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Abstract—Top-k dominating queries use an intuitive scoring function which ranks multidimensional points with respect to their

dominance power, i.e., the number of points that a point dominates. The k points with the best (e.g., highest) scores are returned to the

user. Both top-k and skyline queries have been studied in a streaming environment, where changes to the data set are very frequent.

In such an environment, continuous query processing techniques are required toward efficient monitoring of query results, since

periodic query re-execution is computationally intensive, and therefore, prohibitive. This work contains the first study of continuous top-

k dominating queries over data streams. In comparison to continuous top-k and skyline queries, continuous top-k dominating queries

pose additional challenges. Three exact algorithms (BFA, EVA, ADA) are studied, and among them ADA, which is enhanced with

additional optimization techniques, shows the best overall performance. In some cases, we are willing to trade accuracy for speed.

Toward this direction, two approximate algorithms are proposed (AHBA and AMSA). AHBA offers probabilistic guarantees regarding

the accuracy of the result based on the Hoeffding bound, whereas AMSA performs a more aggressive computation resulting in more

efficient processing. Evaluation results, based on real-life and synthetic data sets, show the efficiency and scalability of our techniques.

Index Terms—Top-k dominating queries, data streams, continuous queries, algorithms, analysis, approximation.
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1 INTRODUCTION

DURING the last decade, we are witnessing a significant
interest of the data management community in

preference-based query processing [12], [14] where in addition
to hard constraints (e.g., price < 100C¼ ) the results must
satisfy some additional specific properties (known as
preferences) related to the attribute values associated with
each tuple. Tuples are typically represented as points in IRd

space, where d is the number of attributes. For the rest of the
discussion, we use the term point to denote a tuple and the
term dimension to denote an attribute.

Two of the most widely used preference-based queries
are: 1) the top-k query and 2) the skyline query. In a top-k
query, a ranking function f : IRd ! IR is required, which
assigns a value to each point p. The result of a top-k query
comprises the k points with the highest values with respect
to fðÞ. A nice feature of top-k queries is that the number of
answers is controlled by the parameter k, although in some
cases the cardinality of the result set may exceed k due to
ties (i.e., two or more points may have the same value.) In
such a case, either all ties will be part of the answer or a tie-
breaking criterion is applied to select exactly k answers. The
most important limitation of top-k queries is that a ranking
function is required. This function is usually user defined,
whereas different functions generally result in different
results. Moreover, in several cases the selection of an
appropriate ranking function is not intuitive. For example,
in an e-commerce application, there is no straightforward
way to combine the attributes CPU speed and battery
autonomy to select the most interesting laptop computers.

Skyline queries, on the other hand, do not require a
ranking function and they have the scaling invariance
property, meaning that if scaling is applied to dimension
values the result remains unchanged. The result of a skyline
query is composed of the points that are not dominated by
any other point. The dominance relationship depends on
the semantics of each attribute; in some cases, small values
are preferable (e.g., price) whereas in other cases large
values are desirable (e.g., quality). Without loss of general-
ity, we focus on minimizing dimension values (the smaller
the better). Therefore, a point p dominates another point q
(p � q), if and only if p is no worse than q in all dimensions
and strictly better than q in at least one dimension.

Recently, an interesting alternative has been proposed
which combines the concept of dominance with the notion
of ranking functions. This new query is termed top-k
dominating query [25], [36], [37] and in a sense it is a
combination of top-k and skyline queries: it uses a ranking
function to rank points (as in top-k queries) and it uses the
dominance relationship (as in skyline queries). The score
associated with a point pi, denoted as scoreðpiÞ, equals the
number of points that pi dominates. The motivation behind
this idea is to define a preference query that maintains the
advantages and eliminates the limitations of both top-k and
skyline queries. Therefore, top-k dominating queries have
the following desirable properties:

1. the number of results is controllable,
2. the result is scaling invariant,
3. no user-defined ranking function is required, and
4. each point is assigned an intuitive score which

determines its rank.

To illustrate the differences among the aforementioned
query types, we give a simple example. Let P be a set of
2-dimensional points corresponding to records with two
attributes as shown in Fig. 1. The coordinates of each point
are given in parentheses. According to the previous
discussion, the skyline set comprises all points that are
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not dominated. These points are p3, p8, p7, and p5. Let
fðpÞ ¼ p:xþ p:y be a monotonically increasing ranking
function. An example top-k query could ask for the k ¼ 2
points with the best (lowest) rank. In this case, the
preferred points are p7 and p8. Finally, a top-3 dominating
query would return p7, p8, and p6,1 since these points
provide the highest domination score (the number of
points they dominate is the largest).

Assume that the network operation center of a Uni-
versity campus is interested in continuously detecting
computers that may establish possible attacks. Unfortu-
nately, there are a lot of criteria that should be balanced
before a wise choice is made. Assume further that three
characteristics of each computer are used: 1) the consumed
bandwidth, 2) the number of connections, and 3) the
number of destinations of its connections. A skyline query
will return computers that tend to maximize one of the
above attributes. Additionally, the size of the result is not
bounded. Moreover, the design of the appropriate ranking
function for a top-k query can be turned out very difficult,
even for a network analyst. On the other hand, a
continuous top-k dominating query on the 3-dimensional
space is a more intuitive way to detect computers with
suspicious behavior.

Efficient algorithms have been proposed to answer top-k
queries, skyline queries, and, more recently, top-k dominat-
ing queries. The fundamental property of these algorithms
is that they operate in an ad hoc fashion, meaning that they
initiate a query processing task only if a query is issued.
This is sufficient for applications operating on static or
almost static data sets, where updates are rare. However,
many modern applications adopt the streaming model of
computation, and therefore, continuous query processing
algorithms are required to refresh the query result.
Examples of such emerging applications are computer
network monitoring, scientific data analysis, data manage-
ment in sensor networks, document filtering in information
retrieval, web-based alerts, publish/subscribe services, just
to name a few. The common property of these applications
is that updates are very frequent, rendering query reexecu-
tion a nonviable solution.

This paper contains the first study of continuous top-k
dominating queries over multidimensional data streams.
We adopt the sliding window approach [1], where only the n

most recent points, called active points, are taken into
account. We associate to each point pi two time instances:
pi:arr is the arrival time of pi, whereas pi:exp is the
corresponding expiration time. When a point expires, it is
removed from the set of active points.

Continuous query evaluation poses significant chal-
lenges in comparison to ad hoc processing. In continuous
skyline queries, if pi is dominated by pj and pj expires later
than pi (i.e., pj:exp > pi:exp), then it is safe to prune pi since
it will never be part of the skyline because of pj. Moreover,
in skyline queries, the transitivity property holds, i.e., if pj
dominates pi and pi dominates ph then pj dominates ph.
Thus, if pi is discarded, one can still discard ph due to the
existence of pj, as long as pj expires later than both pi and
ph. In a continuous top-k query, if there are k points with a
better rank than pi, and pi expires earlier, it is safe to discard
pi. Moreover, the rank of a point does not vary as time
progresses and it is not affected by other points, since the
function fðÞ is based on the attribute values of each point.
Therefore, one can discard points if the above condition
holds without affecting the query result.

