
Theoretical Computer Science 526 (2014) 58–74
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Dynamic 3-sided planar range queries with expected
doubly-logarithmic time ✩

Gerth Stølting Brodal a, Alexis C. Kaporis b, Apostolos N. Papadopoulos c,
Spyros Sioutas d,∗, Konstantinos Tsakalidis e, Kostas Tsichlas c

a MADALGO, Department of Computer Science, Aarhus University, Denmark
b Computer Engineering and Informatics Department, University of Patras, Greece
c Department of Informatics, Aristotle University of Thessaloniki, Greece
d Department of Informatics, Ionian University, Corfu, Greece
e Computer Science and Engineering Department, CUHK, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 January 2012
Received in revised form 24 November 2013
Accepted 14 January 2014
Communicated by S. Sen

Keywords:
3-Sided range reporting
Doubly logarithmic
Average case analysis
Dynamic data structures
Computational geometry

The Priority Search Tree is the classic solution for the problem of dynamic 2-dimensional
searching for the orthogonal query range of the form [a,b] × (−∞, c] (3-sided rectangle).
It supports all operations in logarithmic worst case complexity in both main and external
memory. In this work we show that the update and query complexities can be improved
to expected doubly-logarithmic, when the input coordinates are being continuously drawn
from specific probability distributions. We present three pairs of linear space solutions for
the problem, i.e. a RAM and a corresponding I/O model variant:
(1) First, we improve the update complexity to doubly-logarithmic expected with high
probability, under the most general assumption that both the x- and y-coordinates of the
input points are continuously being drawn from a distribution whose density function is
unknown but fixed.
(2) Next, we improve both the query complexity to doubly-logarithmic expected with
high probability and the update complexity to doubly-logarithmic amortized expected, by
assuming that only the x-coordinates are being drawn from a class of smooth distributions,
and that the deleted points are selected uniformly at random among the currently stored
points. In fact, the y-coordinates are allowed to be arbitrarily distributed.
(3) Finally, we improve both the query and the update complexity to doubly-logarithmic
expected with high probability by moreover assuming the y-coordinates to be continuously
drawn from a more restricted class of realistic distributions.
All data structures are deterministic and their complexity’s expectation is with respect to
the assumed distributions. They comprise combinations of known data structures and of
two new data structures introduced here, namely the Weight Balanced Exponential Tree and
the External Modified Priority Search Tree.

© 2014 Elsevier B.V. All rights reserved.

✩ This work is based on a combination of two conference papers that appeared in the Proceedings of the 21st International Symposium on Algorithms
and Computation (ISAAC), 2010, pp. 1–12 (by all authors except the third one) and the Proceedings of the 13th International Conference on Database
Theory (ICDT), 2010, pp. 34–43 (by all authors except the first one).

* Corresponding author.
E-mail addresses: gerth@madalgo.au.dk (G. Stølting Brodal), kaporis@ceid.upatras.gr (A.C. Kaporis), papadopo@csd.auth.gr (A.N. Papadopoulos),

sioutas@ionio.gr (S. Sioutas), tsakalid@cse.cuhk.edu.hk (K. Tsakalidis), tsichlas@csd.auth.gr (K. Tsichlas).
0304-3975/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2014.01.014

http://dx.doi.org/10.1016/j.tcs.2014.01.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gerth@madalgo.au.dk
mailto:kaporis@ceid.upatras.gr
mailto:papadopo@csd.auth.gr
mailto:sioutas@ionio.gr
mailto:tsakalid@cse.cuhk.edu.hk
mailto:tsichlas@csd.auth.gr
http://dx.doi.org/10.1016/j.tcs.2014.01.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.01.014&domain=pdf

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 59
Fig. 1. Examples of 3-sided queries.

1. Introduction

Recently, a significant effort has been made towards developing worst-case efficient data structures for range searching
in two dimensions [37]. In their pioneering work, Kanellakis et al. [20,21] illustrated that the problem of indexing in new
data models, such as constraint, temporal and object models, can be reduced to special cases of two-dimensional indexing.
In particular, they identified that 3-sided range searching is of major importance.

The 3-sided range reporting query in the 2-dimensional space is defined by an orthogonal region of the form R = [a,b] ×
(−∞, c], i.e., a rectangular region with one side “open”, and returns all points contained in R . Fig. 1 depicts examples of
possible 3-sided queries, defined by the shaded regions. Black dots represent the points comprising the result. In many
applications, only positive coordinates are used and therefore, the region defining the 3-sided query always touches one of
the two axes, according to application semantics.

We note that there is a plethora of applications that can benefit by efficient indexing schemes for 3-sided queries.
Consider for example a spatio-temporal database that monitors the locations of moving objects to enable location-based
services. The query asking for the set of objects that reached a specific point of interest during a time interval may be
expressed as a 3-sided query where the time interval is represented by the values t1 and t2, whereas the other dimension
limits the distance from the point of interest. In the sequel we provide a more detailed application example based on a
sensor network.

Consider a time evolving database storing measurements collected from a sensor network. Assume that each measure-
ment is represented by a multi-attribute tuple of the form 〈id,a1,a2, . . . ,ad, time〉, where id is the sensor identifier that
produced the measurement, d is the total number of attributes, each ai , 1 � i � d, denotes the value of the specific attribute
and finally time records the timestamp of the specific measurement. These values may relate to measurements regarding
temperature, pressure, humidity, and so on. Therefore, each tuple may be seen as a point in R

d space. Let F (p) be a real-
valued scoring function that scores each point p based on the values of (a subset of) the attributes. Usually, the scoring
function F is monotone and, without loss of generality, we assume that the lower the score the “better” the measurement
(the other case is symmetric). Popular scoring functions are the aggregates SUM, MIN, AVG or other more complex combi-
nations of the attributes. Now consider the query: “search for all measurements taken between the time instances t1 and
t2 such that the score is below s”. Notice that this is essentially a 2-dimensional 3-sided query with time as the x-axis and
score as the y-axis, which may be expressed in SQL as follows:

SELECT id, score, time
FROM SENSOR_DATA
WHERE time >= t1 AND time <= t2 AND score <= s;

To support the previous application we need to provide efficient insertions and queries. Consider now the case where
the measurements of interest belong to a sliding window [8] such that new measurements enter the window and old ones
are evicted. This is a typical scenario of a stream-based application, where usually we need to process the data as they
arrive since we can only perform online processing. In this case, deletions must be also handled efficiently, meaning that
the data structure that is used to store the points contained in the sliding window must be a fully dynamic data structure.
These techniques are ubiquitous in settings that require continuous query processing (e.g., [8,31]). Search efficiency directly
impacts query response time as well as the general system performance, whereas update efficiency guarantees that incoming
data are stored and organized quickly, thus, preventing delays due to excessive resource consumption.

Another important issue in such data intensive applications is memory consumption. The best practice is to keep data
in main memory if this is possible. However, external memory solutions must also be available to cope with large data
volumes and enable the operation of large databases. For this reason, in this work we study both cases, offering efficient
solutions both in the RAM and I/O models of computation.

Related work The usefulness of 3-sided queries has been underlined many times in the literature [11,21]. Apart from the
significance of this query in multi-dimensional data intensive applications [12,21], 3-sided queries appear in probabilistic

60 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
threshold queries in uncertain databases. Such queries are studied in a recent work of Cheng et al. [11]. The problem
has been studied both in main memory (RAM model) and secondary storage (I/O model). In the internal memory, the
most commonly used dynamic data structure for supporting 3-sided queries is the Priority Search Tree of McCreight [29]. It
supports queries in O (log n + t) worst case time, insertions and deletions of points in O (log n) worst case time and uses
linear O (n) space, where n is the number of points and t the size of the output of a query. It is a hybrid of a binary heap
for the y-coordinates and of a balanced search tree for the x-coordinates.

In the static case, when points have x-coordinates in the set of integers {0, . . . ,n − 1}, the problem can be solved in
O (n) space and preprocessing time with O (t + 1) query time [2], using a range minimum query data structure [18] (see also
Section 2).

The only dynamic sublogarithmic bounds for this problem in the RAM model are due to Willard [38] who attains
O (log n/ log log n) worst case or O (

√
log n) randomized update time and O (log n/ log log n + t) query time using linear space.

This solution poses no assumptions on the input distribution.
Many external data structures such as grid files, various quad-trees, z-orders and other space filling curves, k-d-B-trees,

hB-trees and various R-trees have been proposed. A recent survey can be found in [16]. Often these data structures are
used in applications, because they are relatively simple, require linear space and perform well in practice most of the time.
However, they all have highly sub-optimal worst case performance, whereas their expected performance is usually not
guaranteed by theoretical bounds, since they are based on heuristic rules for the construction and update operations.

Moreover, several attempts have been made to externalize Priority Search Trees, including [10,19,21,33,35], but none of
them was optimal. The worst case optimal external memory solution (External Priority Search Tree) was presented in [6]. It
consumes O (n/B) disk blocks, supports 3-sided range queries in O (logB n + t/B) worst case I/Os and supports updates in
O (logB n) I/Os amortized, where B denotes the block size. This solution requires no assumptions on the input distribution.
Also, there exist a static linear space external data structures that support 3-sided queries in O (1+t/B) worst case I/Os [27].

