
Rainbow ranking: an adaptable, multidimensional
ranking method for publication sets

Georgios Stoupas1 • Antonis Sidiropoulos2 • Antonia Gogoglou1 •

Dimitrios Katsaros3 • Yannis Manolopoulos1

Received: 5 October 2017
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Abstract Various scientometric indices have been proposed in an attempt to express the

quantitative and qualitative characteristics of scientific output. However, fully capturing

the performance and impact of a scientific entity (author, journal, institution, conference,

etc.) still remains an open research issue, as each proposed index focuses only on particular

aspects of scientific performance. Therefore, scientific evaluation can be viewed as a multi-

dimensional ranking problem, where dimensions represent the assorted scientometric

indices. To address this problem, the skyline operator has been proposed in Sidiropoulos

et al. (J Informetr 10(3):789–813, 2016) with multiple combinations of dimensions. In the

present work, we introduce a new index derived from the utilization of the skyline oper-

ator, called Rainbow Ranking or RR-index that assigns a category score to each scientific

entity instead of producing a strict ordering of the ranked entities. Our RR-index allows the

combination of any known indices depending on the purposes of the evaluation and outputs

a single number metric expressing multi-criteria relative ranking and can be applied to any

scientific entity such as authors and journals. The proposed methodology was
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experimentally evaluated using a dataset of over 105,000 scientists from the Computer

Science field.

Keywords Scientometrics � Ranking � h-Index � Skyline

Introduction

With the introduction of the well-known h-index by Hirsch (2005) a plethora of biblio-

metric indices have been proposed to better quantify the features of scientific output.

Existing indices can be categorized according to the entity under evaluation, i.e. author

performance, journal impact or publication level. In this direction, variations of the h-index

have emerged to employ different ranges in citation accumulation, such as the g-index

(Egghe 2006), hg (Alonso et al. 2010) and h2 index (Kosmulski 2006). Other approaches

perform normalizations of the calculated index over the number of publications, age of

publications or citations and include but are not limited to the hnorm index (Sidiropoulos

et al. 2007), the contemporary h-index (hcont) and trend h-index (ht) (Sidiropoulos et al.

2007), m-quotient (Hirsch 2005) and Bornmann’s m (mBor) (Bornmann et al. 2008).

Analogous efforts have been made to measure the distribution of citations that contribute to

the calculation of the h-index, such as hrat (Ruane and Tol 2008), tapered h-index (htap)

(Anderson et al. 2008) and w of Wohlin (2009), while another set of works attempt to

include different areas around the citation curve into a single number metric, such as the

excess or e-index (Zhang 2009), the set of indices introduced by Jin (A, R and AR indices)

(Jin et al. 2007) and the more recent Perfectionism Index or PI-index (Sidiropoulos et al.

2015), etc.

Given the wide range of bibliometric indices available in literature, their interrelations

and correlations with one another have been extensively studied in Bornmann et al. (2011),

Bollen et al. (2009), Schreiber et al. (2012) and (Bornmann et al. 2014). A taxonomy of

108 author-level indices has been performed in Wildgaard et al. (2014) investigating their

usefulness, their complexity of calculation and the different publishing features they

represent. All the aforementioned studies, report a high degree of correlation between the

h-index and its variants, thus identifying overlapping information conveyed by the large

variety of existing bibliometric indices. Consequently, to achieve a fair evaluation of

scientific output one must consider multiple uncorrelated indices expressing different

scientific qualities calculated from bibliometric data.

In an effort to achieve a fair and universal ranking of scientific entities. Wolcott et al.

(2015) proposed the use of both time-dependent and -independent factors as part of a

classification scheme to assign relative importance ranking to publications based on their

probability of being highly cited. Relative performance at publication level has been also

incorporated into a co-citation based indicator in Hutchins and Yuan (2016), whereas for

journal ranking an attempt to broaden the evaluation of journals using altmetrics is pre-

sented in Tamar and Tim (2015). Tsai et al. (2014) identified domain dependent correla-

tions between various journal rankings and produced a unified journal ranking as a

combination of existing ones. In Franceschini (2014) the variation of different citers was

used as a proxy for publication ranking, whereas Glanzel et al. (2014) proposes the

application of performance classes to evaluate research at country and institutional level.