On the other hand, continuous top-k dominating queries
are much more complicated regarding pruning and proces-
sing. First, it is not possible to eliminate a point, even if it
will never be part of the top-k result. This is because the
existence of a point affects the domination score of others
and thus, the arrival/expiration of a point may change the
score of a significant number of other points. Second, the
computation of the domination score of a point is a costly
operation and it must be avoided whenever possible.
However, incoming points must be assigned a score in
order to decide if they are part of the answer. Existing
algorithms are not equipped with the necessary tools to
handle these challenges. On the contrary, our algorithms
are able to continuously monitor the result of top-k
dominating queries efficiently. The key contributions of
this work have as follows:

. We study three exact algorithms for continuous top-
k dominating query processing, one of which is the
clear winner due to its excellent performance. The
proposed algorithm is based on a carefully de-
signed event scheduling technique, toward avoid-
ing costly computations.

. A performance analysis is offered studying the
expected number of the most expensive computa-
tions incurred.

. Two approximate algorithms are proposed. These
algorithms introduce a very useful efficiency/accu-
racy tradeoff, and on average they achieve more
than 95 percent accuracy, being between one and
three orders of magnitude faster than the best exact
algorithm.

. A thorough experimental evaluation is carried out
based on real-life and synthetic data sets, providing
evidence regarding the applicability, scalability, and
efficiency of the proposed algorithms.

. A discussion is carried out regarding the support of
alternative sliding window models.

The rest of the paper is organized as follows. Section 2
discusses related work in the area. Section 3 offers back-
ground information and defines the problem. Section 4
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Fig. 1. Points and scores.

1. Note that p4 and p9 have the same score as p6. Optionally, the system
could return these points also. If we allow this, then we should expect that
the number of answers may be larger than k. Alternatively, a tie-breaking
criterion may be used to discard points.



studies the properties of continuous top-k dominating
queries and proposes a sliding window algorithm to solve
the problem. Section 5 introduces some optimizations for
performance improvement. Section 6 performs a theoretical
analysis of the proposed algorithm. Approximate algo-
rithms are studied in Section 7, offering faster execution
times by slightly penalizing accuracy. In Section 8, we
discuss the support of other sliding window models.
Performance evaluation results, based on real life as well
as synthetic data sets, are given in Section 9, whereas
Section 10 concludes the work.

2 RELATED WORK

Preferences have been used in disciplines such as Game
Theory (e.g., Pareto optimality [24]), Computational Geo-
metry (e.g., maximal vectors [16]), Multicriteria Optimiza-
tion [28], just to name a few. Recently, they have been
applied to databases as well [12], [14]. Preference-based
queries received considerable attention, due to their
usefulness in selecting the most “desirable” objects,
especially when the selection criteria are contradictory. In
databases, preference-based selections usually take the form
of either top-k [8] or skyline queries [4].

Fagin’s pioneering work [7], [8] inspired many of the
subsequent research efforts [20] to design algorithms that
operate under the assumption that the values in each
dimension can be provided in sorted order. An extensive
survey of top-k query processing techniques in relational
databases can be found in [13]. Recently, the reverse top-k
query [33] has been proposed and studied in relational
databases. The literature is also rich in algorithms to
support skyline query processing [4], [6], [25]. In [25], an
efficient branch-and-bound skyline query processing
scheme has been proposed, which utilizes the R-tree index
[10] and shows significant performance improvements over
previously proposed methods.

The main drawback of skylines is that the number of
points comprising the result is not bounded. This means
that a skyline query may return an excessive number of
points, generating a cumbersome result. Toward alleviating
this problem, several techniques have been designed. For
example, k-dominant skylines, proposed in [5], relax the
definition of dominance, to allow some points to be
dominated, thus, reducing the cardinality of the skyline
set. In [29], a variation of skyline queries, the representative
skyline, has been studied. Another technique has been
proposed in [18] for selecting skyline points according to
their domination capabilities. More specifically, the algo-
rithm selects a subset of the skyline points aiming at
maximizing the total number of dominated tuples. How-
ever, this method is NP-hard for high-dimensional spaces,
and therefore, approximation algorithms are required
toward fast computation.

Ranking of objects according to their domination power
has been addressed in [17], [26], [36], [37]. In [36], [37], the
authors propose efficient algorithms to determine the top-k
dominating points by using an aggregate R-tree index. In
[26], a method is studied to rank and cluster multidimen-
sional points according to their domination power. In [17],
the authors study efficient algorithms for top-k dominating

query processing in uncertain databases. A pruning
approach has been proposed to reduce the space of a
probabilistic top-k dominating query and in addition,
approximate queries are examined. Incremental evaluation
of top-k dominating queries is examined in [15]. However,
the proposed method does not take into account stream
characteristics such as the expiration time of points, and
therefore, is inappropriate to handle high speed streams.
The concept of dominance score has been also used in [27]
to rank web services based on multiple criteria.

The common characteristic of all the aforementioned
approaches is that they offer solutions to process ad hoc
queries, whereas they do not provide mechanisms for
continuous query processing over multidimensional data
streams. Therefore, for each insertion/deletion of a point, the
ranks of active points are computed from scratch. Toward
continuous query evaluation, streaming algorithms for
skyline [30] and top-k [23] query processing have been
proposed. In these works, data form a streaming sequence of
points, where each point is characterized by its arrival and
expiration time instances, and a sliding window is used to
define the set of active points (i.e., the most recently arrived
points). More specifically, in [30], an incremental algorithm
for continuous skyline queries has been proposed, based on
the expiration time of points and the R-tree index. Addition-
ally, continuous evaluation of top-k queries has been
proposed in [23]. The proposed algorithm transforms a
continuous top-k to a k-skyband query [25], based on the
observation that the records that appear in some result of
top-k are the ones that belong to the k-skyband in the score-
time space. These algorithms are inspired by previously
proposed techniques for continuous multidimensional
query processing, such as the ones studied in [22].

The efficiency of the majority of the aforementioned
techniques relies heavily on the use of pruning, i.e., the
elimination of points toward faster processing. Unfortu-
nately, the pruning techniques applied in those algorithms
cannot be applied in the case of continuous top-k
dominating queries. Due to the challenging nature of the
problem, fast pruning-free solutions are required to
guarantee accuracy, bookkeeping structures should be
efficient to support high update rates and the proposed
algorithms should be easily adapted to different sliding
window schemes, to cover a broad range of applications.
In the sequel, we develop our proposal toward efficient
processing of continuous top-k dominating queries over
multidimensional data streams, by studying both exact
and approximate solutions.

3 BACKGROUND

Let P ¼ fp1; p2; . . . ; png be a set of d-dimensional points. We
use the symbol pi;j to denote the value of the jth dimension
of the ith point. A point px dominates py (px � py), if
8j 2 f1; . . . dg, px;j � py;j and 9m 2 f1; . . . dg such that
px;m < py;m. The number of points dominated by pi is
denoted as scoreðpiÞ : scoreðpiÞ ¼ jfpj 2 P; pi � pjgj. The
result of a top-k dominating query is denoted by TOPK
and contains the k ¼ jTOPKj points with the best (highest)
scores. The arrival and expiration time of a point pi is
denoted as pi:arr and pi:exp, respectively. For convenience,
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the jth best score is written as scorej, whereas by expj we

denote the jth smallest expiration time for points contained

in TOPK. The current time instance is monitored by the

variable now. Table 1 summarizes the basic symbols used.

In this work, we focus on the following problem:

Problem Definition. Given a dynamic data stream containing

n active points p1; . . . ; pn, where pi 2 IRd and n is the sliding

window size, monitor the k points with the highest

domination score continuously.