Our contributions In this work we present new dynamic linear space data structures for the RAM and the I/O models
that support 3-sided range reporting queries and insertions and deletions of points an expected logarithmic factor more
efficiently than previous worst case efficient solutions, when the coordinates of the input points are being drawn inde-
pendently from various probabilistic distributions. All our structures are deterministic and they improve upon either the
expected update (or even query) complexity of previous results. The expectation is only with respect to the input distribu-
tion. In particular, we propose three multi-level solutions, each with a main memory and an external memory variant. For
the first solution, we assume that both the x- and y-coordinates of the input points are being continuously drawn from an
unknown μ-random distribution. Regarding deletions, we make the standard assumption that the points to be deleted are
selected uniformly at random among the points that are currently stored in the data structure [26]. The internal memory
variant (Int1) achieves O (log n + t) worst case query time and O (log log n) expected update time with high probability using
O (n) space. The corresponding external solution (Ext1) achieves O (logB n + t/B) worst case query I/Os and O (logB log n)

amortized expected update I/Os with high probability using O (n/B) blocks of space. They are two-level constructions, where
the upper level consists of a single (External) Priority Search Tree [29,6] that indexes the structures of the lower level, which
are (External) Priority Search Trees as well.

The second and the third solution attempt to further improve the query time. However, stricter assumptions have to be
posed on the input distribution, in order to preserve the efficient expected update complexity. In particular, for the second
solution, we assume that x-coordinates of points to be inserted are being drawn continuously from a (f (n), g(n))-smooth
probabilistic distribution, where the functions f and g depend on the model. This assumption is broad enough to include
distributions used in practice, such as uniform, regular and classes of non-uniform ones [4,23]. We pose no assumption
on the distribution of the y-coordinates, which may in fact be selected adversarially. The internal variant (Int2) achieves
O (log log n + t) expected query time with high probability and O (log log n) expected amortized update time using O (n)

space. The corresponding external solution (Ext2) achieves O (log logB n+ t/B) expected query I/Os with high probability and
O (logB log n) amortized expected update I/Os using O (n/B) blocks. They combine (External) Interpolation Search Trees [4,
30,22,24] with (External) Weight Balanced Exponential Trees to handle the x- and y-coordinates, respectively. The latter
structures achieve O (1) expected amortized update complexity by combining techniques of Exponential Search Trees [3,36,
5] and Weight Balanced B-Trees [7] and are also a contribution of this paper.

With the third solution we show that we can achieve similar or better results than the previous by further assuming
that the distribution of the y-coordinates belongs to a more restricted class of distributions. These are non-smooth distri-
butions, that are often found in practice, distributions like Zipfian and Power–Law in general. Specifically, now the update
complexity holds with high probability and the query I/O-complexity is improved by a O (log B) factor. In particular, the in-
ternal variant (Int3) achieves O (log log n + t) expected query time with high probability and O (log log n) expected amortized
update time with high probability using O (n) space. The corresponding external solution (Ext3) achieves O (logB log n + t/B)

expected query I/Os with high probability and O (logB log n) amortized expected update I/Os with high probability using
O (n/B) blocks. These are multi-level constructions, where the top layer consists of linear space Modified Priority Search
Trees [34]. For the external variant we introduce External Modified Priority Search Trees that support 3-sided queries in
O (t/B) expected I/Os with high probability using linear space. We employ them here, despite the result of [27], since they
don’t degrade the overall efficiency of our construction. Refer to Table 1 for a concrete comparison of our solutions with
previous results.

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 61
Table 1
Asymptotic bounds for dynamic 3-sided planar range reporting in internal and external memory. The number of points currently stored in the structure
is n, the size of the query output is t and the size of the block is B .

RAM model Query time Update time

McCreight [29] logn + t log n

Willard [38] log n
log log n + t log n

log log n ,a
√

log n

Int1b logn + t clog logn
Int2d clog log n + t elog logn
Int3f clog log n + t clog logn

I/O model Query I/Os Update I/Os

Arge et al. [6] logB n + t/B glogB n
Ext1b logB n + t/B hlogB logn
Ext2d clog logB n + t/B elogB log n
Ext3f clogB log n + t/B hlogB logn

a Randomized algorithm and expected time bound.
b x- and y-coordinates are drawn from an unknown μ-random distribution, the μ function never changes, deletions are uniformly random over the

inserted points.
c Expected with high probability.
d The x-coordinates are smoothly distributed, the y-coordinates are arbitrarily distributed and deletions are uniformly random over the inserted points.
e Amortized expected.
f The x-coordinate distribution is (f (n), g(n))-smooth, for appropriate functions f and g depending on the model, and the y-coordinate distribution

belongs to a more restricted class of distributions.
g Amortized.
h Amortized expected with high probability.

Roadmap The rest of the article is organized as follows. In Section 2, we discuss preliminary concepts, define the classes
of probability distributions used and present the data structures that constitute the building blocks of our constructions.
Among them, we introduce the Weight Balanced Exponential Tree and the External Modified Priority Search Tree. In Section 3
we present the two theorems that ensure the expected running times of the first and the third solution. The first solution
is presented in Section 4, whereas our second and third solutions are discussed in Sections 5 and 6 respectively. Finally,
Section 7 concludes the work and discusses briefly future research in the area.

2. Data structures and probability distributions

For the main memory solutions we consider the RAM model of computation. We denote by n the number of elements
that reside in the data structure and by t the size of the query. The universe of elements is denoted by S . When we mention
that a data structure supports an update operation in a complexity that is amortized expected with high probability, we mean
that the bound holds with high probability, under a worst case sequence of insertions and deletions of points.

For the external memory solutions we consider the I/O model of computation [1,37]. That means that the input resides in
external memory in a blocked fashion, in blocks that contain B elements. Whenever a computation needs to be performed
to a particular element, the block that contains it is transferred into main memory, which can hold at most M elements.
Every computation that is performed in main memory is free, since the block transfer is orders of magnitude more time
consuming. Unneeded blocks that reside in the main memory are evicted by a LRU replacement algorithm. Naturally, the
number of block transfers (I/O operations or I/Os) comprises the complexity measure.

Furthermore, we will consider that the points to be inserted are continuously drawn from specific distributions, presented
in the sequel. The term continuously implies that the distribution from which we draw the points remains unchanged
throughout the lifetime of the data structure. Since our constructions are dynamic, the asymptotic bounds are given with
respect to the current size of the data structure. Finally, deletions of the elements of the data structures are assumed to be
uniformly random. That is, every element present in the data structure is equally likely to be deleted.

2.1. Probability distributions

In this section we overview the probabilistic distributions that will be used in the remainder of the paper. We will con-
sider that the x- and y-coordinates are distinct elements of these distributions and will choose the appropriate distribution
according to the assumptions of our solutions.

A probability distribution is μ-random if the elements are drawn randomly with respect to a density function denoted
by μ. For this paper, we assume that μ is unknown.

Informally, a distribution defined over an interval I is smooth if the probability density over any subinterval of I does not
exceed a specific bound, however small this subinterval is (i.e., the distribution does not contain sharp peaks). Given two
functions f1 and f2, a density function μ = μ[a,b](x) is (f1, f2)-smooth [30,4] if there exists a constant β , such that for all
c1, c2, c3, a � c1 < c2 < c3 � b, and all integers n, it holds that:

c2∫
c2− c3−c1

f1(n)

μ[c1, c3](x)dx � β · f2(n)

n

where μ[c1, c3](x) = 0 for x < c1 or x > c3, and μ[c1, c3](x) = μ(x)/p for c1 ≤ x ≤ c3 where p = ∫ c3
c1

μ(x)dx. Intuitively,

function f1 partitions an arbitrary subinterval [c1, c3] ⊆ [a,b] into f1 equal parts, each of length c3−c1 = O (1); that is,
f1 f1

62 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
f1 measures how fine is the partitioning of an arbitrary subinterval. Function f2 guarantees that no part, of the f1 possible
ones, gets more probability mass than β· f2

n ; that is, f2 measures the sparseness of any subinterval [c2 − c3−c1
f1

, c2] ⊆ [c1, c3].
The class of (f1, f2)-smooth distributions (for appropriate choices of f1 and f2) is a superset of both regular and uni-
form classes of distributions, as well as of several non-uniform classes [4,23]. Actually, any probability distribution is
(f1,Θ(n))-smooth, for a suitable choice of β .

The grid distribution assumes that the elements are integers that belong to a specific range {1, . . . , M}.
We define the class of restricted distributions to contain distributions used in practice, such as Zipfian and Power–Law.

Their common attribute is that they exhibit sharp peaks and a long tail, as opposed to the smooth distribution.
The Zipfian distribution is a distribution of probabilities of occurrence that follows Zipf’s law. Let N be the number of

elements, k be their rank and s be the value of the exponent characterizing the distribution. Then Zipf’s law is defined as
the function f (k; s, N) = 1/ks∑N

k=1 1/ns
. Intuitively, few elements occur very often, while many elements occur rarely.

The Power–Law distribution is a distribution over probabilities that satisfy Pr[X � x] = cx−b for constants c,b > 0.

2.2. Data structures

In this section we describe the data structures that we will combine in order to achieve the desired complexities.

2.2.1. Priority search trees
The classic priority search tree (PST) [29] stores points in 2-dimensional space. One of the most important operations that

the PST supports is the 3-sided query. The 3-sided query consists of a rectangle [a,b] × (−∞, c] with one unbounded side
and asks for all points that lie inside this area. Note that by rotation we can unbound any edge of the rectangle. The PST
supports this operation in O (log n + t) worst case time, where n is the number of stored points and t is the number of the
reported points. Moreover, it supports the operations of inserting a new point, deleting of an existing point and searching
for the x-coordinate of a point in O (log n) worst case time.

