Sequential vs. Binary Batched Searching

Y. MANOLOPOULOS

Department of Electrical Engineering, University of Thessaloniki, Thessaloniki, Greece

'J.G.KOLLIASt

Department of Electrical Engineering, Division of Computer Science, National Technical University of Athens, 9 Heroon Polytechniov Avenue,

157 73 Zographov, Athens, Greece
M. HATZOPOULOS

Department of Mathematics, University of Athens, Greece

This study considers an ordered array of N keys and estimates the required number of key comparisons to locate M
requested keys when a binary search is performed to find each key. The problem is analysed for the cases where the M
requests (a) are performed individually on a First Come First Served basis, and (b) are treated as a batch. For the
second case a break point is established which indicates whether it is preferable to apply binary or sequential search for

a batch of M keys.
Received September 1984

1. INTRODUCTION

Binary search is one of the most commonly used methods
of searching for the existence or not of one key value in
an ordered array which is maintained entirely in the high
speed storage.!® The method takes advantage of the fact
that the array is ordered to eliminate half of the remaining
array elements with each probe in the array. Binary search
may also be applied to ordered files residing entirely in
Direct Access Storage Devices (e.g. disks). For the rest
of this study we concentrate on ordered arrays, and we
postpone until section 4 the discussion on how the
reported results may be extended to cover secondary
storage structures.

Consider an ordered array of N keys and assume (a)
that M random keys are to be searched, and () that the
search cost metric is the number of key comparisons
required. The following four possible search strategies
may be considered:

1. Sequential Search on a First Come First Served basis
(FCFSSS). Under this strategy the M searches are
performed individually. The expected cost for satisfying
all the M requests is obviously:

M(N+1)/2. (1)

2. Sequential Search when keys are sorted and batch
examined (BSS). Several authors® ' have observed that
(1) can be reduced if the M requests are considered as a
batch. In particular, if the M keys have been sorted on
the same order with the array then the expected cost is:

(N+1)M/(M+1). 2

A proof of the above formula can be found in the first
appendix. This searching strategy starts with the first
request in the batch and tries to locate the first key in the
array. The strategy proceeds with the second, ..., Mth
request but the array is searched from the point where the
previous request has stopped. We shall call the strategy
Batched Sequential Searching (BSS). If we assume that
the cost of sorting is negligible then it is easy to verify that
BSS is in general better than FCFSSS.

At this point we note that batching and BSS in
particular have been studied in the past in the context of

+ This work is part of KRINO, a project aiming at improving
software technology in Greece.

368 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

large information systems. For example, Burton and
Kollias,? and Kollias!! estimate the seek time when
batching is used for primary and secondary key retrievals.
Schneiderman and Goodman'? consider a file and derive
formula for the average relative savings of batching M
requests over M successive tree searches. Wong!!
proposes some rules for the minimization of the expected
head movement in one-dimensional and two-dimensional
mass storage systems when batching is used. The effect
of batching in database performance is studied in Refs.
1 and 4. In Ref. 3 an access mechanism is proposed to
facilitate batching queries in large information systems.

The present study focuses on the following batched
binary searching strategies (section 2).

3. Binary Search on a First Come First Served basis
(FCFSBS). With this strategy the M keys of the batch are
searched for individually. Section 2.1 analyses the
performance of the strategy.

4. Binary Search when keys are sorted and batch
examined (BSS). The BSS strategy assumes again that the
M Kkeys in the batch are sorted and tries to locate each
key value in sequence by performing a binary search on
the array. It is noted that Schneiderman and Goodman
suggested the study of the BBS problem because ‘this
strategy is so frequently used’.'? (For example, the vector
searching problem (i.e. given a k-vector A4 and a set B of
n distinct k-vectors determine whether or not A4 is a
member of set B) can be solved by applying BBS).® The
strategy is analysed in section 2.2. Section 3 introduces
a break point which indicates whether it is preferable to
perform the BSS or BBS strategies. Section 4 discusses the
conclusion.