There exist two basic sliding window types. In a count-

based sliding window, the number of active points remains

constant, and if r new points arrive the r oldest expire. In a

time-based sliding window, the number of active points may

not be constant. The expiration time of a point does not

depend on the arrival or expiration of other points. The set

of active points is composed of all points arrived the last T

time instances. For presentation simplicity, we adopt the

count-based sliding window, where the arrival of a new

point triggers the expiration of the oldest one. In this

scheme, time progresses in every update, whereas the

arrival and expiration time instances of a point pi satisfy the

formula: pi:exp ¼ pi:arrþ n. Later, we discuss how our

algorithms can handle other sliding window schemes.
A grid-based indexing scheme is used for bookkeeping

purposes and for maintaining simplicity in the presentation

of the algorithms. We note, however, that our algorithms do

not strictly depend on the indexing structure, and therefore,

other access methods could be used by performing the

necessary modifications. It has been observed that this simple

index structure has excellent performance in highly dynamic

environments [23], [32], [35]. Each grid cell contains the IDs of

the points contained in this cell. Cell ci dominates completely

all cells residing in the upper right region with respect to the

upper right corner of ci. For example, cell c6 in Fig. 2

dominates cells c11, c12, c15, and c16. These cells are called fully

dominated cells or simply dominated cells. On the other hand,

cells c6, c7, c8, c10, and c14 may contain points that are

dominated by a point in c6. These cells are called partially

dominated cells. In Fig. 2, the cells that are fully dominated by c6

are dark shaded, whereas these that are partially dominated
by c6 are light shaded.

In addition to fast bookkeeping, the grid is used to
compute the domination score scoreðpiÞ of a point pi. First,
we determine the cell cj containing pi. Note that this
operation is very fast and it only takes constant time. To
compute scoreðpiÞ, it is necessary to count the number of
points dominated by pi. These points are contained in the
cells that are fully or partially dominated by the cell hosting
pi. For instance, in Fig. 2, p4 dominates p6 and p11 which
reside in partially dominated cells. Moreover, there are
three points (p8, p9, and p12) in the fully dominated cells.
Therefore, the total score of p4 is scoreðp4Þ ¼ 2þ 3 ¼ 5. This
process is called exact score computation and it is the most
time-consuming task.

The naı̈ve approach to evaluate a top-k dominating
query continuously is to perform all domination checks
among points. More specifically, for a new point px, its score
scoreðpxÞ is computed by counting the number of points
dominated by px. Moreover, the score of a point py, y 6¼ x
should be increased if py dominates px. When a point
expires, the scores of other points need to be updated. We
call this simple algorithm Brute-Force Algorithm (BFA). It
is expected that BFA will invoke a large number (OðnÞ) of
domination checks between points.

4 EVENT-BASED PROCESSING

In this section, we propose an event-based algorithm (EVA)
which uses event scheduling and rescheduling toward
avoiding the examination of points for inclusion in TOPK.
Let pi be a point that is not part of TOPK and therefore,
scoreðpiÞ < scorek (recall that scorek is the kth best score). In
each update, the value of scorek can be reduced at most by 1
and the value of scoreðpiÞ can be increased at most by 1.
Therefore, pi cannot be in TOPK in less than dðscorek �
scoreðpiÞÞ=2e time instances, unless a top-k dominating
point expires during this period. Thus, we can determine a
safe interval of time as suggested in the following lemma:

Lemma 1. Given the minimum expiration time exp1 of the top-k
dominating points and the current time instance now, a point
pi cannot be part of TOPK in less than SI1ðpiÞ time
instances, where

SI1ðpiÞ ¼ minfdðscorek � scoreðpiÞ=2e; exp1 � nowg: ð1Þ
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Proof. There are two possible cases in which pi can be part
of TOPK in each update: 1) if a point in TOPK expires
or 2) if the score of pi becomes larger than or equal to
scorek. The first case is covered by the second part of (1),
since exp1 is the minimum time in which a top-k point
expires. For the second case, we assume the worst case
scenario, in which scorek decreases by 1 and scoreðpiÞ
increases by 1 in each update (the kth best point
dominates the expired point and does not dominate
the new point whereas for pi the opposite is true).
Therefore, the difference between their scores is reduced
at most by 2 in each update. Thus, at least for the next
dðscorek � scoreðpiÞÞ=2e � 1 time instances, scoreðpiÞ is
less than scorek. In summary, there are only two cases in
which a point can be part of TOPK and both of them
are covered by (1). tu

The safe interval SI1ðpiÞ serves as a lower bound,
indicating that during this interval, pi is impossible to enter
TOPK and thus, it is ignored. If now is the current time, pi
will be examined again as a possible candidate for TOPK at
time minðdðscorek � scoreðpiÞÞ=2e þ now; exp1Þ. An event ei
is associated with every point pi 62 TOPK and contains the
following data:

. the event processing time, denoted as ei:ept, indicating
the time that pi should be examined as a top-k
candidate, ei:ept ¼ minðdðscorek � scoreðpiÞÞ=2e þ
now; exp1Þ,

. the event generation time, denoted as ei:egt, storing the
time instance that the event was generated, and

. the score of pi at time ei:egt, denoted as ei:score.

Each event ei is thus represented as a triplet
<ept; egt; score>. All scheduled events are organized by a
priority queue, using the ept field for prioritization. The
head of the queue contains the event that will be processed
next, having the minimum ept value. This event will be
processed if the current time equals the event processing
time. For instance, if ei is on the head, this event will be
processed when ei:ept ¼ now. When the event ei is
processed, the following actions are taken: 1) the exact
score of pi is computed, 2) a new event is scheduled for pi
by computing a new value for ept.

Assume for the time being that there is no indexing
scheme available. Evidently, the aforementioned approach
will be more efficient than BFA, if SI1ðpiÞ is long enough so
that the cost of BFA during this period will be higher than
that of an exact score computation. Each exact score
computation costs n domination checks among points in
the worst case. In BFA, each point pi requires two domination
checks per update; one for the incoming point and one for the
expiring one. Therefore, the number of domination checks
performed by BFA for the duration of the safe interval is
2ðei:ept� ei:egtÞ. Consequently, BFA performs more dom-
ination checks when 2ðei:ept� ei:egtÞ � n) ðei:ept �
ei:egtÞ � n=2. This means that larger safe intervals are
favorable since they lead to fewer exact score computations
and therefore, less computational cost. However, safe
intervals with duration more than n=2 are difficult to be
produced, especially for large n and small k. For this reason,
in the sequel we study two methods used by EVA to reduce

the number of exact score computations. The first one focuses
on bounding the score of existing points, whereas the second
estimates the score of a newly arrived point.

4.1 Upper-Bounding Scores of Existing Points

The event processing time ei:ept of an event ei is
computed taking into account the worst case scenario,
where scorek is reduced by 1 in each update, meaning that
the kth point of TOPK dominates all the outgoing points
and none of the incoming points that arrived between the
time ei:egt and ei:ept.

When an event is processed, we can reschedule the
event, avoiding computing the score of the associated point,
if we keep up-to-date the scores of the top-k dominating
points. Notice that the cost to update k scores is affordable
since k� n. To compute the new event processing time, the
score of the point is required which is not known. However,
it is safe to use an upper bound: the score pi is less than or
equal to ei:scoreþ ei:ept� ei:egt. We use this bound in place
of scoreðpiÞ in (1) to compute the new safe interval and thus,
to schedule a new event for pi.