More specifically, the PST is a combination of a search tree and a priority queue. The search tree (an (a,b)-tree suffices)
allows the efficient support of searches, insertions and deletions with respect to the x-coordinates, while the priority queue
allows for efficient accessing of points with respect to their y-coordinate. In particular, the leaves of the PST contain all the
points sorted by x-coordinate. The internal nodes of the tree contain auxiliary x- and y-values. The former is the median of
the x-coordinates of the points stored in the subtree of the node, and is used to aid searching with respect to x-coordinate.
The latter is the minimum y-coordinate of the points stored in the subtree. The y-values of the PST comprise a tournament
among the y-coordinates of all the points stored in the PST, and they are used to aid efficient reporting of 3-sided queries.

Regarding the I/O model, after several attempts, a worst case optimal solution was presented by Arge et al. in [6]. The
proposed indexing scheme consumes O (n/B) blocks, supports updates in O (logB n) amortized I/Os and answers 3-sided
range queries in O (logB n + t/B) worst case I/Os. We will refer to this indexing scheme as the external priority search tree
(EPST).

2.2.2. Interpolation search trees
In [24] a dynamic data structure based on interpolation search (IS-Tree) was presented, which consumes linear space and

can be updated in O (1) worst case time, after identify the position of the change in the tree. Furthermore, the elements
can be searched in O (log log n) expected time with high probability, given that they are drawn from a (nα,nβ)-smooth
distribution, for any arbitrary constants 0 < α, β < 1.

The externalization of this data structure, called interpolation search B-tree (ISB-tree), was introduced in [22]. It supports
update operations in O (1) worst case I/Os provided that the update position is given and search operations in O (logB log n)

expected I/Os with high probability, when the elements are drawn by a (n/(log log n)1+ε,n1/B)-smooth distribution, for
constant ε > 0. The worst case search bound is O (logB n) I/Os.

2.2.3. Weight balanced exponential trees
The exponential search tree is a technique for converting static polynomial space search structures for ordered sets into

fully-dynamic linear space data structures. It was introduced in [3,36,5] for searching and updating a dynamic set U of n
integer keys in linear space and optimal O (

√
log n/ log log n) time in the RAM model. Effectively, to solve the dictionary

problem, a doubly-logarithmic height search tree is employed that stores static local search structures of size polynomial to
the degree of the nodes.

Here we describe a variant of the exponential search tree that we dynamize using a rebalancing scheme relative to that
of the weight balanced search trees [7]. In particular, a weight balanced exponential tree T on n points is a leaf-oriented rooted
search tree where the degrees of the nodes increase double exponentially on a leaf-to-root path. All leaves have the same
depth and reside on the lowest level of the tree (level zero). The weight of a subtree Tu rooted at node u is defined to be
the number of its leaves. If u lies at level i � 1, the weight of Tu ranges within [1

2 · wi + 1,2 · wi − 1], for a weight parameter

wi = c
ci

2
1 and constants c2 > 1 and c1 � 23/(c2−1) (see Lemma 2.1). Note that wi+1 = wc2

i . The root does not need to satisfy
the lower bound of this range. The tree has height Θ(logc logc n).
2 1

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 63
The insertion of a new leaf to the tree increases the weight of the nodes on the leaf-to-root path by one. This might cause
some weights to exceed their range constraints (“overflow”). We rebalance the tree in order to revalidate the constraints by
a leaf-to-root traversal, where we “split” each node that overflowed. An overflown node u at level i has weight 2wi . A split
is performed by creating a new node v that is a sibling of u and redistributing the children of u among u and v such that
each node acquires a weight within the allowed range. In particular, we scan the children of u, accumulating their weights
until we exceed the value wi , say at child x. Node u gets the scanned children and v gets the rest. Node x is assigned as
a child to the node with the smaller weight. Processing the overflown nodes u bottom up guarantees that, during the split
of u, its children already satisfy their weight constraints.

The deletion of a leaf might cause the nodes on the leaf-to-root path to “underflow”, i.e. a node u at level i reaches
weight 1

2 wi . By an upwards traversal of the path, we discover the underflown nodes. In order to revalidate their node
constraints, each underflown node chooses a sibling node v to “merge” with. That is, we assign the children of u to v
and delete u. It may happen that the resulting node v overflows after the merge, i.e. its weight exceeds 3

2 wi . In this case,
we “split” it again as described above. This combined “merge” and “split” operation is called a “share”. In either case,
the traversal continues upwards, which guarantees that the children of the underflown nodes already satisfy their weight
constraints. The following lemma, which is similar to [7, Lem. 9], holds.

Lemma 2.1. After rebalancing a node u at level i, Ω(wi) insertions or deletions need to be performed on Tu , for u to overflow or
underflow again.

Proof. A split, a merge or a share on a node u on level i yield nodes with weight in [3
4 wi − wi−1,

3
2 wi + wi−1]. If we set

wi−1 � 1
8 wi , which always holds for c1 � 23/(c2−1) , this interval is always contained in [5

8 wi,
14
8 wi]. �

2.2.4. Range minimum queries
The range minimum query (RMQ) problem asks to preprocess an array of size n such that, given an index range, one can

report the position of the minimum element in the range. In [18] the RMQ problem is solved in O (1) worst case time using
O (n) space and preprocessing time. A succinct implementation that uses 2n + O (n) bits of space and supports the queries
in O (1) worst case time appears in [13].

2.2.5. Dynamic external memory 3-sided range queries for O (B2) points
For external memory, Arge et al. [6] present the following lemma for handling a set of at most B2 points.

Lemma 2.2. A set of K � B2 points can be stored in O (K/B) blocks, such that 3-sided queries are supported in O (t/B + 1) worst case
I/Os and updates in O (1) worst case I/Os, for output size t.

Proof. See Lemma 1 presented in [6]. �
2.2.6. Modified priority search trees

A modified priority search tree (MPST) is a static data structure that stores points on the plane and supports 3-sided
queries. It is stored as an array (Arr) in memory, yet it can be visualized as a complete binary tree. Although it has been
presented in [25,34] we sketch it here again, in order to introduce its external variant.

Let T be an MPST [34] which stores n points of S (see Fig. 2). We denote by T v the subtree of T with root the internal
node v . Like in an ordinary PST, v of the MPST is assigned with the point with minimum y-coordinate among the points
in T v . Let u be a leaf of the tree and let Pu be the root-to-leaf path for u. For every leaf u, we sort the points assigned in
the nodes of Pu by their y-coordinate. We denote by P j

u the subpath of Pu with nodes of depth bigger or equal to j (the
depth of the root is 0). Similarly L j

u (respectively R j
u) denotes the set of nodes that are left (resp. right) children of nodes of

P j
u and do not belong to P j

u . The tree structure T has the following properties:

• Each point of S is stored in a leaf of T and the points are in sorted x-order from left to right.
• Each internal node v is equipped with a secondary list S(v) that contains the points stored in the leaves of T v in

non-decreasing y-coordinate.
• A leaf u also the lists A(u), P j(u), L j(u) and R j(u), for 0 � j � log n. In particular, the lists P j(u), L j(u) and R j(u) store

pointers to the respective internal nodes in non-decreasing y-coordinate, while A(u) is an array that indexes j.

Note that the first element of the list S(v) is the point of the subtree T v with minimum y-coordinate. Also note that
0 � j � logn, so there are log n such sets P j

u , L j
u , R j

u for each leaf u. Thus the size of A is logn and for a given j, any
list P j(u), L j(u) or R j(u) can be accessed in constant time. By storing the nodes of the tree T according to their inorder
traversal in an array Arr of size O (n), we can imply the structure of tree T . Also each element of Arr contains a binary label
that corresponds to the inorder position of the respective node of T , in order to facilitate constant time lowest common
ancestor (LCA) queries.

64 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
Fig. 2. The linear space MPST stores (a) arrays Arr1 and Arr2(u) that imply the structure of the virtual trees T1 and T i
2, i ∈ {1, . . . , log n} by an inorder

traversal, (b) for every array Arr the corresponding arrays S and A that index arrays P j , R j and L j that in turn store pointers to corresponding internal
nodes of the respective virtual trees, and (c) a global look-up table and the corresponding microtrees.

To answer a query with the range [a,b] × (−∞, c] we find the two leaves u, w of Arr that contain a and b respectively.
If we assume that the leaves that contain a, b are given, we can access them in constant time. Then, since Arr contains
an appropriate binary label, we use a simple LCA (Lowest Common Ancestor) algorithm [17,18] to compute the depth j
of the nearest common ancestor of u and w in O (1) time. That is done by performing the XOR operation between the
binary labels of the leaves u and w and finding the position of the first set bit, assuming that the left-most bit is placed
in position 0. Afterwards, we traverse P j(u) until the scanned y-coordinate is not bigger than c. Next, we traverse R j(u),
L j(w) in order to find the nodes whose stored points have y-coordinate not bigger than c. For each such node v we traverse
the list S(v) in order to report the points of Arr that satisfy the query constraints. Since we only access points that lie in
the query range, the total query time is O (1 + t), where t is the answer size.

The total size of the lists S(u) for each level of T is O (n). Each of the O (n) leaves stores log n lists P j , L j and R j , each
of which consumes O (log n) space. Thus the space for these lists becomes O (n log2 n). However, since P j+1 contains only
extra element more than P j , we can employ a partially persistent sorted list [9] to reduce the space of all lists P j , similarly
L j and R j to O (n log n), and thus also the total space for T .

