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Abstract. Analyzing big data with the help of automated data flows
attracts a lot of attention because of the growing need for end-to-end
processing of this data. Modern data flows may consist of a high number
of tasks and it is difficult for flow designers to define an efficient execu-
tion order of the tasks manually given that, typically, there is significant
freedom in the valid positioning for some of the tasks. Several automated
execution plan enumeration techniques have been proposed. These solu-
tions can be broadly classified into three categories, each having signifi-
cant limitations: (i) the optimizations are based on rewrite rules similar
to those used in databases, such as filter and projection push-down, but
these rules cover only the flow tasks that correspond to extended rela-
tional algebra operators. To cover arbitrary tasks, the solutions (ii) either
rely on simple heuristics, or (iii) they exhaustively check all orderings,
and thus cannot scale. We target the second category and we propose an
efficient and polynomial cost-based task ordering solution for flows with
arbitrary tasks seen as black boxes. We evaluated our proposals using
both real runs and simulations, and the results show that we can achieve
speed-ups of orders of magnitude, especially for flows with a high number
of tasks even for relatively low flexibility in task positioning.

1 Introduction

Complex data analysis becomes more and more critical in order to extract high-
quality information from raw data that is nowadays produced at an extreme
scale. The ultimate goal is to derive actionable information in a timely manner.
To this end, the usual practice is to employ fully automated data-centric flows (or
simply called data flows) both for business intelligence [6] and scientific purposes
[21]. The fact that data flows are typically data and/or computation intensive,
combined with the volatile nature of the environment and the data, gives rise to
the need for efficient optimization techniques tailored to data flows.

Data flows define the processing of large data volumes as a sequence of data
manipulation tasks. An example of a real-world, analytic flow is one that pro-
cesses free-form text data retrieved from Twitter (tweets) that comment on
products in order to compose a dynamic report considering sales, advertisement
campaigns and user feedback after performing a dozen of steps [26]. Example



steps include the extraction of date information, quantifying the user sentiment
through text analysis, filtering, grouping and expanding the information con-
tained in the tweets through lookups in (static) data sources. Another example is
to process newspaper articles, perform linguistic analysis, extract named entities
and then establish relationships between companies and persons [24]. The tasks
in a flow can either have a direct correspondence to operators of the extended
relational algebra, such as filters, grouping, aggregates and joins, or encapsulate
arbitrary data transformations, text analytics, machine learning algorithms and
so on.

One of the most important steps in the data flow design is the specification of
the execution order of the constituent tasks [22, 13, 26]. In practice, this can be
the result of a manual procedure, which may result in non-optimal flow execution
plans with regards to the sequence of tasks. Furthermore, even if a data flow
execution plan is optimal for a specific input data set, it may prove significantly
suboptimal for another data set with different statistical characteristics [11].

Automated plan enumeration solutions can be broadly classified into three
categories. The first category is exemplified by the approaches followed by sys-
tems such as Pig [23] and JAQL, which utilize a rich set of rules to enhance
an initial flow execution plan. These rules constitute a direct knowledge trans-
fer from database query optimization, e.g., filter and projection push-down [10],
but can cover only the tasks that have counterparts in the extended relational
algebra. In general, data flow optimization is different from traditional query
optimization in that the tasks do not necessarily belong to an algebra with clear
semantics, and as such, are treated as black box, e.g., like user-defined functions
(UDFs).

The second category consists of heuristics, e.g., [25, 34], and simple extensions
of optimization techniques initially proposed for database queries with UDFs [12,
7]. A strong point of these plan enumeration solutions is that they can handle
arbitrary tasks. Their weakest point is that they leave significant room for fur-
ther improvements as proved in this work. The third category covers exhaustive
solutions that are optimal for small flows but inapplicable to large flows because
they do not scale with the size of the flow, e.g. [13].

In this work, we target the second category and we advance the state-of-
the-art through the proposal of novel optimization algorithms that define the
execution order of the tasks in a data flow in an efficient manner thus relieving
the flow designers from the burden of selecting the task ordering on their own.
The proposed solutions are applicable to large flows containing arbitrary data
manipulation tasks and attain significantly better performance, i.e., they offer
average speed-up of several factors, whereas in stand-alone cases, the speed-up
can be up to two orders of magnitude. Our proposal refers to the logical level
and is orthogonal to physical execution details; as such, it is applicable to both
centralized and parallel execution environments.

The proposed optimization solutions were validated, as a proof of concept,
in a real environment, namely Pentaho Data Integration (PDI ), which is a



widespread data flow tool [1]. Additionally, we performed thorough evaluations
using synthetic data flows. The summary of our contributions is as follows:1

1. We introduce novel approximate low complexity algorithms that can be used
for task reordering in data flows that have the form of a chain (Section 4).
We show how we can further improve performance using optimizations that
produce non-linear flow execution plans, where a task sends its output to
several downstream tasks in parallel (Section 5).

2. We generalize the above results for flows with arbitrary number of sources
and sinks thus covering any type of flow plans that are represented as directed
acyclic graphs (DAGs) (Section 6).

3. We conduct thorough experiments using both real runs and simulations (Sec-
tion 7). The evaluation results prove that the approaches introduced here
significantly and consistently outperform the current state-of-the-art in all
our experiments.

The remainder of this paper is structured as follows. A motivation case study
is presented in Section 2. In Section 3, we formally introduce the main concepts,
the problem, and its complexity.In Sections 4 and 5, our solutions for optimiz-
ing chain flows are analyzed. Optimization of more generic flows is discussed in
Section 6. Section 7 presents the experimental analysis and finally, the discus-
sion of the related work and the conclusions are presented in Sections 8 and 9,
respectively.