2. BATCHED BINARY SEARCHING
STRATEGIES

In the following analysis we assume that retrieval
requests are made randomly for the keys in the sorted
array of N keys, so that each key is equally likely to be
requested. We also consider that N is expressed as:

N=2k—14+4 where 0< A4 <2k

If one binary search for finding one key is performed
then the key may be located at best with just one
comparison, and this happens with probability 1/N. In

SEQUENTIAL VS. BINARY BATCHED SEARCHING

the worst case k or k+ 1 comparisons are made depending
on whether 4 = 0 (with probability 2¥*~1/N) or 4 #0
(with probability 4/N). The expected number of
comparisons is given by:

k

Y 274 A(k+1) = (k+ 1)+ (k+2—-2%)/N. (4)

=1
(Note: a similar formula has been derived in Ref. 7.)

In the next two subsections we consider that binary

search is applied to locate M distinct keys, where M is
expressed as

M=2"—1+B where 0<B<2™ ®)

Subsection 2.1 (2.2) assumes that the keys are searched
by applying the FCFSBS (BBS) strategy. In both analyses
we assume that all the M keys exist in the table.

2.1. FCFSBS strategy

With this strategy one key is processed at a time. Below
we analyse the performance of this strategy for the best,
worst and average cases. The optimal number of
comparisons is:

Llog M|

Y n2" 14 Bllog M],

n=1

where [x] (|x]) is the least (greatest) integer greater (less)
than or equal to the real number x, and log M is the base
2 logarithm of M. This number is derived as follows.
Suppose that binary searching corresponds to traversing
a perfectly balanced tree of N nodes. Assuming that the
M keys match the keys at the top of the tree we have the
above number. This may occur with probability equal to:

LG
()

If B =0, then the probability reduces to:
1
()
M
If M < Aor (4A=0and M < 2¥') then the worst case

of comparisons is M[log N1 and it may occur with
probabilities:

A 2k—l
@G
o) Go)
M M
If we have 0 < M—A4 < 2¥-! then the worst case is
Allog N1+ (M —A)|log N] and it may occur with

probability:
2k+1 + A
)

(w)
M
For other conditions of the variables M, 4 and k similar
results may be obtained by considering that the M keys

match the keys at the lowest level(s) of the tree formed
by the N keys.

respectively.

From (4) it is clear that the expected number of
comparisons for finding M keys in FCFSBS strategy is:

M((k+1)+(k+2—2k1)/N) (6)
2.2. BBS strategy

With this strategy the first, second, . .., Mthkeys are again
binary searched in the ordered table. However, the
location of the first key in the array enables us to neglect
part of the array in the searching for the second key. For
example, if the first key is located at position i (where
1 <i < N) then the searching for the next key may be
reduced to the array elements i+ 1 to N instead of 1 to
N which occurred in the FCFS strategy. The following
algorithm illustrates further the BBS strategy. In this
algorithm it is assumed that key; keys are to be searched
(i=1,2, ..., M) against the ordered array 4 of N keys.
The variables low, high and mid are all indices to the
elements of A4.

found : = false;

low :=1;

high := n;

mid : = (low+ high)/2;
fori:=1to Mdo

begin
while /ow < high and not found do
begin
if key; < A[mid]
then
begin
high := mid—1,
mid : = (low+ high)/2;
end
else if key; > A[mid]
then
begin
low : = mid+1;
mid : = (low+ high)/2;
end
else
begin
print (key;, is in the table);
low := mid+1;
found : = true;
end
end
high := n;

mid : = (low + high)/2;
found : = false;
end

Figure 1. The BBS strategy

We now proceed to analyse the strategy for the best,
worst and average cases. Before doing so we note that the
array of dimension N is divided by the M keys in M +1
subintervals. We shall denote these subintervals by K;,
where 1 <i< M+1. If the keys are randomly drawn
from an underlying uniform distribution it can be proved
that:

EK]=(N-—-M)/(M+1).