Also in Alguliev et al. (2014) it is proposed a weighted index to combine the results from

individual indices. The proposed index utilizes a policy of consensus that assigns the

weights to indices and linearly combines them.
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Each bibliometric index produces a different rank list with strict scores for the same

group of scientists. Having to deal with this storm of valuable indicators, the need arises for

a general classification scheme of scientific entities according to multiple evaluation

metrics. The quantification of abstract concepts such as ‘‘scientific impact’’ allow for

tolerance limits to be fair. Therefore, it would be more appropriate to create ranking levels

instead of strict scoring, where multiple researchers can be ranked at the same level. In this

direction, the use of the skyline operator was proposed in a previous work (Sidiropoulos

et al. 2016) to select from a set of researchers those that cannot be outperformed by any

other from a pool of scientists. In other words, outstanding scientists are identified in one or

more dimensions (i.e., features) but not necessarily in all of the dimensions. This way

credit can be attributed to various publishing patterns and, thus, scientists that outperform

others in certain attributes can also be distinguished. Of crucial importance to the skyline

operator’s computation is the selection of dimensions, i.e., the evaluation indicators.

Dependent on the perspective of the evaluation to be performed various appropriate

metrics may be selected and the resulting skyline set will adjust accordingly.

In the present work we expand upon the concept of the skyline operator by incorpo-

rating the dominating groups of scientists into universal ranking levels, and introducing a

new indicator based on the relative ranking a scientist has achieved, namely Rainbow

Ranking scheme; Fig. 1 justifies the name.

The rest of the paper is organized as follows: The next section describes the dataset used

in our analysis. The applied methodologies are presented in the third section, in which we

introduce the new indicator and the process of its calculation. In the fourth section, the

results of the study are given, whereas conclusions appear in the final section.

Dataset description

For the purposes of this study, we collected data from Microsoft Academic Search (MAS)1;

in particular, we extracted full citation data starting from year 1950 up to 2015 for sci-

entists publishing in the Computer Science area, as identified by the domain categorization

of MAS. All related meta-data about their publication, citation and collaboration network

1 We appreciate the offer of Microsoft to gratis provide their database API. The API that was used in this
work has been discontinued by Microsoft in the summer of 2016.
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were also retrieved. The initial query to MAS was intended to select all authors in

Computer Science with more than 5 publications. Unfortunately, the publication year is

missing for 12% of the publications in our datasets. To complete this missing information,

we gathered data from DBLP2 by using the XML search DBLP API. This way, we

recovered about 6% of the missing information. After that step, the publications with

missing year were ignored as well as the citations from publications with missing year. In

the end, we collected 104,190 authors with a complete network of 4,805,131 publications

and 20,877,029 citations. For illustrative purposes we have also utilized a small subset of

our dataset that contains 700 Computer Science researchers from Greek Universities.

Methods

Skyline operator

As discussed in the introductory section, given a set of attributes that characterize scientific

performance, the skyline operator outputs the ones that cannot be surpassed by any other

scientist in the dataset. We will explain how this works by presenting an example from

Börzsönyi et al. (2001). Assuming that we want to book a relatively cheap hotel nearby the

sea. Having the information of the cost and the distance from sea for each hotel we can

produce two rank tables, one for each evaluation metric (cost, distance). It is difficult to

produce a global rank table by combining the existing two. That is because we cannot

define the relation between cost and distance. We cannot define for example that for $10$

meters less distance we have to pay $10$ euros more. Any try for defining such relation

will be arbitrary. The skyline notion enables us to detect the best hotels (given the

requirements) by combining the two metrics (or more metrics). The skyline consists of the

set of hotels (generally the set of objects) that none of them is absolutely worst from any

other one. A geometrical view is shown in Fig. 1. In this plot every point represents a hotel

(an object). The coordinates of each object are defined by the score of the object for each

metric. Each metric corresponds to one dimension. A two metrics rank can be presented

with a 2D plot.

The definition of skyline set and a basic, efficient algorithm for its computation, as

presented by Borzsonyi adding the mathematical notation.

Definition 1 (Dominance relationship) Given two multidimensional points s1 and s2 with

attributes (dimensions) from a space D, if s1 is equal to or better than s2 in all dimensions,

and s1 is better than s2 in at least one attribute, we would say that s1 dominates s2 and

write s1 � s2. That is:

s1 � s2 : 8a 2 D; s1:a� s2:að Þ ^ ð9a 2 D; s1:a[ s2:aÞ:

Definition 2 (Skyline set) The skyline set comprises the set of points not dominated by

any other point.