We can further reduce the space of the structure by use of pruning, as in [14,32]. However, pruning alone does not reduce
the space to linear, even when it applied recursively. Thus, to obtain an optimal space bound we will use a combination of
recursive pruning and table lookup. In particular, the pruning method is applied as follows: Consider the nodes of T that
have height log log n. These nodes are roots of subtrees of T of size O (log n) and there are O (n/ log n) such nodes. Let T1
be the tree with these nodes as leaves and let T i

2 be the subtrees of these leaves for 1 � i � O (n/ log n). We call T1 the first
layer of the structure and the subtrees T i

2 the second layer. T1 and each subtree T i
2 is by itself a Modified Priority Search

Tree. Note that T1 has size O (n/ log n), namely o(n). Thus only the space of the second layer is O (n log n). We repeat the
pruning at all the trees of the second layer, which results in a third layer that consists of O (n/ log log n) modified priority
search trees each of size O (log log n). Ignoring the third layer, now each subtree T i

2 of the second layer has O (log n/ log log n)

leaves and height O (log log n). This means that now also the second layer takes o(n), while the O (n log n) space bottleneck
is charged only to the third level. To reduce the total space to O (n), we can use the technique of table lookup [15] for the
third level. Namely, since the size of every subtree T i

3 is O (log log n), all the possible queries over all possible permutations
of as many points are O (n) in total, and thus fit in a linear space global look-up table. We implement the subtrees T i

3 as
microtrees. Refer to [34, Section 3.2.3] for the details.

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 65
In order to answer a query on the three-layered structure we access the microtrees that contain a and b and extract in
O (1) time the part of the answer that they contain. Then we locate the subtrees T i

2, T j
2 that contain the representative leaves

of the accessed microtrees and extract the part of the answer that is contained in them by executing the query algorithm
of the MPST. The roots of these subtrees are in turn leaves of T1. Thus we execute again the MPST query algorithm on T1
with these leaves as arguments. Once we reach the node with y-coordinate larger than c, we continue in the same manner
top down. This may lead us to subtrees of the second layer that contain part of the answer and have not been accessed
yet. That means that for each accessed tree of the second layer, we execute the MPST query algorithm, where instead of a
and b, we set as arguments the minimum and the maximum x-coordinates of all the points stored in the queried tree. The
argument c remains, of course, unchanged. Correspondingly, in that way we access the microtrees of the third layer that
contain part of the answer. We execute the top down part of the algorithm on them, in order to report the final part of the
answer.

Lemma 2.3. Given a set of n points on the plane we can store them in a static data structure with O (n) space that allows 3-sided range
queries to be answered in O (t) worst case, where t is the answer size.

Proof. See [34, Theorem 7]. �
The external modified priority search tree (EMPST) is similar to the MPST, yet we store the lists in a blocked fashion. In order

to attain linear space in external memory we prune the structure k times, instead of two times. The pruning terminates
when log(k) n = O (B). We assume that k = O (1). Since computation within a block is free, we do not need the additional
layer of microtrees. By that way we achieve O (n/B) space.

Assume that the query algorithm accesses first the two leaves u and v of the k-th layer of the EMPST, which contain a
and b respectively. If they belong to different EMPSTs of that layer, we recursively take the roots of these EMPSTs until the
roots ru and rv belong to the same EMPST, w.l.o.g. the one on the top layer. That is done in O (k) = O (1) I/Os. Then, in O (1)

I/Os we access the j-th entry of A(ru) and A(rv), where j is the depth of LC A(ru, rv), thus also the corresponding sublists
P j(ru), R j(ru), L j(ru) and P j(rv), R j(rv), L j(rv). Since these sublists are y-ordered, by scanning them in t1/B I/Os we get
all the t1 pointers to the S-lists that contain part of the answer. We access the S-lists in t1 I/Os and scan them as well in
order to extract the part of the answer (let’s say t2) they contain. We proceed recursively to the O (t2)S-lists of the layer
below. In total, we consume t1/B + t1 · t2/B +· · ·+ ti−1 · ti/B +· · ·+ tk−1 · tk/B I/Os. Let pi the probability that ti = t pi where

t is the total size of the answer and
∑k

i=1 pi = 1. Thus, we need t p1/B + ∑k−1
i=1

t pi

B · t pi+1 I/Os or t p1/B + ∑k−1
i=1

t(pi+pi+1)

B I/Os.

Assuming with high probability An equally likely distribution of answer amongst the k layers, we need t
1
k /B + ∑k−1

i=1
t

1
k + 1

k

B

expected number of I/Os or t
1
k /B + ∑k−1

i=1
t

2
k

B . Since k 	 2, we need totally O (t/B) expected with high probability I/Os. We
conclude that:

Lemma 2.4. Given a set of n points on the plane we can store them in a static external data structure with O (n/B) space that supports
3-sided range queries in O (t/B) expected with high probability I/Os, where t is the size of the answer.

3. Expected first order statistic of unknown distributions

In this section we prove two theorems that will ensure the expected running times of our solutions in Sections 4 and 6.
They are multilevel data structures, where for each pair of consecutive levels, the upper level indexes representative

elements of the lower level. We consider the elements to be points p = (x, y) on the plane, where the x-coordinates are
being drawn independently from the y-coordinates. We consider every lower level structure to be a bucket of points that
occur consecutively by x-coordinate, and the representative element of the bucket to be the smallest y-coordinate in the
bucket. An insertion or deletion of a point to a lower level bucket is a violation, when it causes the representative of the
bucket to change, and thus triggers an update to the upper level. We consider epochs of consecutive update operations,
during which we update the dynamic structures of the lower levels in an online fashion, and we buffer the violations to
the upper level. The two theorems presented in this section ensure that the epochs are on the one hand short enough to
allow for a few violations to affect the upper level, and on the other hand long enough to allow for amortizing its expensive
update cost over the next epoch.

In particular, Theorem 3.3 allows epochs of logarithmic size that suffice to update efficiently the solution of Section 4,
since updating its upper level structure needs logarithmic time. The proof requires the following propositions that assume
that the x- and y-coordinates are being drawn independently from an unknown probability density function μ = F over
the continuous range [a,b] ⊆
.

Proposition 3.1. Consider an epoch of O (log n) updates and let N(i) ∈ [n, r · n], for constant r > 1, denote the structure after the
epoch’s i-th update. As long as N(i) contains O (n

log n) buckets, the points in N(i) remain μ-randomly distributed per i-th update.

Proof. The proof is analogous to [23, Lemma 2]. �

66 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
Proposition 3.2. Let |S| denote the number of points stored in bucket S and let s be the value of its representative element. The
probability that the next element drawn from F is less than s in S is equal to 1

|S|+1 .

Proof. We employ backward analysis to prove the proposition. As a result, assume that the bucket contains |S|+1 elements
and one element is deleted. Since all elements are drawn independently from the same arbitrary distribution F , the element
to be deleted may be any of the |S| + 1 elements with equal probability. Thus, the probability of deleting the minimum
element among the |S| + 1 elements is 1

|S|+1 . �
Theorem 3.3. For an epoch of O (log n) updates, the expected number of violations is O (1), assuming that the x- and y-coordinates
are being and continuously drawn from a μ-random distribution.

Proof. By [23, Th. 4], with high probability, each bucket j receives a x-coordinate with probability p j = Θ(
log n

n). It follows
that during the i-th update operation, the elements in bucket j is a Binomial random variable X j with mean p j · N(i) =
Θ(log n). By using the Chernoff bound, the probability that an arbitrary bucket j will have a number of elements � p j

2 N(i)
(less than half of the bucket’s mean) is:

Pr

[
X j <

(
1 − 1

2

)
p j N(i)

]
< e−p j N(i)/8 = n−Θ(1) (1)

Suppose that an element is inserted in the i-th update. It induces a violation if its y-coordinate is strictly the minimum
element of the bucket j it falls into.

• If the bucket j contains � p j
2 N(i) � p j

2 n coordinates, then by Proposition 3.2 element y incurs a violation with proba-
bility O (1

log n).

• If the bucket j contains <
p j
2 N(i) coordinates, which happens with probability n−Θ(1) , then element y may induce 1

violation.

Putting these cases together, element y expectedly induces at most O (1
log n) + n−Θ(1) = O (1

log n) violations. We conclude

that during the whole epoch of log n insertions the expected number of violations is at most log n · O (1
log n) = O (1). �

On the other hand, the upper level structure of the solution in Section 6 is a static structure, and thus it can be updated
by global rebuilding [28] in linear time. Theorem ensures that a few violations will occur in a broader epoch of linear size,
if we restrict further the distribution of the y-coordinates.

Theorem 3.4. For a sequence of O (n) updates, the expected number of violating elements is O (log n), assuming that x-coordinates are
drawn from a continuous smooth distribution and the y-coordinates are drawn from the restricted class of distributions (Power–Law
or Zipfian).

Proof. Suppose an element is inserted with its y-coordinate following a discrete distribution (while its x-coordinate is
arbitrarily distributed) in the universe {y1, y2, . . .} with yi < yi+1, ∀i � 1. Let q = Pr[y > y1] and let y∗

j be the minimum
y-coordinate of the elements in bucket j as soon as the current epoch starts. Clearly, the element just inserted incurs a
violation when landing into bucket j with probability Pr[y < y∗

j].

• If the bucket contains � p j
2 N(i) � p j

2 n coordinates, then coordinate y incurs a violation with probability � q
p j
2 n . (In

other words, a violation may happen when at most all the Ω(log n) coordinates of the elements in bucket j are >y1;
otherwise if y∗

j = y1, then no violation is possible.)

• If the bucket contains <
p j
2 N(i) coordinates, which is as likely as in Eq. (1), then coordinate y may induce 1 violation.

All in all, the new y coordinate expectedly induces � qΩ(log n) + n−Θ(1) violations. Thus, during the whole epoch of n
insertions the expected number of violations is at most n · qΩ(log n) + n1−Θ(1) violations. The constant in Θ is affected by p j

and we can choose it so that n1−Θ(1) = O (1) and thus at most a constant number of violations are contributed by this part.
The term n · qΩ(log n) is at most c · logn = O (log n) provided that q � (

c log n
n)(log n)−1 → e−1 as n → ∞. �

Remark 3.5. Note that Power–Law and Zipfian distributions have the aforementioned property that q � (
c log n

n)(log n)−1 → e−1

as n → ∞.