2 Motivational Case Study

The purpose of this section is to demonstrate the inadequacy of existing ap-
proaches. We have implemented and executed a simple real-world chain (also
referred to as L-SISO) flow in PDI, which consists of 13 tasks overall (configu-
ration details are in Section 7). This flow retrieves tweets, extracts and analyzes
tags referring to products, filters data and accesses static data sources in order
to compose a dynamic report that associates sales with marketing campaigns (a
full description can be obtained from [17]). Figure 1 presents the dependency
constraints, which hold between tasks; the DoF in this case is 0.62, which is a
representative value given that several real-world flows, as presented in [24], have
DoF around 0.6. The dependency constraints and the DoF value are formally
defined in the next section. Note that the four underlying static data sources are
hidden behind the look-up tasks, and as such, the flow is treated as a chain.

1 An extended abstract of some of the ideas in Section 4 has appeared in [16]. Also, in
an earlier technical report [17], we have presented additional algorithmic descriptions
and examples of most of the solutions in Sections 4 and 5 presented here. The mate-
rial presented in this work and not appearing in [17] includes a thorough discussion
of extensions to optimization techniques for database queries with UDF predicates,
new techniques for multi-sink/source data flows, evaluation in a real system and
fully revised synthetic experiments.



Fig. 1. The precedence constraints of the data flow in Figure 2.

Non - Optimized Execution Cost (Accurate): 11.3 secs

Optimized Execution Cost (Accurate): 5.85 secs

Optimized Execution Cost (Approximate based on [25]): 7.5 secs

Fig. 2. Three alternative execution plans for our example data flow: the initial flow
(top), the optimal one (middle) and the one produced by the technique in [25] (bottom)

In Figure 2(top), a straight-forward implementation is presented, along with
the cost and selectivity values of each task. These values are extracted through
profiling. In a setting similar to the one used in the evaluation (see Section 7),
this flow is capable of processing 1 million tweets in 11.3 secs. Note that all
constraints in Figure 1 are satisfied. In the middle of this figure, the optimal
execution plan is presented, which can drop the execution cost approximately
to the half. The optimal plan is generated through exhaustive enumeration of
alternatives with the constrain that tasks on the left part of Figure 1 must
precede those on the right part.

A question arises as to whether existing solutions of the first two categories
in the introduction are capable of producing such a plan. Although, the plan is
very simple, the answer is negative. First, due to the fact that the flow contains



tasks not belonging to the extended relational algebra (e.g., extracting date with
text processing, sentiment analysis, and so on), the solutions of the first category
cannot perform any changes in the task ordering. The best performing scalable
heuristics of the second category, according to the evidence of the evaluation in
this work, has been proposed in [25]. This heuristic is based on greedy swaps of
adjacent activities, if this plan transformation yields lower cost. The optimized
plan is illustrated in Figure 2(bottom). In that case, the performance improve-
ment is significant, but there is a clear gap between its plan and the optimal
one.

The optimal execution plan for this scenario should move the filtering task
Filter Region, which is initially the end, at the very beginning. Using methods
as presented in [25], the region filter cannot move earlier unless the campaign
lookup task is moved earlier as well due to the precedence constraints, an action
that the greedy algorithm cannot cover. A less obvious optimization is to move
the pair of date extraction and filtering tasks upstream although the former is
expensive and not filtering. In the next section, we propose solutions that are
capable of producing the optimal plan in this specific scenario and, further, they
can scale to flows with hundreds of tasks.

Finally, exhaustive solutions cannot apply to flows with more than 20-25
tasks [17].

3 Preliminaries

In this paper, we deal with the problem of re-ordering the tasks of a data flow
without violating possible precedence constraints between tasks, while the sum
of the execution time for all tasks is minimized. The data flow is represented as
a directed acyclic graph (DAG), where each task corresponds to a node in the
graph and the edges between nodes represent intermediate data shipping among
tasks.

3.1 Notation, Terminology and Assumptions

The main notation, terminology and assumptions are described as follows:

• Let G = (T,E) be a DAG, where T denotes the nodes of the graph (that
correspond to flow tasks) and E represents the edges (that correspond to
the flow of data among the tasks). G corresponds to the execution plan of a
data flow, defining one valid execution order of the tasks.

• T = {t1, ..., tn} is a set of tasks2 of size n. Each flow task is responsible for
one or both of the following: (i) reading or retrieving or storing data, and
(ii) manipulating data.

2 In the remainder of the paper, we will use the terms tasks, services and activities
interchangeably.



Fig. 3. Two examples of SISO data flows.

• Let E = {edge1, ..., edgem} be a set of edges of size m. Each edge edgei, 1 ≤
i ≤ m equals to an ordered pair (tj , tk) denoting that task tj sends data

to task tk, while m is less than or equal to n(n−1)
2 ; otherwise G cannot be

acyclic.

• Let PC = (T,D) be another DAG. D defines the precedence constraints
(dependencies) that might exist between pairs of tasks in T . More formally,
D = {d1, ..., dl} is a set of l ordered pairs: di = (tj , tk), 1 ≤ i ≤ l, 1 ≤ j <

k ≤ n, where each such pair denotes that tj must precede tk in any valid
G. In other words, G should contain a path from tj to tk. Essentially, the
PC graph defines constraints on the valid edges of the G graph. This also
implies that if D contains (ta, tb) and (tb, tc), it must also contain (ta, tc).

The PC and G graphs are semantically different, as the PC graph corre-
sponds to a higher-level, non-executable view of a data flow, where the exact
ordering of tasks is not defined; only a partial ordering is defined instead.
To avoid confusion, we use dotted arrows for PC edges.