The concept of skyline, calculated by the respective operator, has been utilized in the

field of Computer Science for decades and dates back to the definition of the Pareto

frontier in economics (Voorneveld 2003). However, the skyline set does not refer to

2 http://dblp.uni-trier.de/.
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efficient resource allocation; rather it provides a multi-criteria selection of distinguished

scientists. The algorithm by Chomicki et al. (2003) known as Sort-First-Skyline (SFS) was

employed in Sidiropoulos et al. (2016) to experimentally verify the identified elite groups

of scientists and it will be utilized in the present analysis as well, due to its minimal

computational cost and efficiency.

To appropriately identify the dimensions that will serve as attributes to the skyline

calculation various experiments were performed in Sidiropoulos et al. (2016) and Stoupas

(2017). The results of this analysis comply with literature in the sense that there exist

groups (clusters) of highly correlated scientometric indicators and therefore the skyline

does not vary significantly with different combinations of dimensions, as long as they are

derived from the same group of indices. In Table 1 we present the Spearman’s correlation

coefficients between selected rank methods, based on various scientometric indicators. For

the experiments conducted in the present work, we selected the h-index as a ranking

method because it is the most commonly used performance indicator. We also selected the

Perfectionism Index (Sidiropoulos et al. 2015) because it is the most dissimilar index with

h-index based on Table 1. Finally, the A-index was included, since it is also dissimilar with

h-index and offers a different counting of citations in the h-core.

Rainbow-ranking (RR-index)

The skyline operator selects the best performing scientific entities based on multiple cri-

teria, but does not assign a meaningful and comparable ranking score to every scientist.

The skyline operator, given a set of scientists, just extracts an elite set. Therefore Rainbow-

Ranking is introduced to apply the skyline operator iteratively until all scientists of a

dataset are classified into a skyline level. More specifically, given a set of scientists A = X1,

the first call of skyline produces the first skyline level. We denote this first set of scientists

as set S1. In the next step, we compute set X2 = X1 - S1, which contains the scientists in

the dataset that were not classified in the first skyline set S1. For the set X2 the skyline

operator is applied once more and the result is the second skyline level (S2). The process

continues until all the scientists of the dataset are assigned a value that corresponds to the

skyline level they have been ranked in. It is obvious that the set Si is dominating over Sj
(Si � Sj) if i\ j. Also, for researchers a and b it holds that a � b if a 2 Si and b 2 Sj and

Si � Sj.

Figure 2 shows a graphical representation of the skyline levels with two dimensions

(features): citations per publication and the h-index. We have selected the aforementioned

subset of our original dataset containing 700 researchers from Greek Universities and have

ranked them according to these two dimensions. Every point in Fig. 2 corresponds to a

scientist. Each line connecting the points corresponds to a different skyline level. The x-

axis represents ranking positions of each scientist according to their h-index, whereas on

the y-axis the respective ranking positions according to citations per publication. Since this

iterative procedure results into a plot with grouped curves as shown in Fig. 1, and the

procedure is built over the notion of skyline, we have selected the name Rainbow Ranking.

Also, in the above plot (and in all our experiments), in case of a tie, the average position of

all tie members is used to express the rank position. This is the fairest method, as well as

the method that is used in Spearman’s coefficient computation. Note that h-index produces

a lot of ties.

Inevitably, a score value should be produced for each rank level. If this score simply

represent the level number, it would provide limited interpretability for the relative ranking
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of each scientist compared to his peers; therefore, a normalization of this value is required.

To summarize the ranking levels into a single number metric, given a set of scientists A and

a set of dimensions dims, we define the RR-index of a scientist a based on dims as follows:

RR a; dimsð Þ ¼ 100 � 100 � Aabove a; dimsð Þj j
Aj j þ Atie a; dimsð Þj j

2 � Aj j

� �
ð1Þ

In Eq. (1) |A| is the total number of scientists in our dataset, |Aabove(a, dims)| is the

number of scientists ranked at higher skyline levels than scientist a based on dimensions

dims. Note that level 1 is considered higher than level 2 in a rank table. Additionally,

|Atie(a, dims)| is the number of scientists who are ranked at the same level with scientist a,

excluding scientist a. Consequently, the following holds for the RR-index:

0\RR a; dimsð Þ� 100 ð2Þ

The case when RR(a, dims) = 100 means that scientist a is ranked in the first skyline

level alone. Since all the members of a skyline level should be assigned with the same

score, we have chosen to assign a score analogous to the average rank position of all tie

members normalized to the range 0–100.