The proof of the above equation can be found in the
second appendix. Therefore, the number of keys
remaining when the ith subinterval plus the already found
key are exempted is:

.N+1

i i(E[K]+1) lM+l’

where 0 <i< M-1.

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 369

24

cPJ29

MANOLOPOULOS, KOLLIAS AND HATZOPOULOS

The best case arises if the search of the M keys
terminates with exactly M comparisons. This may occur
with probability:

M-1 1
I —
i=0 N

The worst case arises when every search reaches the

lowest level of the tree and may occur with probability:

M-1 2log N;—1 A,
I1 (p +—1>,
i=0 N; N;

where p = 0 if 4; # 0 and p = 1 if 4; = 0. The number
of comparisons required in the worst case is:

M-1
Y [logN,l.

i1=0

Using a similar reasoning as with the derivation of (4)
and (6) we observe that the mean value of comparison is:

M-1
Y {llog N;]+ 1+ ({log N;|+2—2U0e N:i+1) /N3 (7)
i=0

Table 1 presents the average performance of the FCFSBS
and BBS strategies (as expressed by the formulae (6) and
(7)) along with the percentage of gain achieved by using
the BBS strategy as a function of M and N. It is easy to
verify that (7) produces a smaller value than (6), i.e. the
BBS outperforms the FCFSBS strategy.

Table 1. The average performance of FCFSBS and BBS
strategies

M,N 100 1000 10000

2 5.8 549 5.339, 8998.73 2839 12.36 12.07 2.39%
5 5.13 11.57% 835 7.12% 11.66 5.679%;
10 491 15.349; 8.11 9.67% 11.41 7.70%
20 4.75 18.11%; 7.93 11.76%; 11.23 9.19%
50 4.61 20.449, 7.78 13.449 11.07 8.529;

3. BINARY vs. SEQUENTIAL BATCHING

In the previous sections we showed that the BSS and BBS
strategies are always better than the FCFSSS and
FCFSBS strategies respectively. We also showed that the
average performances of the BSS and BBS strategies are
expressed by the formulae (2) and (7) respectively. In this
section we try to establish a threshold value of M, for a
given N, beyond which BSS is preferable to BBS. We first
prove the following lemma.

Lemma

Expression (7) can be approximated by the expression:

1 N M—1(/M MQM+1) M——l))
mz(Ml 2 M+1< tomrn 1z) ®

Proof
Following [7] we have that

M-1
X (llog N;|+1+4({log Ny |+ 1—2U8 Nd*1) /N,)
i=0

M-1
~ X ([log N;|+ 12U NJ+1/N)
i=0

By assuming that [log N;]+1 = log N; we have:

M-1
X (log N;—2'%¢Ni/N;)

i=0

M-1
Y logN,— M
i=0

M-1 N+1
= i§0 lOg(N—lm>'—M
(gt
" log(1-——)—m
= MlOgN+ igo 0g< _W)_
InN M- i
- (57) = n(1-3751)

1

Tin2
_M N MZ(i 1<i>2
2 "2 2,2\ M+1 2\M+1

())

3
((M(M—l) (M—1) MCM+1)
2 \2(M+1) 12(M +1)2
(M—1)
+——12(M+1)+...))
1 (N M- I(M MQM+1)
T In2 2 12(M+1)

M TMAFI

)

1 (Ml N M- I(M+M(M+1)
1 2 2 M+1 12(M+1)
M-—1
JRE) IS
Theorem

The threshold value M beyond which BSS is preferable
to BBS is estimated by solving the equation:

M*(In N—1.44)+ M(2In N—0.69N —1.22)
+(nN—0.69N) =
Proof
By combining (8) and (2) we get
1 N M—-1/M MQ2M+1) M-1
m() M+1< RM+1) T 12))

M
(N+1)_M+1

After some algebra we get:
M3(12 lng—9>+Mz(24 ln§+2—12N1n2>

+M(12 1n§+8—12(N+1) ln2>—1 =0

M2(12 lng—9>+M(24 lng+2— 12N ln2>

+(12 lng+8—12(N+l) 1n2> =0

370 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

SEQUENTIAL VS. BINARY BATCHED SEARCHING

M?(InN—1.44)+M(2InN—0.69N —1.22)
+(InN—-0.69N)=0 Q.E.D.