• A single-input single-output (SISO) data flow is defined as a flow G that
contains only one task with no incoming edges, termed as source, from an-
other task and only one task with no outgoing edges, termed as sink. In a
SISO flow, there is a dependency edge d from the source task to any other
non-sink task, and from all non-source tasks to the sink task.

• A L-SISO flow is a specific form of a SISO data flow, where the tasks can
form a chain of tasks. More specifically, each node of the G graph has exactly
only one incoming and outgoing edge, while source and sink tasks have only
one outgoing and incoming edge, respectively. In Figure 3, two examples of
SISO flows are presented, where only the right one is a L-SISO flow.

A L-SISO flow can be executed both as a linear and as a non-linear (par-
allel) flow, as Figure 4 shows. In linear flows, G has the form of a chain,
and each non-source and non-sink task has exactly one incoming and one
outgoing edge. In non-linear flows, the output of a single task can be fed to
multiple tasks in parallel. In the non-linear examples in the figures, the tasks
that receive more than one input have been augmented to include a merge
function. In the rightmost example in Figure 4, the merge is a natural join
on the outputs of tasks 2 and 3, whereas task 4 remains a unary task. More
details on this are provided in Section 5.

• We define the Degree-of-Freedom quantity DoF for L-SISO flows as follows:
DoF = 1− 2l

n(n−1) , where l is the size of set of dependencies as defined above

and DoF ∈ [0, 1]. In the case that DoF = 0 then l = n(n−1)
2 , which implies



Fig. 4. Examples of three execution plans of a L-SISO data flow.

Fig. 5. A MIMO data flow.

that the flow is fully constrained and there is absolutely no flexibility in
the ordering of flow tasks (i.e., there is only one valid flow execution plan).
Additionally, when DoF = 1 denotes that flow tasks can be ordered in an
arbitrary manner. In general, the higher the DoF value, the higher the need
for efficient optimization. 3

• In general, data flows are multiple-input multiple-output MIMO data flows,
as shown in Figure 5. EachMIMO comprises a set of L-SISOs. In the example
of the figure, there are multiple L-SISOs, e.g., 1 → 2 → 3 → 7, 4 → 5 →
6 → 7, 7 → 8, and 7 → 9. Also, generic SISOs consist of multiple L-SISOs,
e.g., like the one in Figure 3(left).

In a data flow, we assume that each task receives some data items as an
input and outputs some other data items as a result. Following the database
terminology, each data item is referred to as a tuple. The task metadata that
our optimization techniques require are:

• Cost (ci): we use ci, 1 ≤ i ≤ n as a metric of the time cost of each task per
data item processed. This cost can also encapsulate the data transmission
cost to the next tasks downstream.

• Selectivity (seli): it denotes the average number of returned data items per
source tuple for the i-th service. For filtering operators, seli < 1, for data
sources and operators that just manipulate the input sel = 1, whereas,
for operators that may produce more output records for each input record,
seli > 1. An example of a task with seli < 1 is a bank application that
processes customers in order to report those with inactive accounts, while,
an example of a task with seli > 1 is a bank procedure that outputs all the
connected credit cards for a given account (assuming that each customer has
more than one credit card on average).

3 Note that when DoF = 1, which is rarely the case in data flows, standard database
query optimization solutions become applicable, because then each task can be
treated in the same way a filter is treated with the simple extension that selectivity
can be higher than that.



• Input (inpi): it denotes the size of the input of the i-th task ti in number of
tuples per input data tuple. It depends on the product of the selectivities of
the preceding tasks in the execution plan G.4 More formally, if T prec

i is the

set of all preceding tasks of ti in G, inpi =
∏|Tprec

i
|

j=1 selj.
• Output (outi): The size of the output of the i-th task per source tuple can
be easily derived from the above quantities, as it is equal to inpiseli.

Based on the above, each task is described as a triple ti =< ci, seli, inpi >.
Assuming that selectivities are independent, we can infer that inpi is the only
task characteristic that depends on the position of ti in G; the cost and the
selectivity of each task is independent of the exact G that may include ti.

3.2 Problem Statement, Complexity, Optimality and Approach

Overview

Problem Statement: Given an initial G graph, a set of tasks T with known
cost and selectivity values, and a corresponding precedence constraint graph PC,
we aim to find a valid G that minimizes the sum cost metric (SCM) per source
tuple, defined as follows: SCM(G)= inp1c1+inp2c2+ ...+inpncn. The optimized
plan is denoted as P . �

SCM’s rationale is to provide a good approximation of the resource consump-
tion during the flow execution regardless of physical execution details. Further-
more, in the specific case where all tasks are executed sequentially, it provides a
good approximation of the execution time. Also, it is a common metric in query
optimization as well [10]. Typically the user is capable of providing an initial G
and a set of precedence constraints, possibly with the help of techniques, such
as those in [24]. From the initial set of these constraints, the full PC graph can
be easily derived through the computation of its transitive closure.

Note that more sophisticated cost models can be considered, e.g., models
that define the cost of a task as a function of the input bytes and consider in the
selectivity the number of attributes added or removed. The issue of a data flow
cost model is largely orthogonal to our optimization solutions and we leave the
investigation of cost modelling approaches to future work.

Problem Complexity and Optimality: In [5], where query operators
with precedence constraints that are equivalent to our tasks are considered, it is
proved that finding the optimal ordering of tasks is an NP -hard problem when
(i) each flow task is characterized by its cost per input record and selectivity;
(ii) the cost of each task is a linear function of the number of records processed
and that number of records depends on the product of the selectivities of all
preceding tasks (assuming independence of selectivities for simplicity); and (iii)
the optimization criterion is the minimization of the sum of the costs of all
tasks. All the above conditions hold for our case, so our problem is intractable.