Also, it is obvious that the following condition holds:X
8a2A

RR a; dimsð Þ ¼ Aj j � ð Aj j � 1Þ=2 ð3Þ

The key components for the calculation of the RR-index are the skyline dimensions and

the ranking positions assigned according to each dimension. By selecting different bib-

liometric indices as skyline dimensions, the calculated RR-index can be fully customizable.

However, since bibliometric indices are highly correlated with each other, as depicted in

Table 1, selecting highly correlated indices would yield analogous results in the final

skyline ranking. As the number of dimensions (criteria) increases the skyline’s sizes

increases as well because the number of individuals that are not clearly bypassed by others

increases.

In the next section we present our experiments with multiple dimension combinations

and investigate the distinguishing power of the RR-index.
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Results

The computation of RR-index in our dataset with the dimensions h-index, A and PI, i.e.,

RR(h, A, PI), produces a classification into * 700 levels of skylines. In Fig. 3 the size of

each skyline level is illustrated. The plot follows a relatively stable distribution with about

200 authors per skyline level and a peak at level 500. The first 20 skyline levels are

significantly smaller in size (less than 50 entities per skyline level); the same applies for the

last sky-line levels (higher than 600). This observation indicates that when a unified

relative ranking is produced though comparison with one’s peers the ‘‘Matthew effect’’ in

scientific output is mitigated in the sense that few scientists are ranked at the top, but also

few of them are assigned at the lowest ranks. The majority of them are dispersed across the

moderate skyline levels, which better explains the actual distribution of performance

(Brzezinski 2015). Please, note that Table 2 gives abbreviations for the tested RR-indices.

In a similar manner, Fig. 4 shows the distribution of skyline sizes for RR(h, A, PI, ht). In

this computation we added the dimension of trend h-index (ht). The trend h-index is

clustered very close to the original h-index. We argue that this happened due to the fact that

Computer Science, the domain selected, is a relatively new and fast paced field, where not

enough ‘‘sleeping beauties’’ (Van Raan 2004). Sidiropoulos et al. (2007) are present or

even when they do exist, they do not ‘‘sleep’’ for long periods of time. Therefore, the

addition of the trend index will help assign merit to scientists publishing in up and coming

fields of research. With one added dimension, we see that the levels of skylines decreased

and sky-line sizes increased. However, in the total ranking, the similarity of RR(d1) and

RR(d3) is still very high (0.997 Spearman, 0.957 Kendall tau), as shown later in Tables 3

and 4. This means that, although we added a new dimension, the number of levels and the

ties changed but the ranking remains almost the same.

In Fig. 5 we doubled the dimensions used in RR(d1). For each one of the three

dimensions of RR(h, A, PI) an additional one was introduced that displays a high corre-

lation with one of the original dimensions based on Table 1. The rationalized hrat-index

was selected due to its high similarity to h-index, e-index as it is similar to A, whereas hnorm

was included because it is correlated with PI. In this point, it must be noticed that hnorm is

not strongly correlated with PI as the correlation value is less than 0.9 but hnorm is the

closer index to PI. As a result, the skyline levels decreased and the skyline sizes increased.

We see exactly the same behavior in Fig. 6. As expected, the more dimensions we include

the more members are placed in each skyline level. We observe a denser ranking in

Fig. 3 Skylines’ sizes for RR(h,
A, PI) or RR(d1)
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Table 2 Abbreviations for
Rainbow Rankings used in this
publication

Abbreviation Abbreviation for

RR(d1) RR(h-index, A-index, PI)

RR(d2) RR(h-index, hrat, A-index, e-index, PI, hnorm)

RR(d3) RR(h-index, A-index, PI, ht)

RR(d4) RR(h-index, hrat, A-index, e-index, PI, hnorm, h
t)

Fig. 4 Skylines’ sizes for RR(h,
A, PI, ht) or RR(d3)

Table 3 Spearman coefficient of RRs with their generators

h A ht hnorm hrat e PI RR(d1) RR(d2) RR(d3)

h

A 0.651

ht 0.950 0.714

hnorm 0.338 0.300 0.330

hrat 0.998 0.662 0.956 0.342

e 0.817 0.959 0.851 0.341 0.825

PI 0.031 0.324 0.074 0.753 0.039 0.259

RR(d1) 0.806 0.935 0.831 0.400 0.813 0.963 0.307

RR(d2) 0.818 0.918 0.835 0.476 0.825 0.954 0.362 0.991

RR(d3) 0.836 0.925 0.862 0.399 0.843 0.966 0.287 0.997 0.990

RR(d4) 0.830 0.913 0.851 0.491 0.837 0.955 0.367 0.984 0.997 0.988

Bold values indicate the corresponding generators

Table 4 Kendall Tau coefficient
RR(d1) RR(d2) RR(d3)