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 67
4. The first solution for x, y-random distributions

In this section we present the solution that works under the most general assumptions that the x- and y-coordinates
are continuously drawn from an unknown μ-random distribution. The structure we propose consists of two levels, as well
as an auxiliary data structure. All of them are implemented as PSTs. The lower level partitions the points into buckets of
almost equal logarithmic size according to the x-coordinate of the points. That is, the points are sorted in increasing order
according to x-coordinate and then divided into sets of O (log n) elements each of which constitutes a bucket. A bucket C is
implemented as a PST and is represented by a point Cmin which has the smallest y-coordinate among all points in it. This
means that for each bucket the cost for insertion, deletion and search is equal to O (log log n), since this is the height of the
PST representing C .

The upper level is a PST on the representatives of the lower level. Thus, the number of leaves in the upper level is
O (n

log n). As a result, the upper level supports the operations of insert, delete and search in O (log n) time. In addition, we
keep an extra PST for insertions of violating points. Under this context, we call a point p violating, when its y-coordinate
is less than Cmin of the bucket C in which it should be inserted. In the case of a violating point we must change the
representative of C and as a result we should make an update operation on the PST of the upper level, which costs too
much, namely O (log n).

We assume that the x- and y-coordinates are drawn from an unknown μ-random distribution and that the μ function
never changes. Under this assumption, according to the combinatorial game of bins and balls, presented in Section 5 of
[23], the size of every bucket is O (logc n), where c > 0 is a constant, and no bucket becomes empty with probability. We
consider epochs of O (log n) update operations. During an epoch, according to Theorem 3.3, the number of violating points
is expected to be O (1) with high probability. The extra PST stores exactly those O (1) violating points. When a new epoch
starts, we take all points from the extra PST and insert them in the respective buckets in time O (log logn) expected with
high probability. Then we need to incrementally update the PST of the upper level. This is done during the new epoch that
just started. In this way, we keep the PST of the upper level updated and the size of the extra PST constant. As a result, the
update operations are carried out in O (log log n) time expected with high probability, since the update of the upper level
costs O (1) worst case time.

The 3-sided query can be carried out in the standard way. Assume the query [a,b] × (−∞, c]. First we search down the
PST of the upper level for a and b. Let Pa be the search path for a and Pb for b respectively. Let Pm = Pa ∩ Pb . Then, we
check whether the points in the nodes on Pa ∪ Pb belong to the answer by checking their x-coordinate as well as their
y-coordinate. Then, we check all right children of Pa − Pm as well as all left children of Pb − Pm . In this case we just check
their y-coordinate since we know that their x-coordinate belongs in [a,b]. When a point belongs in the query, we also
check its two children and we do this recursively. After finishing with the upper level we go to the respective buckets by
following a single pointer from the nodes of the upper level PST of which the points belong in the answer. Then we traverse
in the same way the buckets and find the set of points to report. Finally, we check the extra PST for reported points. In total
the query time is O (log n + t) worst case.

Note that deletions of points do not affect the correctness of the query algorithm. Indeed, removing the representative
element of a bucket will force the higher levels to be updated, however this happens with low probability according to
Theorems 3.3 and 3.4. If a non-violating point is deleted, it should reside on the lower level and thus it would be deleted
online. Otherwise, the extra PST contains it and thus the deletion is online again. No deleted violating point is incorporated
into the upper level, since by the end of the epoch the PST contains only inserted violating points.

Theorem 4.1. There exists a dynamic main memory data structure that supports 3-sided queries in O (log n + t) worst case time,
can be updated in O (log log n) expected time with high probability and consumes linear space, under the assumption that the x- and
y-coordinates are continuously drawn from a μ-random distribution.

If we implement the above solution by using EPSTs [6], instead of PSTs, then the solution becomes I/O-efficient, however
the update cost becomes amortized instead of worst case. Thus we get that:

Theorem 4.2. There exists a dynamic external memory data structure that supports 3-sided queries in O (logB n + t/B) worst case
I/Os, can be updated in O (logB logn) amortized expected I/Os with high probability and consumes linear space, under the assumption
that the x- and y-coordinates are continuously drawn from a μ-random distribution.

5. The second solution for the x-smooth distributions

In this section we present the solution that poses no assumption on the distribution of the y-coordinates, but because
it uses interpolation search trees to process the x-coordinates, it assumes that they are being drawn continuously from a
smooth distribution. We will present the data structures for the RAM and the I/O model, respectively.

68 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
5.1. The second solution in RAM model

Our internal memory solution for storing n points in the plane consists of an IS-tree storing the points in sorted order
with respect to the x-coordinates. We assume that the x-coordinates are drawn from a (nα,n1/2)-smooth distribution, for
constants 1/2 < α < 1. On the sorted points, we maintain a weight balanced exponential search tree T with c2 = 3/2 and
c1 = 26. Thus its height is Θ(log log n). In order to use T as a priority search tree, we augment it as follows. The root stores
the point with overall minimum y-coordinate. Points are assigned to nodes in a top-down manner, such that a node u
stores the point with minimum y-coordinate among the points in Tu that is not already stored at an ancestor of u. Note
that the point from a leaf of T can only be stored at an ancestor of the leaf and that the y-coordinates of the points stored
at a leaf-to-root path are monotonically non-increasing (Min-Heap Property). Finally, every node contains an RMQ-structure
on the y-coordinates of the points in the children nodes and an array with pointers to the children nodes. Every point in
a leaf can occur at most once in an internal node u and the RMQ-structure of u’s parent. Since the space of the IS-tree is
linear [30,24], so is the total space.

5.1.1. Querying the data structure
Before we describe the query algorithm of the data structure, we will describe the query algorithm that finds all points

with y-coordinate less than c in a subtree Tu . Let the query begin at an internal node u. At first we check if the y-coordinate
of the point stored at u is smaller or equal to c (we call it a member of the query). If not we stop. Else, we identify the
tu children of u storing points with y-coordinate less than or equal to c using the RMQ-structure of u. That is, we first
query the whole array and then recurse on the two parts of the array partitioned by the index of the returned point. The
recursion ends when the point found has y-coordinate larger than c (non-member point).

Lemma 5.1. For an internal node u and value c, all points stored in Tu with y-coordinate � c can be found in O (t + 1) time, when t
points are reported.

Proof. Querying the RMQ-structure at a node v that contains tv member points will return at most tv + 1 non-member
points. We only query the RMQ-structure of a node v if we have already reported its point as a member point. Summing
over all visited nodes we get a total cost of O (

∑
v(2tv + 1)) = O (t + 1). �

In order to query the whole structure, we first process a 3-sided query [a,b] × (−∞, c] by searching for a and b in the
IS-tree. The two accessed leaves a, b of the IS-tree comprise leaves of T as well. We traverse T from a and b to the root.
Let Pa (resp. Pb) be the root-to-leaf path for a (resp. b) in T and let Pm = Pa ∩ Pb . During the traversal we also record the
index of the traversed child. When we traverse a node u on the path Pa − Pm (resp. Pb − Pm), the recorded index comprises
the leftmost (resp. rightmost) margin of a query to the RMQ-structure of u. Thus all accessed children by the RMQ-query
will be completely contained in the query’s x-range [a,b]. Moreover, by Lemma 5.1 the RMQ-structure returns all member
points in Tu .

For the lowest node in Pm , i.e. the lowest common ancestor (LCA) of a and b, we query the RMQ-structure for all
subtrees contained completely within a and b. We don’t execute RMQ-queries on the rest of the nodes of Pm , since they
root subtrees that contain the query’s x-range. Instead, we merely check if the x- and y-coordinates of their stored point
lies within the query. Since the paths Pm , Pa − Pm and Pb − Pm have length O (log log n), the query time of T becomes
O (log log n + t). When the x-coordinates are smoothly distributed, the query to the IS-Tree takes O (log logn) expected time
with high probability [30]. Hence the total query time is O (log log n + t) expected with high probability.

5.1.2. Inserting and deleting points
Before we describe the update algorithm of the data structure, we will first prove some properties of updating the points

in T . Suppose that we decrease the y-value of a point pu at node u to the value y′ . Let v be the ancestor node of u highest
in the tree with y-coordinate bigger than y′ . We remove pu from u. This creates an “empty slot” that has to be filled by
the point of u’s child with smallest y-coordinate. The same procedure has to be applied to the affected child, thus causing
a “bubble down” of the empty slot until a node is reached with no points at its children. Next we replace v ’s point pv with
pu (swap). We find the child of v that contains the leaf corresponding to pv and swap its point with pv . The procedure
recurses on this child until an empty slot is found to place the last swapped out point (“swap down”). In case of increasing
the y-value of a node the update to T is the same, except that pu is now inserted at a node along the path from u to the
leaf corresponding to pu .

For every swap we will have to rebuild the RMQ-structures of the parents of the involved nodes, since the RMQ-
structures are static data structures. This has a linear cost to the size of the RMQ-structure (Section 2).

Lemma 5.2. Let i be the highest level where the point has been affected by an update. Rebuilding the RMQ-structures due to the update
takes O (wc2−1

i) time.