We finish by making two observations. First, equation
(9) always gives real roots, one of which is always positive
for N > 5. The second observation relates to the fact that
in many practical situations it is advantageous to know
a simple — but reasonably accurate — expression for the
positive root of (9). The following corollary derives such
an expression, which may be used by software designers
for estimating purposes.

| T I !

1, formulae (2) and (7)
2, formula (9)
= 3, formula (10) -

Value of M

| | | |
Value of N

Figure 2. The threshold M beyond which BSS is preferable to
BBS.

Corollary

If N is large then the positive root of (9) can be.
approximated by the formula:

0.69N/(In N—1.44) (10)
Proof

From (9) we have that:

(BBS) strategy and established a break point between
BBS and Batched Sequential Searching (BSS) strategy.
We anticipate that the results of this paper may be used
by software designers to automate the selection of an
appropriate search strategy for their applications. Note
here that one comparison in sequential search is cheaper
than one comparison in binary search. It is evident that
the value of the threshold M rises if this fact is taken into
consideration. However, the evaluation of a corrective
coefficient is not easy as it is machine-dependent.

Some of the results of this study may also be applied
for secondary storage structures, where the search cost
metric is the number of blocks accessed for satisfying the
M requests. Consider for example an ordered file
consisting of N blocks which is sequentially allocated on
a disk without considering the effect of data management
problems for handling eventual overflow records. If we
make the added assumption that the record size
approaches the block size then (1), (2), (6) and (7) are the
search costs for the four possible strategies presented in
Section 1.

The study can be extended and applied in many
contexts. We just mention three possible extensions. First,
to investigate further the four strategies for secondary
storage.* (In fact one possible approach to the problem
is shown in pp. 228-231 of Ref. 13). Secondly, to derive
break points for other strategies as well, e.g. to establish
a break point among FCFSSS and FCFSBS. Another
extension in the same direction is to consider alternative
structures of the ordered table, e.g. batched tree
searching. Thirdly, to study the BBS strategy for the case
of searching secondary indices, which are stored as lists
of values, to find the pointers which satisfy a batch of
queries based on secondary key values. Ref. 2 studies the
same problem for the BSS strategy.

APPENDIX A
Proposition

The expected cost for satisfying all the M requests when
the array and the M keys are sorted on the same
order and the requests are batch-examined is:
N+1)M/(M+1).

M= (0.69N+1.22—21InN)++/[2In N—0.69N —1.22)>—4 (In N—1.44) (In N—0.69N)

2(In N—1.44)

After some algebra it is easy to verify that the expression
involving the operator square root approximates to
0.69N. Therefore the positive root of (9) can be
approximated by:

0.69N/(InN—1.44) Q.E.D.

Fig. 2 provides a graph for the values of the threshold
values M. The upper line has been derived by considering
formulae (2) and (7), while the middle and the lower lines
depict formulae (9) and (10) respectively. The fact that the
deviation between the upper and middle (lower) line is less
than 2.59% (3%) demonstrates the validity of the lemma
(corollary).

4. CONCLUDING REMARKS
This study has analysed the Batched Binary Searching

Proof

Itis known from Ref. 4 that the probability that exactly &
elements have to be examined sequentially in order to find

all the M keys is: <k>_(k—l>
M M

()

N
Thus the expected costis ¥ kP(k) and the following
k=M

P(k) =

equation has to be proved:

v L))

T k

)

= (N+1DM/(M+1);

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 371

24-2

MANOLOPOULOS,KOLLIAS AND HATZOPOULOS

or equivalently by using the properties of combinations
(see Ref. 6) we have that:

1 N+1
ksz(—1) M<M+1>'

The proof follows by induction.