RR(d2) 0.920

RR(d3) 0.957 0.920

RR(d4) 0.894 0.961 0.912
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moderate skyline levels, meaning that with the addition of correlated dimensions the

segmentation in performance levels is less detailed due to the similarity in rankings pro-

duced by correlated indices. As depicted at level 40, there is a peak at 900 skyline

members. In Tables 3 and 4 the correlation values indicate that all four variations of RR-

index produce similar overall ranking, even though the respective sizes of individual

skyline levels may differ. This means that if representative rank methods are selected, then

there is no need for a large number of them to be used in producing a unified representative

ranking. Additionally, when less correlated dimensions are selected the resulting seg-

mentation becomes more detailed and precise.

One can argue that ranking into levels produces a lot of ties. This claim is not true. As it

is shown in Fig. 7, h-index, which is the most commonly used method, produces much

fewer levels and much greater number of ties. The peak of h-index cardinality is more than

12,000 while in RR the worst case (Fig. 6) is less than 1000.

Finally, Table 3 illustrates that all variations of RR are not necessarily similar with their

generators. For example, although PI is one of the generating dimensions of RR(d1), the

coefficient between them is only 0.307. This result can be attributed to the interconnected

nature of bibliometric indicators, meaning that the resulting relative ranking of a scientist

may significantly differ from her/his individual ranking on each one of the generator

dimensions. However, the information conveyed by the RR-index provides the relative

Fig. 5 Skylines’ sizes for RR(h,
hrat, A, e, PI, hnorm) or RR(d2)

Fig. 6 Skylines’ sizes for RR(h,
hrat, A, e, PI, hnorm, h

t) or RR(d4)
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ranking as a result of overall performance, including different aspects of scientific output as

expressed by the generator dimensions. Consequently, the RR ranking can be considered a

more unified and representative evaluation metric, compared to its individual generator

dimensions.

Table 5 illustrates the Rank Table according to RR(d1). We have included columns h,

A and PI which are the generators of RR(d1) as well as the values for C (number of

citations), P (number of publications) and C/P (citations per publication). The last column

shows the skyline level to which each respective scientist has been assigned.

The first 13 scientists were ranked in the first skyline level and they are assigned the

same value for RR(d1). In this list of top ranked researchers, we encounter scientists who

can be grouped into two subsets based on their work; one group is comprised of those who

have worked in core computer science (e.g., networking, compilers, databases), and the

second group of those who have contributed to the field of computational methods for

biology, with the latter group being the largest of the two. More specifically, in the former

group, we see Scott Shenker well known for his contributions in networking theory and

practice, Ian Foster of the community of high performance computing (grid and cloud

computing), and Jeffrey Ullman whose work spans across several research areas (com-

pilers, programming languages, databases). In the latter group, David Haussler was a

member of the team who sequenced the human genome, Robert Tibshirani made solid

contributions to statistical learning theory and its application to biological problems,

Altschul Stephen, David Lipman and Web Miller, co-developers of the well-known

BLAST family of tools for sequence comparison. Additionally, there is Higgins Desmond,

developer of the Crystal-W and Crystal-X tools for multiple sequence alignment, Gish

Warren co-worker of David Haussler to human genome sequencing, and of Stephen Alt-

schul to the development of BLAST.

In the second skyline level, we mainly encounter core computer scientists, namely

Hector Garcia-Molina of databases, Deborah Estrin of embedded systems (sensors), David

Culler of networking, Simon Herbert of political science and economics, Ronald Rivest of

crypto-graphy and co-developer of the RSA cryptosystem, Vladimir Vapnik the father of

statistical learning theory, Thomas Cormen well-known for his work on distributed algo-

rithms, Claude Shannon the father of information theory, and so on. Finally, Eugene Myers

a computational biologist who co-authored the famous Science-Nature paper on the

sequence of the human genome is also ranked at the same skyline level. The reason why

there is a large number of computational biologists/bioinformatics researchers in the top

Fig. 7 h-index levels’ sizes
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ranked group could be the recent popularity and fast growth of the field, as compared to the

more ‘‘old-fashioned’’ domains of core computer science. It can be observed that even

though this group may have scored relatively lower values in h-index, the values of A and

C/P are significantly higher, meaning that these bioinformatics researchers accumulate

citations at a faster pace compared to the more mature researchers of the core computer

science group. As a result, different publishing patterns can be identified and rewarded

using the RR-index.