Proof. The executed “bubble down” and “swap down”, along with the search for v , traverse at most two paths in T . We
have to rebuild all the RMQ-structures that lie on the two v-to-leaf paths, as well as that of the parent of the top-most

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 69
node of the two paths. The RMQ-structure of a node at level j is proportional to its degree, namely O (w j/w j−1). Thus, the

total time becomes O (
∑i+1

j=1 w j/w j−1) = O (
∑i

j=0 wc2−1
j) = O (wc2−1

i). �
To insert a point p, we first insert it in the IS-tree. This creates a new leaf in T , which might cause several of its

ancestors to overflow. We split them as described in Section 2. For every split a new node is created that contains no point.
This empty slot is filled by “bubbling down” as described above. Next, we search on the path to the root for the node that
p should reside according to the Min-Heap Property and execute a “swap down”, as described above. Finally, all affected
RMQ-structures are rebuilt.

To delete a point p, we first locate it in the IS-tree, which points out the corresponding leaf in T . By traversing the
leaf-to-root path in T , we find the node in T that stores p. We delete the point from the node and “bubble down” the
empty slot, as described above. Finally, we delete the leaf from T and rebalance T if required. Merging two nodes requires
one point to be “swapped down” through the tree. In case of a share, we additionally “bubble down” the new empty slot.
Finally we rebuild all affected RMQ-structures and update the IS-tree.

Analysis: We assume that the point to be deleted is selected uniformly at random among the points stored in the data
structure. Moreover, we assume that the inserted points have their x-coordinates drawn independently at random from
an (nα,n1/2)-smooth distribution for a constant 1/2 < α < 1, and that the y-coordinates are drawn from an arbitrary
distribution. Searching and updating the IS-tree needs O (log log n) expected with high probability [30,24], under the same
assumption for the x-coordinates.

Lemma 5.3. Starting with an empty weight balanced exponential tree, the amortized time of rebalancing it due to insertions or dele-
tions is O (1).

Proof. A sequence of n updates requires at most O (n/wi) rebalancings at level i (Lemma 2.1). Rebuilding the RMQ-
structures after each rebalancing costs O (wc2−1

i) time (Lemma 5.2). Summing over all levels, the total time be-

comes O (
∑height(T)

i=1
n

wi
· wc2−1

i) = O (n
∑height(T)

i=1 wc2−2
i) = O (n), when c2 < 2. �

Lemma 5.4. The expected amortized time for inserting or deleting a point in a weight balanced exponential tree is O (1).

Proof. The insertion of a point creates a new leaf and thus T may rebalance, which by Lemma 5.3 costs O (1) amortized
time. Note that the shape of T only depends on the sequence of updates and the x-coordinates of the points that have
been inserted. The shape of T is independent of the y-coordinates, but the assignment of points to the nodes of T follows
uniquely from the y-coordinates, assuming all y-coordinates are distinct. Let u be the ancestor at level i of the leaf for
the new point p. For any integer k � 1, the probability of p being inserted at u or an ancestor of u can be bounded by
the probability that a point from a leaf of Tu is stored at the root down to the k-th ancestor of u plus the probability
that the y-coordinate of p is among the k smallest y-coordinates of the leaves of T . The first probability is bounded by∑height(T)

j=i+k
2w j−1

1
2 w j

, whereas the second probability is bounded by k/ 1
2 wi . It follows that p ends up at the i-th ancestor or

higher with probability at most

O

(height(T)∑
j=i+k

2w j−1
1
2 w j

+ k
1
2 wi

)
= O

(height(T)∑
j=i+k

w1−c2
j−1 + k

wi

)
= O

(
w1−c2

i+k−1 + k

wi

)
= O

(
w

(1−c2)ck−1
2

i + k

wi

)

= O

(
1

wi

)
for c2 = 3/2 and k = 3. Thus the expected cost of “swapping down” p becomes

O

(height(T)∑
i=1

1

wi
· wi+1

wi

)
= O

(height(T)∑
i=1

wc2−2
i

)
= O

(height(T)∑
i=1

c
(c2−2)ci

2
1

)
= O (1)

for c2 < 2.
A deletion results in “bubbling down” an empty slot, whose cost depends on the level of the node that contains it. Since

the point to be deleted is selected uniformly at random and there are O (n/wi) points at level i, the probability that the
deleted point is at level i is O (1/wi). Since the cost of an update at level i is O (wi+1/wi), we get that the expected “bubble

down” cost is O (
∑height(T)

i=1
1

wi
· wi+1

wi
) = O (1) for c2 < 2. �

Theorem 5.5. In the RAM model using O (n) space, 3-sided queries can be supported in O (log log n + t) expected time with high
probability, and updates in O (log log n) expected amortized time, given that the x-coordinates of the inserted points are drawn from
an (nα,n1/2)-smooth distribution for constant 1/2 < α < 1, the y-coordinates from an arbitrary distribution, and that the deleted
points are drawn uniformly at random among the stored points.

70 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
5.2. The second solution in I/O model

We now convert our internal memory into a solution for the I/O model. First we substitute the IS-tree with its variant in
the I/O model, the ISB-Tree [22]. Thus we assume that the x-coordinates are drawn from a (n/(log log n)1+ε,n1/B)-smooth
distribution, for constant ε > 0. We implement every consecutive Θ(B2) leaves of the ISB-Tree with the data structure of
Arge et al. [6]. Each such structure constitutes a leaf of a weight balanced exponential tree T that we build on top of the
O (n/B2) leaves.

In T every node now stores B points sorted by y-coordinate, such that the maximum y-coordinate of the points in
a node is smaller than all the y-coordinates of the points of its children (Min-Heap Property). The B points with overall
smallest y-coordinates are stored at the root. At a node u we store the B points from the leaves of Tu with smallest
y-coordinates that are not stored at an ancestor of u. At the leaves we consider the B points with smallest y-coordinate
among the remaining points in the leaf to comprise this list. Moreover, we define the weight parameter of a node at level
i to be wi = B2·(7/6)i

. Thus we get wi+1 = w7/6
i , which yields a height of Θ(log logB n). Let di = wi

wi−1
= w1/7

i denote the
degree parameter for level i. All nodes at level i have degree O (di). Also every node stores an array that indexes the children
according to their x-order.

We furthermore need a structure to identify the children with respect to their y-coordinates. We replace the RMQ-
structure of the internal memory solution with a table. For every possible interval [k, l] over the children of the node, we
store in an entry of the table the points of the children that belong to this interval, sorted by y-coordinate. Since every
node at level i has degree O (di), there are O (d2

i) different intervals and for each interval we store O (B · di) points. Thus,
the total size of this table is O (B · d3

i) points or O (d3
i) disk blocks.

The ISB-Tree consumes O (n/B) blocks [22]. Each of the O (n/B2) leaves of T contains B2 points. Each of the n/wi nodes
at level i contains B points and a table with O (B · d3

i) points. Thus, the total space is O (n + ∑height(T)

i=1 n · B · d3
i /wi) =

O (n + ∑height(T)

i=1 n · B/(B2· 7
6

i

)
4
7) = O (n) points, i.e. O (n/B) disk blocks.

5.2.1. Querying the data structure
The query is similar to the internal memory solution. First we access the ISB-Tree, spending O (logB log n) expected I/Os

with high probability, given that the x-coordinates are smoothly distributed [22]. This points out the leaves of T that contain
a, b. We perform a 3-sided range query at the two leaf structures. Next, we traverse upwards the leaf-to-root path Pa (resp.
Pb) on T , while recording the index k (resp. l) of the traversed child in the table. That costs Θ(log logB n) I/Os. At each
node we report the points of the node that belong to the query range. For all nodes on Pa − Pb and Pb − Pa we query
as follows: We access the table at the appropriate children range, recorded by the index k and l. These ranges are always
[k + 1, last child] and [0, l − 1] for the node that lie on Pa − Pb and Pb − Pa , respectively. The only node where we access
a range [k + 1, l − 1] is the LCA of the leaves that contain a and b. The recorded indices facilitate access to these entries
in O (1) I/Os. We scan the list of points sorted by y-coordinate, until we reach a point with y-coordinate bigger than c. All
scanned points are reported. If the scan has reported all B elements of a child node, the query proceeds recursively to that
child, since more member points may lie in its subtree. Note that for these recursive calls, we do not need to access the
B points of a node v , since we accessed them in v ’s parent table. The table entries they access contain the complete range
of children. If the recursion accesses a leaf, we execute a 3-sided query on it, with respect to a and b [6].

The list of B points in every node can be accessed in O (1) I/Os. The construction of [6] allows us to load the B points
with minimum y-coordinate in a leaf also in O (1) I/Os. Thus, traversing Pa and Pb costs Θ(log logB n) I/Os worst case.
There are O (log logB n) nodes u on Pa − Pm and Pb − Pm . The algorithm recurses on nodes that lie within the x-range.
Since the table entries that we scan are sorted by y-coordinate, we access only points that belong to the answer. Thus,
we can charge the scanning I/Os to the output. The algorithm recurses on all children nodes whose B points have been
reported. The I/Os to access these children can be charged to their points reported by their parents, thus to the output.
That allows us to access the child even if it contains only o(B) member points to be reported. The same property holds
also for the access to the leaves. Thus we can perform a query on a leaf in O (t/B) I/Os. Summing up, the worst case query
complexity of querying T is O (log logB n + t

B) I/Os. Hence in total the query costs O (log logB n + t
B) expected I/Os with high

probability.

5.2.2. Inserting and deleting points
Insertions and deletions of points are in accordance with the internal solution. For the case of insertions, first we update

the ISB-tree. This creates a new leaf in the ISB-tree that we also insert at the appropriate leaf of T in O (1) I/Os [6]. This
might cause some ancestors of the leaves to overflow. We split these nodes, as in the internal memory solution. For every
split B empty slots “bubble down”. Next, we update T with the new point. For the inserted point p we locate the highest
ancestor node that contains a point with y-coordinate larger than p’s. We insert p in the list of the node. This causes an
excess point, namely the one with maximum y-coordinate among the B points stored in the node, to “swap down” towards
the leaves. Next, we scan all affected tables to replace a single point with a new one.