4 Here, there is an implicit assumption that the selectivities are independent; if this
is not the case, the product will be an arbitrarily erroneous approximation of the
actual selectivity of the subplan before each task.



Moreover, in [5] it is discussed that “it is unlikely that any polynomial time
algorithm can approximate the optimal plan to within a factor of O(nθ)”, where θ
is some positive constant. As such, in this work, we do not make any formal claim
as to how close the optimized plans derived by our solutions are to the optimal
plans in the generic case. Note that if we modify the optimization criterion, e.g.,
to optimize the bottleneck cost metric or the critical path renders the problem
tractable [28, 2].

Our approach in a nutshell: To cope with the problem complexity, we
adopt a divide-and-conquer technique. From the initial G, which is either a
MIMO or a generic SISO, we extract L-SISO segments. Then, we optimize L-
SISOs in polynomial time independently.

4 Optimization of L-SISO flows

To tackle the limitations of existing solutions, exemplified in Section 2, we aim
to develop approximate solutions that will be scalable for medium and large
data flows while improving the performance. In the first subsection, we present
solutions that are essentially extensions of existing UDF query optimization
proposals so that they become applicable to our problem. Then, we present our
main novelty with regards to approximate optimization of linear data flows.

The main rationale for optimizing linear plans for L-SISO data flows is de-
scribed, as follows. Firstly, we employ the join ordering algorithm proposed in
[14, 19] as a core building block, which will be referred to as KBZ. The reason
we choose KBZ is to avoid re-inventing the wheel and benefit from the existing
proposals in query optimization to the largest possible extent. KBZ leverages
the rank value of each task defined as 1−seli

ci
, and also considers the dependencies

among tasks. When there are no dependencies, it is known from database opti-
mization research that ordering the tasks by their rank value yields the optimal
execution plan [14, 19]. The main approach of KBZ to handling the cases where
such ordering is not possible because a task with a lower rank should precede a
task with a higher rank is to merge these tasks. For example, assume that we
merge ti and tj . Then, the cost of the merged task becomes cij = ci + selicj
and the new selectivity is selij = seliselj. The rank value of the merged task

equals to
1−selij

cij
. By successively merging tasks if needed, we ensure that all the

remaining tasks are ordered by rank. This allows re-orderings of sets of tasks
rather than individual tasks, and thus is capable of producing the optimal ex-
ecution plan for the example shown in Figure 2. The time complexity of KBZ
algorithm is O(n2).

Our solutions can be described at a high-level as shown in Algorithm 1. The
main challenge is to devise an efficient preprocessing technique, so that KBZ
becomes applicable, since KBZ does not account for arbitrary dependencies
between tasks. This step applies to the PC graph. A trivial step in that pre-
processing phase is to remove all edges that can be inferred through the transitive
closure. In addition, we need to post-process the result of the KBZ algorithm in
order either to guarantee validity or to further improve the intermediate results.



Algorithm 1 Rank ordering based high-level algorithm

Require: A set of n tasks, T={t1, ..., tn} and the PC graph
Ensure: A directed acyclic graph P representing the optimal plan
1: Pre-processing phase: modify PC
2: Apply KBZ algorithm, so that a G is produced.
3: Post-processing phase: enhance G
4: Set P← final G

There are many options regarding how these two phases can be performed and in
this section, we present three concrete suggestions, which constitute the novelty
of this section.

Also note that the input does not require an initial G graph. This is be-
cause, for each L-SISO, respecting the precedence constraints is a necessary and
sufficient validity condition for producing valid flows.5

4.1 Extending Solutions for Queries with UDFs

Approximate optimization solutions have been proposed for queries containing
UDFs in [7],[12], which leverage the task rank values as well. These techniques
cannot be applied to the data flow optimization problem in their original form
because the dependency constraints that they consider refer to pairs of a join
and a UDF, rather than between UDFs. However, it is straightforward to apply
extensions so that constraints between UDFs are taken into account; then we
can treat flow tasks as UDFs.

The rationale of the technique in [7] is to order the tasks in descending order
of their rank values provided that the dependencies are respected. Our proposed
extension adopts this rationale as well, through applying a greedy algorithm.
Specifically, the greedy extension starts from a plan containing only the source
task and in each step, adds the task with the maximum rank, as defined above,
without violating the precedence constraints. The extension of the technique in
[7] is essentially the same as the greedy optimization solution, called GreedyI,
which is thoroughly presented and evaluated in [17], where it is shown that
GreedyI is outperformed by Swap [25].

Similarly, we extend the predicate migration algorithm [12], denoted as PM-
based, in order to optimize data flows considering dependency constraints be-
tween tasks. The proposal in [12] states that tasks should be ordered by their
rank values, and if a task with a lower rank is prerequisite of a task with a higher
rank value, the former should be placed just before the latter. In order to apply
this rationale to data flows, initially, we sort the tasks based on their rank values
without taking into account the precedence constraints. In the post-processing

5 Respecting the precedence constraints is not sufficient for generic flows. For example,
for the left flow in Figure 3, the precedence constraints as defined in this work cannot
capture the requirement that tasks 2,3 and 4 should be placed in different branches
than tasks 5 and 6.



phase, we detect possible constraint violations and resolve them by transposing
the prerequisite tasks just before the task that they must precede. If the tasks
that violate the existing constraints are more than one, they are transposed in
the exact order they are initially positioned. This technique is proved less effi-
cient than the rank ordering heuristics that we propose below, as shown in the
evaluation in Section 7.