Fig. 3 shows a sliding window of length n ¼ 10 with 1-
dimensional points, where the horizontal axis shows time
instances. For convenience, we assume that point pi arrived
at the ith time instance. Fig. 3a shows the set of active
points when now ¼ 10. For k ¼ 3, the top-3 dominating
points are p10, p3, and p8 (black dots) and their correspond-
ing scores are 9, 8, and 7, respectively. The minimum
expiration time of the top-3 dominating points is exp1 ¼
3þ 10 ¼ 13 (p3 will expire first) and the third best score is
score3 ¼ 7 (due to p8). We illustrate the computation of the
event e7 of p7. Currently, we have that scoreðp7Þ ¼ 3 since
p7 dominates p1, p6, and p9. By substituting the values in
(1), we have that e7:ept ¼ minðdð7� 3Þ=2e þ 10; 13Þ ¼ 12,
e7:egt ¼ 10, and e7:score ¼ 3. This means that p7 will be
examined again as a possible candidate for TOPK when
now ¼ 12, i.e., in the next two updates. Assume now that
two updates occur and thus, now ¼ 12 as shown in Fig. 3b.
The two oldest points (p1 and p2) have been expired and
the set of active points is fp3; . . . ; p12g. Since e7:ept ¼ now,
point p7 should be examined. We recompute the event
processing time of point p7. The upper bound score
estimation is scoreðp7Þ � e7:score þ e7:ept� e7:egt ¼ 3 þ
12� 10 ¼ 5. We use this upper bound to recompute the
event time, thus avoiding the exact score computation for
scoreðp7Þ. The value of score3 is still 7 and therefore,
e7:ept ¼ minðdð7� 5Þ=2e þ 12; 13Þ ¼ 13, e7:egt ¼ 12, a n d
e7:score ¼ 5, meaning that point p7 will be examined again
in the subsequent update where now ¼ 13.
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4.2 Upper Bounding Scores of Incoming Points

The computation of the event processing time ei:ept requires
the score of pi or at least an upper bound. However, in the
streaming scenario, new points continuously arrive and there
is no information about their scores. To avoid computing
scores from scratch, we try to find an upper bound of them.
Let px be an incoming point. The key idea is to determine a
point pr with the following properties: 1) it dominates the
incoming point px, and 2) it is not part of TOPK. We denote
this point as a reference point. If such a point exists, then we can
compute an upper bound for scoreðpxÞ, and use it in (1) to
calculate the event time of px. If now is the current time
instance then scoreðprÞ � er:scoreþ now� er:egt. Since, pr
dominates px then scoreðpxÞ � scoreðprÞ � 1) scoreðpxÞ �
er:scoreþ now� er:egt� 1. If there is no point satisfying
these properties, then an exact score computation for px is
performed.

To locate a point that dominates the new point px, we
search the grid cells that partially or fully dominate the cell cj
containing px. These cells lie at the lower left region with
respect to the upper right corner of cj. A quick way to
determine a point that dominates px and has the lowest score,
is to use a cell visiting order as the one shown in Fig. 4.
Assume that a new point has been inserted in cell c11. To
determine the cells to be visited next, we use the locations of
the cells in each dimension. The sum of cell coordinates (scc),
specifies the search order. Cells with large scc values are
examined first. After visiting c11 (sccðc11Þ ¼ 6), the next cells
in order are c7 and c10 (sccðc7Þ ¼ sccðc10Þ ¼ 5). Ties are broken
arbitrarily. Next, we visit c3, c6, and c9 (sccðc3Þ ¼ sccðc6Þ ¼
sccðc9Þ ¼ 4). The search continues until either a convenient
point pr is found, or cell c1 is reached.

4.3 Outline of EVA

The pseudocode of EVA is depicted in Fig. 5. For each update,
a sequence of operations is applied. First, the bookkeeping
structure is updated (Line 1), meaning that the expiring point
is deleted and the new one is inserted. Then, the scores of the
top-k dominating points are updated (Line 1).

The incoming point px is processed to determine if it
should be part of TOPK (Lines 2-8). The procedure
FindReferencePoint() is called, which tries to locate a point
pr such that: 1) it dominates px and 2) it is not part of
TOPK. If such a point does not exist or the upper bound
of the score is larger than or equal to scorek, then the score

of the px is computed from scratch. If scoreðpxÞ is greater
than scorek, px is inserted in TOPK. Otherwise, an event
for px is generated using the procedure ScheduleEvent()
(Lines 19-26). This procedure takes three parameters: the id
j of the point, its score (exact or an upper bound) and the
current time instance now. First, it computes the event
processing time and then, if this time is greater or equal to
now, it inserts the event into the priority queue. Notice
that, the event processing time is less than now, if the
parameter score is larger than scorek. Thus, in Line 8, an
event is always generated, since either the upper bound
(Line 5) or the exact score (Line 7) is less than scorek.

Finally, all events with event processing time equal to
now are processed (Lines 9-18). For an event ei, we try to
recompute its ei:ept value by using the upper bound of
scoreðpiÞ (Lines 12-13). If the event is reinserted into the
event priority queue, we consider the next event; otherwise,
if the upper bound estimation is poor, it is possible the
computed event time to be less than now. In such a case, we
proceed with the exact score computation of scoreðpiÞ and
either pi is inserted in the top-k, or the event time is
recomputed based on the exact score of pi (Lines 14-17).
Line 11 controls the expiration of a top-k dominating point.
If a top-k point expires in now, scorek is not updated and
therefore, we should not try to compute event times. In this
case, we set scorek to -1, to force the insertion of another
point in TOPK. The score of the point of the first examined
event is computed and the point is inserted in TOPK. Next,
we try to recompute the event time of the remaining events.

5 THE ADVANCED ALGORITHM (ADA)

EVA has two important limitations. The first is that all
points that are not part of TOPK should be examined at the
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expiration time of a top-k dominating point. Moreover, the
event time computation gives a large number of events and
only a small percentage of them will cause a change in
TOPK. The second is that it is possible that many points
have a score close to scorek, resulting in consecutive exact
score computations. In the sequel, we discuss two sig-
nificant optimizations toward alleviating these drawbacks,
leading to the design of algorithm ADvanced Algorithm.

5.1 Advanced Event Time Computation

Let �ðpiÞ denote the set of points that dominate pi and
expire later than pi, i.e., �ðpiÞ ¼ fpj 2 P; pj � pi ^ pj:exp >
pi:expg. Moreover, we denote by �þðpiÞ the subset of �ðpiÞ
contained in TOPK, and by ��ðpiÞ the subset of �ðpiÞ not
contained in TOPK. Consequently, �ðpiÞ ¼ �þðpiÞ [ ��ðpiÞ
and �þðpiÞ \ ��ðpiÞ ¼ ;. The key observation for a more
efficient event time computation lies on the fact that if
j��ðpiÞj > 0, then pi has a chance to be part of TOPK only if
these points will be included in TOPK in the future.
Assume that pi is dominated by r points which are not part
of TOPK and all of them expire later than pi (i.e.,
j��ðpiÞj ¼ r). Then, the following holds:

Lemma 2. Given the rth minimum expiration time of the top-k
dominating points, denoted as expr (0 � r < k) and the current
time instance now, a point pi with score scoreðpiÞ cannot be
part of TOPK in less than SI2ðpiÞ time instances, where