It is easily derived that for N=M and N= M+1
the two sides of the relation are equal to M and M(M +2)
respectively. For N = M + L we accept that the following
equation holds:

NtL o k—1 M+L+1
k() =m().
r-m \M—1 M+1
We will prove that for N= M+ L+1 the following
equation holds:

vin k(k—l) _ M<M+L+2>_

ey \M—1 M+1
N+L+1 k_l
z,)
k=m \M-—1
M+L+1 M+L>
—M< M+l) (M+L+1)< :
_M<<M+L+l> (M+L+1>)
B M+1 M
_M<(+L+1> (M+L+1)>
B M+1 M
M+L+2>
= E.D.
M(M+1 Q.
APPENDIX B
Proposition

The expected value of the length of the subintervals (a)
between any two successive M elements or (b) between
the beginning of the array and the first element of M or
(c) between the last element of M and the end of the array
is(N—M)/(M+1).

REFERENCES

1. D.S. Batory and C. C. Gotlieb, A unifying model of
physical databases. ACM Transactions on Database
Systems, 7(4), 509-539 (1982).

2. F. W. Burton and J. Kollias, Optimising disc head move-
ments in secondary key retrievals. The Computer Journal
22(3), 206-208 (1979).

3. S. Christodoulakis, Access files for batching in large
information systems. Proc. ICOD-2 Conference, Glasgow
1983, pp. 127-150 (1983).

4. S. Christodoulakis, Estimating block transfers and join
sizes. Proc. SIGMOD 83, San José, pp. 40-54 (1983).

5. S. Christodoulakis, Analysis of performance of an archiver
using optical disk technology (submitted for publication,
1985).

6. W. Feller, An Introduction to Probability Theory and its
Applications. Wiley, Chichester 3rd edition (1968).

7. 1. Flores and G. Madpis, Average binary search lengths for
dense ordered lists, Communications of ACM 14(9),
602-603 (1971).

Proof

From Ref. (5) it is known that the probability distribution
of the three above cases is:

N—-K-1
Cur)
N)
()
where K is the size of the subinterval. Thus it is easily
understood that the following equation has to be proved:

(N—K—l)

v-m \p— -

X K— =11\l[4 T

K=o () +1
M

P(K) =

or equivalently:

N-M _K—
5 K(N K 1)2(N)
g M-1 M+1
The left-hand side of the equation equals to:
NM/N-K—1\ NM/N_K—]
2 < M—1 >+ Z (M-—1)
o NIk IN T N vk
+Z(~>+...+2 (—_).
k-3 \ M—1 K-N-m\ M—1
According to Ref. (6), formula 12.8, p. 64, the above
relation becomes:

)+)+ () ++Ga)
-2 (")

- <MIZ- 1) QE.D.

Acknowledgement

The authors wish to thank the referee for his constructive
criticism.

8. D. S. Hirschberg, On the complexity of searching a set of
vectors. SIAM Journal on Computing 9(1), 126-129 (1980).

9. D. E. Knuth, The Art of Computer Programming, Vol. 1,
Fundamental Algorithms. Addison-Wesley, Reading,
Massachusetts (1968).

10. D. E. Knuth, The Art of Computer Programming, Vol. 3,
Sorting and Searching, pp. 406-419. Addison-Wesley,
Reading, Massachusetts (1973).

11. J. Kollias, An estimate of seek time for batched searching
of random or index sequential structured files. The
Computer Journal 21(2), 132-133 (1978).

12. B. Schneiderman and V. Goodman, Batched searching of
sequential and tree structured files. ACM Transactions on
Database Systems 1(3), 268-275 (1976).

13. T. J. Teorey and J. P. Fry, Design of Database Structures.
Prentice-Hall, Englewood Cliffs, N.J. (1982).

14. C. K. Wong, Minimizing expected head movements in one-
dimensional and two-dimensional mass storage systems.
Computing Surveys of ACM 12(2), 167-178 (1980).

372 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