4.2 Our first rank ordering-based algorithm RO-I

Our main proposals do not merely extend UDF-query optimization but build
upon the KBZ algorithm. In its original form, KBZ algorithm considers only a
specific form of precedence constraints, namely those representable as a rooted
tree. The fact that KBZ algorithm allows only tree-shaped precedence constraint
graphs implies that there should be no task with more than one independent
prerequisite activity, and in such data flow scenarios, the DoF is very high and
increases more with the number of tasks (e.g., more than DoF=0.9 for a 100-
node flow). Both of these cases do not occur frequently in practice.

In our first proposal, called RO-I (standing for Rank Ordering-based I ), the
pre-processing phase ensures the transformation of the precedence constraint
graph into a tree-shaped one. This is done by maintaining the incoming edge
with the highest rank and removing the other edges, if a task has more than one
incoming edge. This process allows KBZ to run but may produce invalid flow
orderings, due to the removal of dependencies during pre-processing. To fix that,
we employ a post-processing phase where any resulting precedence constraint
violations are resolved by moving tasks upstream if needed as prerequisites for
other tasks placed earlier.

The worst case complexity of the pre-processing phase is O(n2) because we
remove up to n− 1 incoming edges from each task and we repeat this for n− 1
tasks of the flow. Additionally, in the post-processing step, we check, for each
of the n tasks, if any of the preceding tasks violates the precedence constraints.
There can be up to n − 1 preceding tasks in a flow ordering. So, in the worst
case, the complexity is O(n2).

An illustrative example of applying RO-I is depicted in Figure 6. In that
figure, we present the initial metadata and the pre-processing phase, in order to
transform the precedence constraint graph into tree-shaped graph. The initial
precedence constraint graph is pruned in the sense that all edges implied by
the transitive closure are removed. The graph on the right side of the figure
shows the final result after removing the edges (t5, t6), (t7, t9) (as shown in
the figure, it is convenient to temporarily leave the sink task out, and after
optimization, to attach it to the last task). Then, we apply the KBZ algorithm
and finally, we apply the validity post-process phase of RO-I to ensure that the
optimized execution flow plan does not violate the dependency constraints. In
the transformed graph, KBZ has no knowledge for example, that t6 should not
be placed before t5, and indeed it initially places t6 in a way that violated the
constraints. Figure 7 shows the complete way in which the output of KBZ on
the top is transformed to a valid plan.



Fig. 6. An example of RO-I pre-processing phase.

4.3 RO-II

The RO-II algorithm follows a different approach in order to render KBZ appli-
cable, that is to transform the PC graph to a tree. In the pre-processing phase,
this approximate algorithm first detects paths in the precedence constraint graph
that share an intermediate source and sink. Then it merges them to a single path
based on their rank values. When there are multiple such paths, we start merg-
ing from the most upstream ones and when there are nested paths, we start
merging from the innermost ones. In that way, all precedence constraints are
preserved at the expense of implicitly examining fewer re-orderings. Figure 8
illustrates in detail the steps of the application of RO-II in the flow of Figure
6. The steps 1-3 describe the pre-processing phase of RO-II, where we merge
two sub-segments into a linear sub-flow, because they create cycles by sharing
the same intermediate source and sink. In that example, after the merging pro-
cedure we enforce more precedence constraints than the original ones, so that
the task t3 must precede not only task t6 and t7 but also tasks t2, t4, t5 and t8.
In other words, the merging process imposes more restrictions on the possible
re-orderings. As such, these local optimizations may still deviate from a globally
optimal solution significantly in the average case. RO-II does not require any
post-processing because its result is always valid.

In the case of RO-II, the time complexity remains O(n2) because, for each
merge process, we consider at most O(n) flow tasks and we repeat this for all
the possible merge processes that can be up to n.

4.4 RO-III: an enhancement to RO-II



Fig. 7. The post-processing phase of RO-I for the example in Figure 6.

Algorithm 2 RO-III post-processing phase

Require: A set of n tasks, T={t1, ..., tn}
A directed acyclic graph with precedence constraints
Optimized plan G as a directed acyclic graph returned by RO-II

Ensure: A directed acyclic graph P representing the optimal plan
1: repeat

2: {k is the maximum subplan size considered}
3: for i=1:k do

4: for s=1:n-i do
5: for t=s+i:n do

6: consider moving subplan of size i starting from the sth task after the tth

task in G
7: end for

8: end for

9: end for

10: until no changes applied
11: P ← G

After the evaluation of the proposed RO-I and RO-II algorithms, we isolated
data flows where optimization yielded not near-optimal plans. A typical problem



Fig. 8. An application example of RO-II with the metadata of Figure 6.

with RO-II is that it cannot move a filtering task to an earlier stage of the flow,
even if this is not constrained by operator precedences, due to the additional
restrictions that are implicitly incorporated as explained earlier. To address this
problem, we propose RO-III, which tackles the limitations of RO-II with the
help of a post-processing phase that we introduce (see Algorithm 2). We first
apply the RO-II algorithm in order to produce an intermediate execution plan,
and then we examine several transpositions. More specifically, we check all the
possible re-orderings of each sub-flow of size from 1 to k tasks in the plan.
The checks are applied from the left to the right. In this way, we address the
problem of a task being “trapped” in a suboptimal place upstream in the flow
execution due to the additional implicit constraints introduced by RO-II. This
process is described by the three nested for loops in Algorithm 2 and is repeated
until there are no changes in the flow plan. The reason we repeat it is because
each applied transposition may enable further valid transpositions that were not
initially possible.