SI2ðpiÞ ¼ minfdðscorek�r � scoreðpiÞÞ=2e; exprþ1 � nowg:
ð2Þ

Proof. It suffices to prove that pi can be part of TOPK if at
least rþ 1 top-k points expire or scoreðpiÞ � scorek�r (the
ðk� rÞth best score). Since there are r points that
dominate pi and expire later than pi, these points have
always higher score than pi during its lifetime and
therefore, pi can be part of TOPK only after these points
have been inserted in TOPK. If less than rþ 1 top-k
points expire, all the available positions in TOPK will be
covered by the points contained in ��ðpiÞ. Similarly,
scoreðpiÞ should be larger than scorek�r, otherwise the r
points, which have higher score than scoreðpiÞ, will be
inserted in TOPK and therefore, the kth score will be
increased and will be larger than scoreðpiÞ. tu

It is not hard to show that the safe interval computed by
Lemma 1 is less than or equal to that computed by Lemma 2,
i.e.,SI1ðpiÞ � SI2ðpiÞ. Equation (2) corresponds to (1), if r ¼ 0.
Otherwise, (2) computes always larger safe intervals. There-
fore, by using SI2ðpiÞ fewer events are generated and
consequently, the computational cost decreases. For instance,
in Fig. 3 assume thatnow ¼ 10, whereasTOPK ¼ fp10; p3; p8g
with scores 9, 8, and 7, respectively. According to Lemma 1,
the event time of p4 is e4:ept ¼ minðdð7� 5Þ=2e þ 10; 13Þ ¼ 11.
Since p5 dominates p4 and expires later than p4, it holds that
j��ðp4Þj ¼ 1, which means that we can use the ðk� 1Þth score
(scorek�1) and the second minimum expiration time of the
top-k dominating points (exp2). Thus, according to Lemma 2,
e4:ept ¼ minðdð8� 5Þ=2e þ 10; 18Þ ¼ 12.

A naı̈ve approach to maintain j��ðpiÞj is to use a counter
for each pi and to update these counters for each arrival.

More specifically, if the new point dominates pi then we
increase the counter of pi by 1. Since in the worst case all
counters may require an update, it is expected that this
approach will be inefficient. Thus, we use a different
method which maintains a counter for each point,
pi:counter, and a counter for each cell, cj:counter. The
difference cj:counter� pi:counter is used as a lower bound
for j��ðpiÞj. For instance, assume the 2-dimensional grid of
Fig. 6 and let n ¼ 4 and k ¼ 1; thus, the answer of the query
is p1. A new point p5 (black dot) arrives and p1 expires. We
increase by 1 all counters of cells fully dominated by the cell
containing p5, i.e., the shaded cells of Fig. 6. The cost of this
process is marginal. Moreover, we set the counter of the
new point equal to the counter of the cell containing the
new point; thus, we have p5:counter ¼ c6:counter. For this
update, the cell counters are updated and the counter of the
new point is initialized.

To use the difference cj:counter� pi:counter as a lower
bound for j��ðpiÞj for a point pi, we should update the
point counters when there is a change in TOPK. In the case
where a point pj is inserted into TOPK, we increase by 1
the counters of all points dominated by pj and expire before
pj, whereas in the case of a top-k expiration, the counters of
these points are decreased by 1. In the example, p4 is
inserted into TOPK because p1 expires. The counters of p2

and p3 are increased, since p4 dominates both of them and
expires later than them. Before the update, we have
p3:counter ¼ 1, c10:counter ¼ 2 and therefore, c10:counter �
p3:counter ¼ 1. After the update, p3:counter increases by 1
(due to the insertion of p4 in TOPK) and thus, c10:counter �
p3:counter ¼ 0. In fact, j��ðp3Þj ¼ 1 since p5 dominates p3,
expires later, and p5 62 TOPK. The use of a lower bound for
j��ðpiÞj results in a smaller safe interval according to (2),
but it will not introduce false positives in the result.

A better lower bound can be determined for j��ðpiÞj by
considering points that partially dominate the cell contain-
ing pi. In the case where an exact score computation is
necessary for pj, we decrease by 1 the counters of all points
for which the following hold: 1) they belong to a cell that is
partially dominated by the cell containing pj, 2) pj
dominates these points, and 3) pj expires later than these
points. In our example, assume that we cannot estimate the
score of the new point p5 and therefore, an exact score
computation is carried out. We decrease p3:counter by 1,
since p3 belongs to cell c10 which is partially dominated by
c6, p5 dominates p3 and p5 expires later than p3. Therefore,
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j��ðp3Þj ¼ 1. Notice that this process does not impose
additional overhead, because it is applied during exact
score computations.

5.2 Using Candidate Points

As mentioned before, one drawback of EVA is that if some
points exist that their score is close to scorek, many exact
score computations will be performed. The same holds even
if the advanced event computation is applied. To overcome
this problem, we propose to continuously evaluate the score
of some special points called candidate points, whose event
processing time is in the near future. The challenge is to
maintain candidate points aiming at reducing the number
of exact score computations.

To illustrate the idea of candidate points, assume a top-3
dominating query is applied in 1,000 points and score3 is
200. Assume further that there is a point pi with score 194
that expires after the points of TOPK. The event ei will be
processed in 3 time units. However, it is highly probable
that in a so small time interval the scores of TOPK and pi
will not change. Therefore, an exact score computation will
happen and ei will be arranged to be processed again in 3
time units. When there are no drastic changes in TOPK,
this process can continue for a large part of the lifespan of pi
and probably pi will never be part of TOPK.

When an event ei for point pi is computed, if ei:ept �
nowþ�t we insert pi directly into the set of candidate
points and we ignore the event; otherwise, we proceed in
the normal way. The time threshold �t is used to decide
whether the event processing time is in the “near” future or
not. To avoid a large number of candidate points, the
parameter maxcand is used to define the maximum allowed
number of maintained candidates. In our experiments, �t is
initialized to n=1;000, and its value is adjusted automati-
cally as follows: it decreases by 1 if the number of candidate
points is greater than or equal to maxcand and increases by
1 if exact score computations are taking place. The value of
maxcand is set to 1 percent of the sliding window size.

5.3 Evicting Obsolete Events

In top-k dominating queries, we cannot prune points in
contrast to skyline and top-k queries, since the domination
power of the points depends on the other points. Therefore,
the indexing structure used contains all points of the sliding
window. On the other hand, events can be pruned, if the
event processing time of a point is greater than its
expiration time. More specifically, let pi be a point with
an associated event ei. If pi:exp < ei:ept, then pi will expire
before the event is processed. Such an event is characterized
as obsolete. We can reduce the storage requirements if
obsolete events are evicted. However, with less events
fewer reference points are available, and thus we may affect
running time. This is a tradeoff between memory consump-
tion and efficiency, and it is further studied in the
performance evaluation.

6 PERFORMANCE ANALYSIS

In this section, we perform an analysis toward upper
bounding the expected number of exact score computations
required for a sequence of m updates. Recall, that in our
model, each arrival of a new point is immediately followed

by an expiration of the oldest one. Following related
research in the area [23], we assume that: 1) points are
distributed uniformly in the unit d-dimensional hypercube,
and 2) there is no correlation between the dimensions.

The cost of an exact score computation depends on the
number of points that must be examined. Let g denote the
number of cells in each dimension. Therefore, the total
number of cells equals gd. The following lemma gives the
expected number of the partially dominated cells for any
grid cell.