In case of deletions, we search the ISB-tree for the deleted point, which points out the appropriate leaf of T . By traversing
the leaf-to-root path and loading the list of B point, we find the point to be deleted. We remove the point from the list,
which creates an empty slot that “bubbles down” T towards the leaves. Next we rebalance T as in the internal solution.

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 71
For every merge we need to “swap down” the B largest excess points. For a share, we need to “bubble down” B empty
slots. Next, we rebuild all affected tables and update the ISB-tree.

Analysis: Searching and updating the ISB-tree requires O (logB log n) expected I/Os with high probability, given that the
x-coordinates are drawn from an (n/(log log n)1+ε,n1/B)-smooth distribution, for constant ε > 0 [22].

Lemma 5.6. For every path corresponding to a “swap down” or a “bubble down” starting at level i, the cost of rebuilding the tables of
the paths is O (d3

i+1) I/Os.

Proof. Analogously to Lemma 5.2, a “swap down” or a “bubble down” traverse at most two paths in T . A table at level j
costs O (d3

j) I/Os to be rebuilt, thus all tables on the paths need O (
∑i+1

j=1 d3
j) = O (d3

i+1) I/Os. �
Lemma 5.7. Starting with an empty external weight balanced exponential tree, the amortized I/Os for rebalancing it due to insertions
or deletions is O (1).

Proof. We follow the proof of Lemma 5.3. Rebalancing a node at level i requires O (d3
i+1 + B · d3

i) I/Os (Lemma 5.6), since
we get B “swap downs” and “bubble downs” emanating from the node. The total I/O cost for a sequence of n updates is
O (

∑height(T)

i=1
n

wi
· (d3

i+1 + B · d3
i)) = O (n · ∑height(T)

i=1 w−1/2
i + B · w−4/7

i) = O (n). �
Lemma 5.8. The expected amortized I/Os for inserting or deleting a point in an external weight balanced exponential tree is O (1).

Proof. By similar arguments as in Lemma 5.4 and considering that a node contains B points, we bound the probability
that point p ends up at the i-th ancestor or higher by O (B/wi). An update at level i costs O (d3

i+1) = O (w1/2
i) I/Os. Thus

“swapping down” p costs O (
∑height(T)

i=1 w1/2
i · B

wi
) = O (1) expected I/Os. The same bound holds for deleting p, following

similar arguments as in Lemma 5.4. �
Theorem 5.9. In the I/O model using O (n/B) disk blocks, 3-sided queries can be supported in O (log logB n + t/B) expected I/Os with
high probability, and updates in O (logB log n) expected amortized I/Os, given that the x-coordinates of the inserted points are drawn
from an (n/(log log n)1+ε,n1/B)-smooth distribution for a constant ε > 0, the y-coordinates from an arbitrary distribution, and that
the deleted points are drawn uniformly at random among the stored points.

6. The third solution for the x-smooth and the y-restricted distributions

In this section we modify the solution of Section 4 such that it improves over both the query and the update complexity
of the previous solutions at the expense of further restricting the distribution of the y-coordinates. The query time of the
solution of Section 4 is too high, namely O (log n) and that is due to locating the leaves a and b in the upper level PST. To
further improve it to doubly-logarithmic query time, we assume that the x-coordinates are drawn from a (nα,nβ)-smooth,
for constants 0 < α, β < 1, and use an IS-tree to index them. By doing that, we pay with high probability O (log log n) time
to locate a and b.

We can also retain doubly-logarithmic update time, by getting rid of the upper level PST all in all and substituting it
with a static MPST that is dynamized by global rebuilding [28]. However, this costs O (n) time and thus we must ensure
that in a broader epoch of n updates, wherein the rebuilding can completed in O (1) amortized or even worst case time, the
number of violations does not allow the extra PST to affect the overall complexity. Theorem 3.4 ensures its size is O (log n)

during an epoch, if the y-coordinates are drawn from a restricted class of distributions.
When a new epoch starts we take all points from the extra PST and insert them in the respective buckets in time

O (log log n) with high probability. During the epoch we gather all the violating points that should access the MPST and the
points that belong to it and build in parallel a new MPST that also contains them. At the end of the O (n) epoch, we have
built the updated version of the MPST, which we use for the next epoch that just started. By this way, we keep the MPST of
the upper level updated and the size of the extra PST logarithmic. By incrementally constructing the new MPST we spend
O (1) time worst case for each update of the epoch. As a result, the update operation is carried out in O (log log n) time
expected with high probability.

For the 3-sided query [a,b] × (−∞, c], we first access the leaves of the lower level that contain a and b, through the
IS-tree. This costs O (log log n) time with high probability. Then the query proceeds bottom up in the standard way. First it
traverses the buckets that contain a and b and then it accesses the MPST from the leaves of the buckets’ representatives.
Once the query reaches the node of the MPST with y-coordinate bigger than c, it continues top down to the respective
buckets, which contain part of the answer, by following a single pointer from the nodes of the upper level MPST. Then we
traverse top down these buckets and complete the set of points to report. Finally, we check the extra PST for reported points.
The traversal of the MPST is charged on the size of the answer O (t) and the traversal of the lower level costs O (log log n)

expected with high probability. Due to Theorem 3.4, the size of the extra PST is with high probability O (logn), thus the
query spends O (log log n) expected with high probability for it. Hence, in total the query time is O (log log n + t).

72 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
Fig. 3. The internal memory solution for x-smooth and y-restricted distributions.

Theorem 6.1. There exists a dynamic main memory data structure that supports 3-sided queries in O (log log n + t) expected time with
high probability, can be updated in O (log log n) expected time with high probability and consumes linear space, under the assumption
that the x-coordinates are drawn from a (nα,nβ)-smooth distribution, for arbitrary constants 0 < α, β < 1, and the y-coordinates are
drawn from a restricted class of distributions.

In order to extend the above structure to work in external memory we will follow a similar scheme with the above
structure (Fig. 3). We use an extra EPST and index the leaves of the main structure with and ISB-tree. This imposes that the
x-coordinates are drawn from a (n/(log log n)1+ε,n1/B)-smooth distribution, for constant ε > 0, otherwise the search bound
would not be expected to be doubly-logarithmic. Moreover, the main structure consists of three levels, instead of two (see
Fig. 4). That is, we divide the n elements into n′ = n

log n buckets of size log n, which we implement as EPSTs (instead of PSTs).
This will constitute the lower level of the whole structure. The n′ representatives of the EPSTs are again divided into buckets
of size O (B), which constitute the middle level. The n′′ = n′

B representatives are stored in the leaves of an external MPST
(EMPST), which constitutes the upper level of the whole structure. In total, the space of the aforementioned structures is
O (n′ + n′′ + n′′ log(k) n′′) = O (n

log n + n
B log n + n

B log n B) = O (n
log n) = O (n

B), where k is such that log(k) n′′ = O (B) holds.
The update algorithm is similar to the variant of internal memory. The query algorithm first proceeds bottom up. We lo-

cate the appropriate structures of the lower level in O (logB logn) I/Os with high probability, due to the assumption on
the x-coordinates. The details for this procedure in the I/O model can be found in [22]. Note that if we assume that the
x-coordinates are drawn from the grid distribution with parameters [1, M], then this access step can be realized in O (1)

I/Os. That is done by using an array A of size M as the access data structure. The position A[i] keeps a pointer to the leaf
with x-coordinate not bigger than i [34]. Then, by executing the query algorithm, we locate the at most two structures of
the middle level that contain the representative leaves of the EPSTs we have accessed. Similarly we find the representatives
of the middle level structures in the EMPST. Once we reached the node whose minimum y-coordinate is bigger than c,
the algorithm continues top down. It traverses the EMPST and accesses the structures of the middle and the lower level
that contain parts of the answer. The query time spent on the EMPST is O (t/B) I/Os. All accessed middle level structures
cost O (2 + t/B) I/Os. The access on the lower level costs O (logB log n + t/B) I/Os. Hence, the total query time becomes
O (logB log n + t/B) I/Os expected with high probability. We get that:

Theorem 6.2. There exists a dynamic external memory data structure that supports 3-sided queries in O (logB logn + t/B) expected
I/Os with high probability, can be updated in O (logB log n) expected I/Os with high probability and consumes O (n/B) blocks of space,
under the assumption that the x-coordinates are drawn from an (n/(log log n)1+ε,n1/B)-smooth distribution, for constant ε > 0, and
the y-coordinates are drawn from the restricted class of distributions.

7. Conclusions

We considered the problem of answering 3-sided range queries of the form [a,b] × (−∞, c] under sequences of inser-
tions and deletions of points, trying to attain linear space and doubly-logarithmic expected with high probability operation
complexities, under assumptions on the input distributions. We proposed three solutions, which we modified appropriately
in order to work for the RAM and the I/O model. All of them consist of combinations of known data structures that support
the 3-sided query operation, along with two novel structures introduced here.

G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74 73
Fig. 4. The external memory solution for x-smooth and y-restricted distributions.

The proposed solutions are practically implementable. Thus, we leave as a future work an experimental performance
evaluation, in order to certify in practice the improved query performance and scalability of the proposed methods. Also,
we leave as future work the extension of MPSTs to the Cache-Oblivious model.