The post-processing phase of the RO-III algorithm has O(kn2) complexity,
which is derived by the maximum number each of the three inner loops can
execute. The repeat process in theory can execute up to n times, but according
to our observations during experiments, we see that even for large flows, there
is no change after 3 times. In all experiments, we set k to 5.

In Figure 9, the result of the post-processing phase of algorithm RO-III is
described. In this phase the optimized flow plan occurred by moving t7 to a later
stage.



Fig. 9. The post-process phase of the RO-III algorithm taking as input the generated
optimized execution plan of RO-II, as depicted in 8.

4.5 Discussion

The above algorithms explore a different and overlapping search space. There
is no clear winner between RO-I and RO-II, but, in general, both of them out-
perform the solutions in Section 4.1, as will also be discussed in Section 7. By
design, RO-III explores the largest search space and always outperforms RO-II
(since RO-III is an extension to RO-II ), as RO-II may fail to reorder a filtering
task to an earlier stage of the flow. But there might be cases where RO-III is
inferior to RO-I or even Swap, as a consequent of the fact that different plans
are indirectly and directly evaluated by each technique. However, as elaborated
in the evaluation section, such cases are relatively rare.

5 Producing Non-linear Plans for L-SISO flows

This section focuses on the advantages of non-linear (or parallel) execution plans
for L-SISO flows. As we have explained in Section 3, in a parallel flow, each single
task can have multiple outgoing edges, which implies that the output of such a
task is fed, as input, to multiple tasks. In the right part of Figure 4, we observe
that a single task may have not only multiple outgoing edges, but also multiple
ingoing edges. In this case, a single task receive as input data the output of
multiple tasks, and merges them back into a single input. This is in line with
the AND-Join workflow pattern as presented in [31], where the outgoing edge
of multiple tasks that are executed in parallel converge into a single task.

In software tools, such as PDI, the merge process can be implemented by in-
corporating a common sort merge self-join on the record ids. A similar approach
is followed also in flows consisting of calls to Web Services [28]. As such, merging
multiple input streams incurs an extra execution cost. To assess this cost, we
evaluated parallel data flows that were executed with the PDI tool. The conclu-
sion was that the merge task cost has a small effect on the total flow execution



Fig. 10. Example of linear and non-linear execution plans for the same flow.

cost due to the fact that the inputs are typically already ordered by their IDs;
in other words, the merge task is similar to an additional lightweight activity.
Additionally, the size of the input (inpi) of a task ti, which receives more than
one incoming edge is defined similarly to the tasks with only one incoming edge,
i.e., by computing the product of the selectivity values of the preceding tasks as
we have described in Section 3.

We now analyze the benefits of parallel flow execution by means of a theoret-
ical example that considers two subsequent tasks t3 and t4 illustrated in Figure
10, which are not in a precedence relation and an extra cost of the merge process
that will be denoted as mc. In this figure, we show two alternative plans, a linear
one (in the middle) and a parallel one (on the right). The SCM values of the
two alternatives vary only with respect to activities t4 and t5. We distinguish
between the following four cases (using a superscript to differentiate the inputs
in the two cases):

• Case I: sel3 ≤ 1 and sel4 ≤ 1. The linear execution cost is lower than the
parallel execution cost, because (i) inplinear4 c4 < inp

parallel
4 c4 as inplinear4 =

sel3inp
parallel
4 and sel3 < 1, and (ii) inplinear5 c5 < inp

parallel
5 (c5 +mc) due

to the extra merge cost of the parallel version and given that inplinear5 =

inp
parallel
5 . So, in that case, parallelism is not beneficial.

• Case II: sel3 ≤ 1 and sel4 > 1. Similar with the Case I, the linear execution
of the flow is more beneficial than the parallel; note that the selectivity value
sel4 does not affect the previous statements.

• Case III: sel3 > 1 and sel4 > 1. If mc = 0, the parallel execution results in
better performance than the linear execution. In that case inplinear5 c5 =

inp
parallel
5 (c5 + mc). Because of the fact that sel3 > 1, we deduce that

inplinear4 c4 > inp
parallel
4 c4. In the generic case where mc > 0, we need to

compute the estimated costs in order to verify which option is more ben-
eficial, but we expect that, for small mc values, the parallel execution to
outperform.

• Case IV: sel3 > 1 and sel4 ≤ 1. Following the rationale of the previous case,
there is no clear winner between the two executions shown in Figure 10.
However, an optimized linear plan will place t4 before t3 thus corresponding
to Case II, where the (new) linear plan is better than the parallel one.



Fig. 11. Example of executing L-SISO flows in parallel.

Algorithm 3 Post-process step for parallel L-SISO flows

Require: An optimized linear plan P={t1 → ...→ tn}
A directed acyclic graph with precedence constraints

Ensure: A directed acyclic graph P representing the optimal parallel plan
1: i=1
2: while i < n do

3: j=i+1
4: while selP (j) > 1 do

5: Delete the edge between the tasks tP (j−1) → tP (j) from P

6: if tP (j) is not predecessor in precedence constraint graph for no task in
ti+1 . . . tj−1 then

7: Connect the edge between the tasks (i) tP (i) and (ii) tP (j), i.e., create the
edge tP (i) → tP (j) in P

8: else

9: Connect in P the edge between (i) all the preceding tasks in precedence
constraint graph with no outgoing edges in P and (ii) tP (j)

10: end if

11: j = j + 1
12: end while

13: Connect in P the edge between (i) all the tasks tP (i+1) . . . tP (j−1) with no out-
going edges in P and (ii) tP (j)

14: i=j
15: end while

In order to exploit the advantages of the optimization opportunities of Case
III, we introduce a post-process phase in the solutions of Section 4 (see Algo-
rithm 3). After the generation of an optimized linear execution plan, we apply



a post-process step that restructures the flow in a way that subsequent tasks
having selectivity greater than 1 are executed in parallel if this does not incur
violations of the precedence constraints. This post-process step can be applied
to any optimization algorithm that produces a linear ordering.