Lemma 3. The expected number of points that must be examined
during an exact score computation is given by

n

2d
� gþ 1

g

� �d
� g� 1

g

� �d !
: ð3Þ

Proof. By treating each dimension separately, the expected
number of partially plus the number of fully dominated
cells is given by

FDPD ¼ 1

gd
�
Yd
j¼1

Xg
i¼1

i ¼ gþ 1

2

� �d
:

Again, by treating each dimension separately, the
expected number of fully dominated cells is given by

FD ¼ 1

gd
�
Yd
j¼1

Xg�1

i¼1

i ¼ g� 1

2

� �d
:

By subtracting FD from FDPD, we get that the expected
number of partially dominated cells is

PD ¼ gþ 1

2

� �d
� g� 1

2

� �d
:

Due to the uniformity assumption, there are on average
n
gd

points in each cell, and thus, the result follows. tu
In the sequel, we provide an upper bound on the

expected number of exact score computations required for
m update operations. According to EVA, there are three
cases where an exact score computation can happen during
an update: 1) an incoming point must enter TOPK or the
skyline of the rest of the points (with probability Pa), 2) the
expiring point belongs to TOPK (with probability Pe), and
3) an examined event associated with a point p cannot be
rescheduled (with probability Pp). In our analysis, we use
the result of Godfrey [9], which states that the expected
number of skyline points skyðuÞ for a set of u points in d

dimensions by assuming independence among the dimen-
sions is Oðlnðd�1Þu=ðd� 1Þ!Þ.

The probability that an incoming point px will cause an
exact score computation is at most the probability that: 1) px
will land on a cell occupied by one of the k points of TOPK,
2) on a cell containing at least one skyline point of the rest n-
k points, or 3) on an empty cell lying in the lower left region
of the skyline border. By the uniformity and independence
assumption, it follows that the expected number of empty
cells is c=en=c, where c ¼ gd is the total number of cells. The
result follows by considering that we have a balls-and-bins
game and using the linearity of expectation as shown in
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[21]. By using the pessimistic assumption that each TOPK
point and each of the skyðn� kÞ points lie in a different cell,
it follows that px will cause an exact score computation with
probability2 at most

Pa �
kþ skyðn� kÞ þ c=en=c

c
: ð4Þ

When a point expires, with probability Pe it will be one of
the k points of TOPK. According to the uniformity and
independence assumption it holds that

Pe ¼ k=n: ð5Þ

Moreover, the processing of an event associated with point
p will cause an exact score computation, if and only if scorek
is reduced in every update occurred during the safe interval
SI1ðpÞ. Otherwise, the event will be rescheduled. The value
of scorek is reduced during an update if the kth best point
dominates the expired point and does not dominate the
new point. This probability equals the volume dominated
by the kth point multiplied by the remaining volume for
each update during SI1ðpÞ. Therefore, we have

Pp ¼
scorek
n
� n� scorek

n
� scorek � 1

n
� n� scorek þ 1

n

� � � scorek � SI1ðpÞ þ 1

n
� n� scorek þ SI1ðpÞ � 1

n

) Pp ¼
YSI1ðpÞ�1

j¼0

ðscorek � jÞ � ðn� scorek þ jÞ
n2

:

To simplify the analysis, we use only the first term of the
product. Therefore, the probability Pp, that the processing of
an event will cause an exact score computation satisfies the
following inequality:

Pp �
scorek
n
� n� scorek

n
: ð6Þ

When an update occurs, an expiration with probability
Pe will cause at most skyðn� kÞ exact score computations.
Otherwise, with probability Pa one exact score computation
will take place. In case where neither a top-k expires or a
top-k arrives or the new point belongs to the skyline of the
n� k points, an update can cause at most skyðn� kÞ exact
score computations with probability Pp. Therefore, we can
derive the expected number of exact score computations in
the ith update, denoted as E½X i�, by using (4), (5), and (6).
Let X ¼ X1 þ X2 þ � � � þ Xm be the random variable count-
ing the total number of exact score computations performed
in m updates. By the linearity of expectation, we have that
E½X� ¼

P
0�i�m E½X i�. By substitutions and algebraic ma-

nipulations, we get that E½X� is

O mðPa � ð1� PeÞ þ Pe � S þ ð1� PaÞ � ð1� PeÞ � Pp � SÞ
� �

;

where S ¼ skyðn� kÞ. The above bound is quite pessimistic,
since several worst case assumptions have been performed.
For example, we have assumed that when a new point enters
the skyline of the n-k points, then skyðn� kÞ exact score
computations will be performed, which is an overestimation.
In addition, we assumed that all empty cells estimated by the

balls-and-bins game are located in the lower left corner,
which again is an upper bound. We avoided the use of
simplistic arguments aiming at an analysis with theoretic
basis. In practice, as we have validated through experimen-
tation, the number of exact score computations performed is
far less. However, this is the first step to provide a closed-
form formula to estimate the cost of the algorithms.

7 APPROXIMATE SOLUTIONS

So far, our study has centered on exact algorithms,
providing 100 percent correct and up-to-date answers to a
top-k dominating query. However, in many modern
applications (e.g., decision support, information retrieval),
exact answers are, typically, not needed to draw useful
conclusions; instead, approximate results are often sufficient
[3], [31]. The effectiveness of an approximate solution is
measured by considering the accuracy of the result, which
corresponds to the fraction of the correct top-k dominating
points returned by the algorithm over the actual number of
top-k dominating points. In the sequel, we study two
approximate solutions: 1) a randomized approach based on
probabilistic bounds and 2) a more aggressive approach
without probabilistic guarantees.

7.1 Approximation with Probabilistic Guarantees

The exact algorithms calculate the event time of a point pi
based either on the exact score or the maximum score. To
evaluate the query accurately, the maximum possible score
is computed by using the worst case scenario, in which the
score of the kth dominating point is reduced in each
update, whereas the score of pi increases. This way, a safe
upper bound is generated. However, the exact score of pi
rarely (if not ever) approaches the maximum value. By
using an approximation, a more realistic value (closer to the
exact score) may be computed, speeding up query execu-
tion and, on the other hand, possibly sacrificing the
accuracy of the result.

From elementary probability theory, it holds that the
sum of squared errors around an arbitrary value is
minimized if this value is the true mean. The key idea is
to maintain a random sample [34], [2], [38] of points in a cell
and compute their mean score. This value is used as an
approximation for the score of any other point of this
particular cell. The sample size should be large enough so
as to guarantee that the estimated score will not be very far
from the true mean. To determine a convenient sample size,
we use the Hoeffding inequalities [11]. Assume s indepen-
dent random variables Z1; . . . ;Zs such that � � Zi � �,
i ¼ 1; . . . ; s. Let Z ¼ ð1=sÞ

Ps
i¼1 Zi and � ¼ E½Z� (the ex-

pectation of Z). For any � > 0, the one-sided and two-sided
forms of the Hoeffding inequality have as follows:

ProbfZ � � � �g � 1� e�2s�2=ð���Þ2 ð7Þ

ProbfjZ � �j � �g � 1� 2e�2s�2=ð���Þ2 : ð8Þ

If Z � �, then the mean value is overestimated, meaning
that no false negatives appear. On the other hand, if Z < �
then some points may be missed, because Z cannot be used
as an upper bound. Therefore, we try to bound the error
selecting an appropriate value for s to increase the
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probability that �� Z � �. From (7) and (8), it is not hard to
deduce that

