

Brad Myers 82 0.997

John Caroll 71 0.997

Whang Kuy-Young 34 0.997

Group 2

Greg Morrisett 41 0.877

Jack Dennis 30 0.877

Anthony Hearn 24 0.875

Allen Tucker 18 0.875

Harold Stone 26 0.875

Frank Zadeck 22 0.874

Paul Mockapetris 25 0.874

David Wheeler 22 0.874

Kert Akeley 23 0.864

Goyal Ambuij 26 0.863

Table 5 Statistics of the fractal dimension for LH dataset

Mean SD Min Max 1st-quartile 2nd-quartile 3rd-quartile 4th-quartile

0.610 0.227 0.106 1 0.510 0.643 0.846 1
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values of the fractal dimension are present in this group as well, which could be a result of

the bias introduced due to the small size of the citation vector. It can be deduced that the

fractal dimension tends to overestimate the portfolios of low cited scientists, whereas for

higher profile scientists it can be more strict comparing to traditional ones, like the h-index.

Conclusions and future work

This article considered the issue of using a single numeric indicator to summarize the rich

information conveyed by a citation curve. Towards this goal, it proposed the use of the

fractal dimension of the curve, and applied the methodology to rank computer scientists.

The study showed that the fractal dimension follows a considerably different distri-

bution compared to other bibliometric indices and shifts the focus towards the geometric

properties of the citation curve. In this direction, we investigated the values of the fractal

dimension in a large data set of computer scientists and explored its spread and evolution

over time as well as its correlation with other well-known bibliometric indices focusing on

different properties of a scientist’s portfolio. We discovered that the fractal dimension

follows a different pattern than widely used bibliometric indices (like the h-index) and

provides a more detailed segmentation especially in densely populated areas of common

values of citation count and/or h-index. By comparing the fractal dimension values of

scientists awarded by ACM we revealed a pattern indicating that award winning scientists

tend to score high values in fractal dimension (higher than 0.9), even when they have not

scored distinguishably high h-index or total citation count values in absolute terms.

Another important finding was that analogous behavior is observed in non-awarded sci-

entists, whose impact though is evident in their fields, distinguishing in this way seminal

scientists publishing in less prolific fields.

In its core fractal dimension is a relative metric that expresses how citations are dis-

tributed across a scientist’s portfolio, with the highest performance being a large portfolio

with all highly cited publications. In its calculation, it incorporates (in the size of the

boxes) the length of one’s career and explores the ratio of zero cited publications to the

highly cited ones relative to one’s career length and highest citation count. The majority of

indexes focus on variations of citation counting; this information is not directly represented

by the fractal dimension, which can acquire high values for both high and relatively low

citation counts. Should one combine raw citation count and the fractal dimension, a

thorough overview of a scientist’s portfolio can be provided. As discussed in previous

studies (Rubem et al. 2015; Sidiropoulos et al. 2016; Ibez et al. 2016), using more than one

bibliometric indexes is required for evaluating scientists. However, care must be taken, so

that indexes focusing on different qualities of the scientific impact are chosen, because

indexes providing various interpretations of citation counts have been found to be highly

correlated (Wildgaard 2015; Bollen et al. 2009), thus leading to biased conclusions when

combined to evaluate scientists.

As far as calculation limitations are concerned, the introduced fractal dimension can be

calculated for all citation counts or career lengths and no assumption on power law or

exponential behavior are required. However, for small portfolios it is challenging to

identify clear patterns in the publishing behavior. In that case, fractal dimension will

provide an estimation of scientific impact, should it continue to expand in the same way.

We intend to further explore the applicability of the fractal dimension in describing

publishing patterns in large publication networks not only at author level, but also for
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publishing venues or academic institutions and even for individual publications that have

been dynamically acquiring citations over a long period of time. It would be of interest to

conduct an analogous analysis for other fields beyond the domain of computer science and

compare the results. Furthermore, we are keen to understand the usefulness of the fractal

dimension in characterizing citation profiles, which are gaining the interest of scientific

community (Chakraborty et al. 2015) and conduct an analysis on how fractal dimension

can help model citation curves.
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