Two examples are presented in Figure 11, where, in the upper flow scenario,
we choose to parallelize t2, t3 and t4, while in the flow case that is depicted in the
bottom of the figure, we execute parallel only t2 and t3 and not t4, because of the
precedence constraints. Then, t5 is appended after t2 because of the constraints
and is executed in parallel with t4. As t6 has selectivity value < 1, it is not
executed in parallel with any other task.

The complexity is O(n2). The parallelization of each task is examined at
most once, and for each such case, the preceding tasks need to be checked, the
number of which cannot exceed n.

As a final note, in the previous discussion, we have silently assumed that
sending the output to more than one task downstream does not incur an extra
cost. This is common to centralized and share-memory parallel systems where
the results of a task are kept in memory and are accessible to any subsequent
task at no extra cost. In distributed settings where tasks are at distinct places,
having multiple outgoing edges incurs extra cost, which however can be treated
exactly as mc.

6 Optimizing MIMO flows: the complete approach

So far we have discussed the case of chains with single-source and a single-
sink task, but arbitrary multiple-input multiple-output (MIMO) flows can ben-
efit from the solutions presented in the previous sections. The generic types of
MIMO flows are described in [32], two of which are shown in Figure 12. A main
difference between L-SISO andMIMO flows is that apart from re-ordering tasks,
additional optimization operations can apply. As explained in [25], the factorize
and distribute operations can move an activity appearing in both input subflows
of a binary activity to its output and the other way around, respectively.6 This
allows for example a filtering operation initially placed after a merge task to be
pushed down to the merge inputs (provided that the filtering condition refers to
both inputs), which is known to yield better performance.

Figure 12 displays exemplary MIMO data flows of types butterfly (top) and
fork (bottom). In these cases, the optimization of L-SISO data flows can play an
important role in optimizing MIMO flows as MIMO flows consist of a set of L-
SISO flows. Algorithm 4 describes a divide-and-conquer proposal for optimizing
MIMO flows, which is based on the extraction of these linear segments of the flow
and apply optimization algorithms only on the L-SISO sub-flows. Remember
that in the generic case, we start from an initial valid plan rather than from the
PC graph.

6 [25] additionally considers the case that an activity can be further split in several
sub-activities, which is not considered here.



Fig. 12. Example MIMO data flows of type butterfly (top) and fork (bottom).

Algorithm 4 Optimization of MIMO flows
1: repeat

2: Extract L-SISO segments
3: for all L-SISO segments do

4: Optimize L-SISO segments
5: end for

6: Apply factorize/distribute optimization thus modifying the L-SISO segments
7: until no changes

The extraction of the linear segments of a MIMO flow in line 2 of the algo-
rithm can be performed in a simple manner with linear complexity. Traversing
a path from a source, we stop when a task with multiple incoming edges is en-
countered (e.g., ti in Figure 12). The latter task plays the role of the sink for
that segment. It also plays the role of the source for each segment starting from
it. We iteratively repeat this process until all tasks are visited.

In lines 3-5, we exploit the optimization solutions that we proposed for L-
SISO flows and use them as the main building block to optimize MIMO flows.
Then, we check whether we can apply the factorize/distribute operations, which
modify the linear segments. This process is repeated until it converges. In this
work, we focus solely on task re-ordering (which corresponds to optimize the
linear segments individually) and the investigation of further techniques that
combine task re-orderings with additional operations is left for future work.

The complexity of Algorithm 4 is quadratic in the number of tasks of the
largest L-SISO segment and also quadratic in the number of L-SISO segments,
given that the factorize and distribute operations can occur an amount of times
that is proportional to the number of segments.



Fig. 13. An example of MISO data flow optimization.

6.1 The special case of SIMO and MISO flows

The single-input multiple-output (SIMO) andmultiple-input single-output (MISO)
are two special structures of MIMO data flows. In the following, we introduce
two techniques for optimizing such data flow cases, when no factorize and dis-
tribute operations are required, e.g., there are no cases where a filter after a
binary join should be moved to both input branches upstream. To perform the
optimizations below, we relax the definition of L-SISOs to include any chain of
operators so that larger segments in the flow are optimized using the RO-III
algorithm (Section 4).

In the case of the MISO data flows, like the one in Figure 13, the first step is
to find the L-SISO flow segment with the maximum length of path defined from
the source to the sink task. In the case that we find two L-SISO segments with
the same path length, we choose to optimize the sub-flow with the minimum sum
of the rank values of the tasks that it consist of. This implies that we choose the
L-SISO sub-flow with the most expensive tasks with high selectivity values.

A detailed example of our technique is described in Figure 13. In the figure,
the L-SISO segments are in dotted boundaries, omitting the trivial ones that
consist of a source and a sink task only. In this example, the L-SISO segment
t1 → t2 → t5 → t6 → t13 (1) and t3 → t4 → t5 → t6 → t13 (2) have equal
length of path from their source tasks to their common sink task. So, we estimate
the sum of the rank values of sub-flow (1) and (2) showing that the minimum
sum of ranks corresponds to the L-SISO segment t3 → t4 → t5 → t6 → t13 (2).