Discussion and conclusions

During the last decade, mainly due to the development of open access online databases,

which maintain large scale publication records of individual scientists and their citations,

the introduction of new scientometric indicators comes as a storm; a number of them are

highly correlated with each other, but there exist several indices that capture independent

Table 5 First two skyline levels’ members

Name C P C/P h-index A-index PI RR(d1) #Skyline

Shenker Scott 38,557 473 81.52 90 361.02 12,187 99.99 1

Foster Ian 39,052 730 53.50 87 365.48 - 9320 99.99 1

Ullman Jeffrey 38,019 445 85.44 82 394.98 14,977 99.99 1

Haussler David 27,799 320 86.87 78 305.29 15,007 99.99 1

Tibshirani Robert 47,661 344 138.55 69 636.06 33,447 99.99 1

Miller Webb 54,262 532 102.00 42 1272.76 35,446 99.99 1

Higgins Desmond 41,527 190 218.56 21 1974.43 38,419 99.99 1

Lipman David 48,638 97 501.42 20 2425.05 47,498 99.99 1

Altschul Stephen 46,730 78 599.10 19 2453.42 45,970 99.99 1

Gish Warren 26,065 33 789.85 9 2894.11 25,930 99.99 1

Thompson Julie 36,441 450 80.98 8 4552.50 32,969 99.99 1

Gibson Toby 36,329 427 85.08 8 4538.63 33,041 99.99 1

Zhang Jinghui 28,638 94 304.66 5 5727.20 28,218 99.99 1

Garcia-molina Hector 25,743 578 44.54 86 205.88 - 9173 99.98 2

Estrin Deborah 34,706 446 77.82 85 344.86 11,246 99.98 2

Culler David 27,360 363 75.37 77 296.17 11,267 99.98 2

Simon Herbert 31,620 1194 26.48 75 389.40 - 46,680 99.98 2

Lander Eric 42,201 430 98.14 67 612.10 22,369 99.98 2

Rivest Ronald 38,336 294 130.39 58 615.40 28,012 99.98 2

Vapnik Vladimir 31,324 123 254.67 49 618.14 30,099 99.98 2

Leiserson Charles 23,147 155 149.34 36 627.36 20,159 99.98 2

Myers Eugene 32,210 286 112.62 33 954.42 24,950 99.98 2

Cormen Thomas 16,707 50 334.14 14 1189.57 16,399 99.98 2

Shannon Claude 13,554 32 423.56 7 1935.57 13,428 99.98 2

Woods Richard 11,642 41 283.95 6 1940.33 11,468 99.98 2

Schaffer Alejandro 24,096 42 573.71 5 4818.20 23,936 99.98 2

Scientometrics

123



aspects of the publishing behaviour and/or impact of a scientist’s output. Despite the fact

that we would wish to have a single numeric metric to tell us everything about a scientist’s

publishing patterns and their impact, this can be a real challenge that remains to be

addressed.

In this article we follow a different path compared to earlier relevant works, and

investigate the following scenario: Given a set of indicators, selected in any algorithmic

way (e.g., by clustering, by administrative decisions, etc.), can we successively rank sci-

entists into layers based on the given indicators, such that the scientists in each layer

outperform those of the lower layers according to (at least one) indicator?

To address this problem, we employed the notion of skyline introduced in Sidiropoulos

et al. (2016). We iteratively apply this method, finding successive skylines, which produces

a grouping of scientists into layers. We call this ranking scheme the Rainbow Ranking. The

merits of Rainbow Ranking are the following:

(a) it works for any set of dimensions (i.e. scientometric indicators), and thus it relieves

the evaluator from the burden of selecting just one indicator to perform the ranking;

however, at the extreme case of a singleton set of dimensions, then the Rainbow

Ranking reduces to the ranking imposed by that indicator,

(b) it is not correlated to existing schemes,

(c) it allows for multiple ties (i.e., when scientists outperform each other in different

aspects of their evaluated work),

(d) it proves to be a practical ranking scheme that can be scaled up to thousands of

entities by inheriting the decreased computational complexity of skyline calculation,

and finally

(e) It is a general index that can be used in the classification of scientific journals,

conferences, researchers, universities and of any other scientific entity.

In the future, we plan to investigate the ranking stability of Rainbow Ranking, i.e., how

fast and to what extent the contents of the layers change over time. We further plan to

incorporate the element of fuzziness to Rainbow Ranking thus allowing for more flexible

rankings or even overlapping rankings to occur.
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