Probf�� Z � �g � 1� e�2s�2=ð���Þ2 : ð9Þ

By setting � ¼ Probf�� Z � �g and solving for s, we get an
expression that gives the minimum number of samples
required to have a maximum error �with probability at least �

s ¼ ð� � �Þ2 �
ln 1

1��
� �
2�2

: ð10Þ

In our case, the bound is used to compute the number of
samples that must be maintained for each cell cj, in order to
monitor the average score in cj. The score of an arbitrarily
selected point lies between 0 and n� 1. However, if samples
are taken from a specific cell cj then minscoreðcjÞ �
scoreðpiÞ � maxscoreðcjÞ. We refer back to Fig. 6 to illustrate
the idea. For any point pi hosted in cell c1, it holds that
3 � scoreðpiÞ � 5. The value of maxscore is determined by
counting the number of points contained in the partially and
fully dominated cells, whereas the value of minscore equals
the number of points contained in the fully dominated cells.
Therefore, the number of samples is determined by
substituting in (10) the appropriate values for �, �, and
setting � ¼ minscoreðcjÞ, � ¼ maxscoreðcjÞ. The key obser-
vation is that if � may be expressed as a percentage of the
score range, rather than an absolute value. Formally, by
setting � ¼ "ð� � �Þ we have that

s ¼
ln 1

1��
� �
2"2

: ð11Þ

We argue, that it is neither practical nor meaningful to
maintain a sample for every cell because: 1) the advanced
event computation may be sufficient to exclude some points
and therefore, a better estimation is not necessary for these
points and 2) a cell may be dominated by another cell for
which we already maintain samples. In addition, a large
number of sample points may lead to increased costs because
the exact scores of the sample points must be monitored
during updates. Thus, we maintain samples only for a small
number of cells, determined using the maximum possible
score of a point in a cell. We use again the parameter �t,
which determines if the event is in the near future or not. The
following heuristic is applied: if maxscoreðcjÞ > scorek ��t
and cj is not dominated by another cell with a sample, then
we keep a sample for cj.

The above technique is combined with ADA, which is the
best exact algorithm as will be demonstrated in Section 9. In
addition to the estimation performed by ADA for the score
of a point pi, a second estimation is performed using the
sample points, provided that a sample exists for the cell
containing pi. Between the two estimated values, the
minimum is chosen. The new algorithm is termed
Approximate Hoeffding Bound Algorithm (AHBA) and it
has the nice property that the error introduced in the score
estimation is controllable.

7.2 “Quick-and-Dirty” Approximation

Algorithms ADA and AHBA try to reduce the number of
events and the number of exact score computations
assuming, pessimistically, that all points have a possibility
to become part of the result. However, by assuming that the
data distribution does not change rapidly, it is possible to

ignore some points by excluding them from the event
generation mechanism.

If the score of a point is low, we expect that it will remain
low during its lifetime (by assuming that data distribution
does not change significantly). Let minscoreðcjÞ denote the
smallest possible score of all points contained in cell cj. All
points belonging to cj are excluded from event processing if
score1 � scorek < scorek �minscoreðcjÞ. This algorithm, de-
noted as Approximate Minimum Score Algorithm (AMSA),
uses an aggressive heuristic-based technique to speedup
processing, but it does not provide any guarantees regard-
ing accuracy. Evidently, when the data distribution changes
rapidly then this heuristic is not appropriate and EVA,
ADA, or AHBA should be used instead.

8 ALTERNATIVE SLIDING WINDOW SCHEMES

In the beginning of our exploration, we considered that a
count-based sliding window is used and in particular, each
update involves one arrival of a new point and one expiration
of the oldest point. In this section, we discuss briefly how
other sliding window models are supported by our algo-
rithms. More specifically, we discuss how Lemmas 1 and 2
adapt to these cases. All the other issues (e.g., event time
computation) are addressed in a straightforward manner.

1. Time-based window with one arrival and one
expiration in each update: Since we have one
insertion in each time instance, we also have one
expiration in each time instance. Thus, Lemmas 1
and 2 remain unchanged.

2. Time-based window with multiple arrivals and
expirations: In general, the number of arrivals/
expirations varies for each time instance. We
compute the minimum number of updates that can
occur without pi being part of TOPK. Lemmas 1 and
2 are the same, but their first part measure the
number of updates instead of time instances. There-
fore, Lemma 1 states that point pi cannot be part of
TOPK in less than dððscorek � scoreðpiÞÞ=2Þe up-
dates or exp1 � now time instances. Lemma 2 is
handled similarly.

3. Count-based window with multiple arrivals and
expirations: Both Lemmas 1 and 2 give the minimum
number of updates required instead of the minimum
time instances. Therefore, we need to express exp1 �
now as the number of updates required for the first
expiration of a point of TOPK. Assume that exp1

corresponds to the expiration time of pi, i.e.,
pi:exp ¼ exp1. We can use the index i to denote the
update (e.g., i is an id of the ith update). Let pj be the
last inserted point. Then, exp1 ¼ pi:exp ¼ iþ n,
where n is the size of the window and now ¼ j.
Again, Lemma 2 is handled similarly.

The previous observations show that the changes
required in the proposed algorithms to support other
sliding window models are marginal.

9 PERFORMANCE EVALUATION STUDY

All algorithms have been implemented in C++ and the
experiments have been conducted on a Pentium@3.0 GHz
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Win XP machine, with 1 GB of RAM. The synthetic data sets
are the independent (IND) and anticorrelated (ANT),
generated by using the process described in [4]. Addition-
ally, two real-life data sets have been used: Forest Cover
(FC) (http://kdd.ics.uci.edu) containing 581,012 records
with attributes such as elevation, slope, horizontal distance
to hydrology, etc., and Zillow (ZIL) (http://www.zillow.
com) containing 1,252,208 real estate records with five
correlated attributes.

The computational cost is expressed by the running time
per 1,000 updates (arrivals/expirations). The update
operations of the startup phase (first n arrivals) is not
counted in the measurements. The default values for the
parameters, if not otherwise specified, are: n ¼ 2,000,000,
d ¼ 4 and k ¼ 256. The maximum number of candidate
points is set to 1 percent of the window size and the
parameter �t is set to n=1;000. The error " of the Hoeffding
bound is set to 10 percent of the range of a cell, whereas a
90 percent confidence is used, i.e., � ¼ 0:9.

First, we study the performance of the algorithms with
respect to the number of active points (window size). Fig. 7
depicts the CPU time for IND and ANT data sets, by varying
the window size from 1 to 5 millions. The y-axis is illustrated
in logarithmic scale. It is evident, that BFA is not appro-
priate for the streaming scenario and therefore it is omitted
from subsequent experiments. ADA outperforms EVA,
because ADA generates fewer events and performs fewer

exact score computations, resulting in better performance.
As expected, the difference between the two methods is
more significant in the ANT data set, since the difference in
score values of the points do not vary significantly. ADA
overcomes this problem by computing larger event times
due to the advanced event computation and mainly due to
the use of candidate points.