References

[1] A. Aggarwal, S. Jeffrey Vitter, The input/output complexity of sorting and related problems, Commun. ACM 31 (9) (1988) 1116–1127.
[2] S. Alstrup, G. Stølting Brodal, T. Rauhe, New data structures for orthogonal range searching, in: Proc. of the 41st Annual IEEE Symposium on Foundations

of Computer Science, FOCS’00, Computer Society, 2000, pp. 198–207.
[3] A. Andersson, Faster deterministic sorting and searching in linear space, in: Proc. IEEE FOCS, 1996, pp. 135–141.
[4] A. Andersson, C. Mattsson, Dynamic interpolation search in o(log log n) time, in: Proc. ICALP, in: Lect. Notes Comput. Sci., vol. 700, Springer, 1993,

pp. 15–27.
[5] A. Andersson, M. Thorup, Dynamic ordered sets with exponential search trees, J. ACM 54 (3) (2007) 13.
[6] L. Arge, V. Samoladas, J.S. Vitter, On two-dimensional indexability and optimal range search indexing, in: Proc. ACM SIGMOD–SIGACT–SIGART PODS,

1999, pp. 346–357.
[7] L. Arge, J.S. Vitter, Optimal dynamic interval management in external memory (extended abstract), in: Proc. IEEE FOCS, 1996, pp. 560–569.
[8] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in: Proceedings of the Twenty-First ACM SIGMOD–

SIGACT–SIGART Symposium on Principles of Database Systems, PODS ’02, ACM, New York, NY, USA, 2002, pp. 1–16.
[9] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer, An asymptotically optimal multiversion B-tree, VLDB J. 5 (4) (1996) 264–275.

[10] G. Blackenagel, R. Gueting, XP-trees – external priority search trees, Technical report Nr. 92, Fern University Hagen, Informatik-Bericht, 1990.
[11] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, J.S. Vitter, Efficient indexing methods for probabilistic threshold queries over uncertain data, in: Proceedings of

the Thirtieth International Conference on Very Large Data Dases, vol. 30, VLDB ’04, VLDB Endowment, 2004, pp. 876–887.
[12] M. De Berg, M. Van Kreveld, M. Overmars, O.C. Schwarzkopf, Computational Geometry, Springer, 2000.
[13] J. Fischer, V. Heun, A new succinct representation of RMQ-information and improvements in the enhanced suffix array, in: B. Chen, M. Paterson,

G. Zhang (Eds.), Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, in: Lect. Notes Comput. Sci., vol. 4614, Springer, Berlin,
Heidelberg, 2007, pp. 459–470.

[14] O. Fries, K. Mehlhorn, S. Näher, A. Tsakalidis, A log log n data structure for three-sided range queries, Inf. Process. Lett. 25 (4) (1987) 269–273.
[15] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. Syst. Sci. 30 (2) (1985) 209–221.
[16] V. Gaede, O. Günther, Multidimensional access methods, ACM Comput. Surv. 30 (2) (1998) 170–231.
[17] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, New York, NY,

USA, 1997.
[18] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.
[19] C. Icking, R. Klein, T. Ottmann, Priority search trees in secondary memory (extended abstract), in: H. Göttler, H.-J. Schneider (Eds.), Graph-Theoretic

Concepts in Computer Science, in: Lect. Notes Comput. Sci., vol. 314, Springer, Berlin, Heidelberg, 1988, pp. 84–93.
[20] P.C. Kanellakis, S. Ramaswamy, D.E. Vengroff, J.S. Vitter, Indexing for data models with constraints and classes, in: Proc. ACM SIGACT–SIGMOD–SIGART

PODS, 1993, pp. 233–243.
[21] P. Kanellakis, S. Ramaswamy, D.E. Vengroff, J.S. Vitter, Indexing for data models with constraints and classes, J. Comput. Syst. Sci. 52 (3) (1996) 589–612.
[22] A. Kaporis, C. Makris, G. Mavritsakis, S. Sioutas, A. Tsakalidis, K. Tsichlas, C. Zaroliagis, ISB-tree: a new indexing scheme with efficient expected

behaviour, in: X. Deng, D.-Z. Du (Eds.), Algorithms and Computation, in: Lect. Notes Comput. Sci., vol. 3827, Springer, Berlin, Heidelberg, 2005,
pp. 318–327.

http://refhub.elsevier.com/S0304-3975(14)00031-0/bib41563838s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4142523030s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4142523030s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib413936s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib414D3933s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib414D3933s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib41543037s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4153563939s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4153563939s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib41563936s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4242442B3032s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4242442B3032s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib42474F53573936s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib42473930s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib435850532B3034s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib435850532B3034s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib644B4F533938s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib46483037s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib46483037s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib46483037s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib464D4E543837s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib47543835s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib47473938s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib473937s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib473937s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib48543834s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib494B4F3838s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib494B4F3838s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B5256563933s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B5256563933s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B5256563936s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D4D5354545A3035s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D4D5354545A3035s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D4D5354545A3035s1

74 G. Stølting Brodal et al. / Theoretical Computer Science 526 (2014) 58–74
[23] A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas, C. Zaroliagis, Improved bounds for finger search on a RAM, in: Proc. ESA, in: Lect. Notes
Comput. Sci., vol. 2832, Springer, 2003, pp. 325–336.

[24] A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas, C. Zaroliagis, Dynamic interpolation search revisited, in: Proc. ICALP, in: Lect. Notes Comput.
Sci., vol. 4051, Springer, 2006, pp. 382–394.

[25] N. Kitsios, C. Makris, S. Sioutas, A. Tsakalidis, J. Tsaknakis, B. Vassiliadis, 2-d spatial indexing scheme in optimal time, in: J. Stuller, J. Pokorny, B. Thal-
heim, Y. Masunaga (Eds.), Current Issues in Databases and Information Systems, in: Lect. Notes Comput. Sci., vol. 1884, Springer, Berlin Heidelberg,
2000, pp. 107–116.

[26] D. Knuth, Deletions that preserve randomness, IEEE Trans. Softw. Eng. SE-3 (5) (1977) 351–359.
[27] K.G. Larsen, R. Pagh, I/O-efficient data structures for colored range and prefix reporting, in: Proceedings of the Twenty-Third Annual ACM–SIAM

Symposium on Discrete Algorithms, SODA ’12, SIAM, 2012, pp. 583–592.
[28] C. Levcopoulos, M. Overmars, A balanced search tree with O (1) worst-case update time, Acta Inform. 26 (3) (1988) 269–277.
[29] E.M. McCreight, Priority search trees, SIAM J. Comput. 14 (2) (1985) 257–276.
[30] K. Mehlhorn, A. Tsakalidis, Dynamic interpolation search, J. ACM 40 (3) (1993) 621–634.
[31] K. Mouratidis, S. Bakiras, D. Papadias, Continuous monitoring of top-k queries over sliding windows, in: Proceedings of the 2006 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’06, ACM, New York, NY, USA, 2006, pp. 635–646.
[32] M.H. Overmars, Efficient data structures for range searching on a grid, J. Algorithms 9 (2) (1988) 254–275.
[33] S. Ramaswamy, S. Subramanian, Path caching (extended abstract): a technique for optimal external searching, in: Proceedings of the Thirteenth ACM

SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems, PODS ’94, ACM, New York, NY, USA, 1994, pp. 25–35.
[34] S. Sioutas, C. Makris, N. Kitsios, G. Lagogiannis, J. Tsaknakis, K. Tsichlas, B. Vassiliadis, Geometric retrieval for grid points in the RAM model, J. Univers.

Comput. Sci. 10 (9) (2004) 1325–1353.
[35] S. Subramanian, S. Ramaswamy, The P-range tree: a new data structure for range searching in secondary memory, in: Proceedings of the Sixth Annual

ACM–SIAM Symposium on Discrete Algorithms, SODA ’95, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995, pp. 378–387.
[36] M. Thorup, Faster deterministic sorting and priority queues in linear space, in: Proc. ACM–SIAM SODA, 1998, pp. 550–555.
[37] J.S. Vitter, External memory algorithms and data structures: dealing with massive data, ACM Comput. Surv. 33 (2) (2001) 209–271.
[38] D.E. Willard, Examining computational geometry, van Emde Boas trees, and hashing from the perspective of the fusion tree, SIAM J. Comput. 29 (3)

(2000) 1030–1049.

http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D5354545A3033s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D5354545A3033s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D5354545A3036s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D5354545A3036s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D535454563030s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D535454563030s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B4D535454563030s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4B3737s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4C503132s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4C503132s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4C4F3838s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4D433835s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4D543933s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4D42503036s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4D42503036s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib4F3838s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib52533934s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib52533934s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib534D4B4C5454563034s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib534D4B4C5454563034s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib53523935s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib53523935s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib543938s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib563031s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib573030s1
http://refhub.elsevier.com/S0304-3975(14)00031-0/bib573030s1

	Dynamic 3-sided planar range queries with expected doubly-logarithmic time
	1 Introduction
	2 Data structures and probability distributions
	2.1 Probability distributions
	2.2 Data structures
	2.2.1 Priority search trees
	2.2.2 Interpolation search trees
	2.2.3 Weight balanced exponential trees
	2.2.4 Range minimum queries
	2.2.5 Dynamic external memory 3-sided range queries for O(B2) points
	2.2.6 Modiﬁed priority search trees

	3 Expected ﬁrst order statistic of unknown distributions
	4 The ﬁrst solution for x, y-random distributions
	5 The second solution for the x-smooth distributions
	5.1 The second solution in RAM model
	5.1.1 Querying the data structure
	5.1.2 Inserting and deleting points

	5.2 The second solution in I/O model
	5.2.1 Querying the data structure
	5.2.2 Inserting and deleting points

	6 The third solution for the x-smooth and the y-restricted distributions
	7 Conclusions
	References