Next, we study the performance with respect to dimen-
sionality. The corresponding results are given in Fig. 8. For
IND and ANT data sets, the window size is set to 2 millions,
for FC is set to 500,000 and for ZIL is set to 1 million. Again,
we observe that ADA is significantly more efficient than
EVA due to the reason we mentioned previously. As the
dimensionality increases, the scores of the points become
lower since the probability that a point dominates another is
significantly reduced. Therefore, EVA produces more events
than ADA, and more exact score computations are involved.
As expected, AHBA and AMSA are always more efficient
than EVA and ADA. In particular, AMSA shows the best
performance since it does not use samples to guarantee the
accuracy of the result. An interesting result is depicted in
Fig. 8d. In ZIL data set, the approximate algorithms perform
better as dimensionality increases. This is because ZIL is
correlated and therefore, in spaces with high dimensionality
the points are distributed in more cells and thus, the cost of
maintaining sample scores and the points in TOPK is
reduced. For AHBA and AMSA, this cost dominates the
overall cost in a correlated data set and therefore the running
time is reduced. Recall, that the number of cells per
dimension is fixed, thus in spaces with higher dimension-
ality, the number of cells increases.

Next, we study the running time versus k. The results are
depicted in Fig. 9. As expected, the approximate algorithms
are always more efficient than the exact ones. Moreover,
AMSA and ADA are always better than AHBA and EVA,
respectively. In addition, the performance of AHBA is
similar to that of ADA for very small values of k (i.e.,
k < 10). Recall that AHBA reduces the number of exact
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Fig. 7. Running time versus window size (number of points).

Fig. 8. Running time versus dimensionality (d).

Fig. 9. Running time versus number of answers (k).



score computations. The number of events processed by
ADA and AHBA is similar. Therefore, if the number of
exact score computations is small, the cost for sample
maintenance in this case cannot equalize the cost of exact
score computations. In this case, we observe that for very
small values of k (<15) the performance of ADA and AHBA
is similar. The gap becomes even more significant for larger
values of k.

The next experiment studies the behavior of AHBA for
different values of the error " and the probability � of the
Hoeffding bound as defined in (11). Fig. 10 depicts the
running time of AHBA and ADA. The parameter " assumes
values from a 1 to 5 percent, whereas � is set to 0.99, 0.95, and
0.90. As expected, the running time is improved when "
increases and � decreases, whereas accuracy is not compro-
mised significantly as it is illustrated in Table 2, which shows
the accuracy achieved for the ANT and FC data sets, for the
same values of " and � used in Figs. 10b and 10c,
respectively. Accuracy is measured as follows: assume that
TOPK0 is the result of the approximate algorithm. For each
update, the accuracy is computed as jTOPK

T
TOPK0j=k.

Mean accuracy is presented as the average accuracy of all
updates, excluding those of the startup phase.

Next, we compare the accuracy of AHBA and AMSA. The
results are given in Table 3 for " ¼ 10% and � ¼ 0:9. As
expected, AHBA achieves the best accuracy in all cases in
comparison to AMSA. In addition, AHBA may detect a
change in TOPK after some updates, in contrast to AMSA
which will loose the change completely if the specific point
was pruned. Furthermore, AHBA has the nice property that
it will miss the points with the lowest scores first. Both AHBA
and AMSA have the worst performance for FC data set. In
FC, the top-k points are changed frequently; thus, the
approximate algorithms achieve poor accuracy since they
cannot detect all changes. This phenomenon is minimized as
k increases, because the query result is not varied drastically.
In general, AMSA offers better response time than AHBA, as
shown previously, but shows worse accuracy.

Next, we measure the number of events that each
method processes, the number of exact score computations,
and the total number of comparisons (between numbers).
Table 4 illustrates the results per 1,000 updates for the ANT
data set. It is evident, that ADA reduces significantly the
number of the examined events and the exact score
computations, especially for large values of k. This happens
due to the use of the advanced event computation.
Additionally, the number of exact score computations is
reduced mainly due to the use of candidate points, as
described in Section 5.2. AHBA and ADA process almost
the same number of events. The main advantage of AHBA
is that it further reduces the number of exact score
computations by using sampling. AMSA manages to reduce
further both the number of processed events and the
number of exact score computations, offering the best
running time, but without guarantees.

Next, we examine the storage requirements of the
algorithms. EVA uses only the events, whereas ADA, AHBA,
and AMSA use events, counters for the advanced event
computation and candidates points. Moreover, AHBA
maintains samples. The worst memory consumption is

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

Fig. 10. Running time versus error (") and probability (�) of the Hoeffding bound.

TABLE 2
Mean Accuracy (Percent) for Different Values of " and �

TABLE 3
Mean Accuracy (Percent) versus k (" ¼ 10%, � ¼ 0:9)

TABLE 4
Cost Analysis per 1,000 Updates (ANT Data Set)



30.54 MB for AHBA, 30.52 for ADA and AMSA and 22.91 for
EVA, for the default set, taking account all data sets. Recall
from Section 5.3 that obsolete events have an event proces-
sing time larger than the expiration time of the associated
point and thus, they may be discarded to reduce memory
consumption. However, by discarding obsolete events, the
number of points that may be used as reference points is
reduced. In all experiments, the algorithms maintain all
obsolete events and therefore ADA and AMSA have similar
memory consumption. AHBA has a small overhead in
memory due to the maintenance of sample points.

It is evident that the major storage cost is due to events.
Although the memory requirements are low, we study the
effect of obsolete event pruning. In this experiment, a
fraction of them is being used while the remaining are
pruned. The motivation behind this choice is to check if the
elimination of obsolete events has an impact on the running
time of the algorithms. The results for the ANT data set are
depicted in Fig. 11. The results for IND, FC, and ZIL are
similar and thus omitted. Fig. 11a shows the running time
with respect to the ratio of obsolete events that each method
maintains. For example, ADA has 460,248 obsolete events
when 1 percent of them are kept, whereas AMSA has
1,919,567 obsolete events. Since the running time is almost
unaffected, it does not pay off to keep a high percentage of
obsolete events, because this will impact storage. On the
other hand, storage savings are significant, especially for
AMSA, as it is depicted in Fig. 11b. Algorithms ADA and
AHBA process almost the same number of events, since
they both use the advanced event computation technique.
AMSA achieves even better storage savings due to the
aggressive point elimination technique applied, whereas
EVA cannot reduce the number of processed events,
because it does not produce obsolete events.

10 CONCLUSIONS

Top-k dominating queries have been proposed recently as
an alternative to skyline and top-k queries. This query has a
number of attractive properties such as: an intuitive ranking
function is used, the result is unaffected by dimension
scaling and the number of results is bounded by k. This
paper is the first study of top-k dominating query
processing algorithms in a streaming environment.

The two proposed methods, EVA and ADA consistently
outperform the baseline algorithm, whereas ADA shows
the best overall performance, being orders of magnitude
faster than the brute-force approach. An analysis is
performed for the proposed techniques to derive an upper
bound for the expected number of exact score computations

that may occur. In addition, we have studied two approx-
imate algorithms, AHBA and AMSA, which sacrifice
accuracy for faster computation. AHBA is based on
sampling and offers probabilistic guarantees regarding the
approximation error. On the other hand, AMSA is based on
event pruning leading to faster processing with less
accuracy compared to AHBA.

The three algorithms, ADA, AHBA, and AMSA, can
work in combination. If we have to be strict regarding
accuracy then ADA must be used. In case a heavy system
load is detected and accuracy may be compromised (but
within limits), then AHBA may be activated. Finally, if an
even more fast solution is required AMSA may be used.
Since all algorithms are based on the event-based frame-
work, they can operate in a synergetic manner, offering
significant flexibility.
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