Fig. 14. An example of SIMO optimization.

Then, we apply the RO-III algorithm to optimize this sub-flow by re-ordering
its tasks, as shown in the bottom part of the figure.

After this optimization, the incoming edges of each of the tasks in the opti-
mized subflow become immutable even when they come from external tasks, for
example the edges t2 → t5 and t9 → t6 remain fixed. The corresponding tasks
(t5 and t6) play the role of temporary sinks for the non-optimized branches. The
next step is to isolate all the L-SISO segments that their tasks are not part
of the already optimized L-SISO segment (2), except for their temporary sinks
that are tasks of the segment (2) in the example, e.g. t1 → t2 → t5. For each
of these, we follow the same procedure described earlier. Specifically, we find
the maximum path length from each source task to its corresponding temporary
sink. So, in the example, we optimize the L-SISO t10 → t11 → t12 → t13 (3).
Then, for equivalent L-SISO segments, such as t7 → t9 → t6 and t8 → t9 → t6,
we follow the same approach until we finish with all branches.

For this technique to be correct, the precedence constraints need to be defined
carefully. For instance, in the example of the figure, t4 should be allowed to move
downstream regarding the input of not only t3 but t1, t7 and t8, too.

Another special structure of MIMO flows is the SIMO one, where their
optimization is based on the same rationale of the technique that we have
just described. Figure 14 shows an example of the proposed technique. In this
case, the main difference is that we initially consider one L-SISO segment for
each sink. For example, the L-SISO segment t1 → t2 → t3 → t6 → t13 and



t1 → t2 → t3 → t6 → t14 or t1 → t2 → t4 → t8 and t1 → t2 → t4 → t9, and so
on. Then, we follow the same optimization procedure as for MISO data flows.

The main difference between these two techniques is that each segment re-
ordering, like the reordering of the t1 → t2 → t3 → t6 → t14 segment, may force
the temporary source to change in order to avoid constraint violations for the
remainder segments; the temporary source of the non optimized segment s be-
longing to the optimized segment s′, is the most downstream vertex of s′, which
is connected to any vertex of s with a precedence constraint. For example, in
Figure 14, t13 is connected to t3 in the optimized plan, assuming that, initially,
there is a precedence constraint between both (i) t3 and t13 and (ii) t6 and t13.
Further in this example, we assume that moving t11 before t5 does not compro-
mise the validity of the output in t10 and t12; otherwise, a precedence constraint
between t11 and t5 would exist.

7 Experimental Analysis

We split the evaluation part in three parts. The first one considers synthetic flows
in a real environment. We use synthetic flows in order to thoroughly compare the
techniques in a wide and configurable range of settings. In the second part, we
focus on the computed cost of the resulting execution plans, which can be safely
performed offline. The last part deals with the time overhead of the optimization
techniques. According to [27], large flows are those that comprise 100 tasks, thus
most of our experiments consider flows up to this size.

7.1 Data flows in a Real System

In this set of experiments, we present running times when executing synthetic
flows in Pentaho Data Integration - Kettle (PDI, v. 5.2). PDI supports two
execution modes, pipelined execution (default) and sequential. We chose the
latter so that the measured running time corresponds to the sum cost metric
(SCM ) targeted in our algorithms. The machine we used is equipped with an
Intel Core i5 660 CPU and 6 GB of RAM.

The main purpose is to evaluate the performance optimization, which corre-
sponds to the minimization of the estimated flow execution cost SCM. The per-
formance improvements of our algorithms are measured as either the decrease
in running time or the speed-up achieved. The speed-up of a faster algorithm A

with respect to a slower one B is defined as follows: Speed− up = SCM(B)
SCM(A) .

We construct synthetic flows so that we thoroughly evaluate the algorithms
in a wide range of parameter combinations and we are in a position to derive
unbiased and generically applicable lessons for the behaviour of each algorithm.
The main configurable parameters are two: (i) the cost and selectivity values of
the flow tasks, which are distributed in the range of [1, 100] and (0, 2], respec-
tively; and (ii) the values of DoF, where we considered DoF=0.2,0.4,0.6,0.8 ; the
smaller the DoF value, the less the opportunities for optimization exist. In this
experiment, the size of the flows (i.e., the number of the tasks) is fixed to 30 and
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Fig. 15. Median normalized running times of a data flow with 30 tasks (the values are
in normalized time units).

they process 100K records. In order to conduct the experiments, we randomly
generate precedence constraint DAGs and task characteristics in a simulation
environment. In PDI, all the tasks were dummy ones, i.e., they did not perform
any actual processing, but they repeated a processes a number of iterations pro-
portional to their cost and produced an output record according to their assigned
selectivity.

For everyDoF value, we generate 10 test PC DAGs, and each individual DAG
instantiation is executed 5 times. Unless otherwise mentioned, median values are
presented. The medians better represent the practical value, and in general are
lower than the average values, which are affected by outliers.

Figure 15 shows the behavior of the rank ordering-based optimization tech-
niques proposed in Section 4. In the figure, the running times are normalized
according to the lowest ones achieved by RO-III, so that improvements are more
clearly presented. We see that the highest median improvements over the best
performing between Swap and PM-based are for DoF values 0.4 and 0.6. More
specifically, Swap exhibits higher times by 47.8% and 58.2% for DoF values of
0.4 and 0.6, respectively. PM-based exhibits higher times by 30.3% and 73.6%
for DoF values of 0.4 and 0.6, respectively. The improvements are lower for
flows with DoF of 0.2 or 0.8. However, both these cases are more rare in prac-
tice: when DoF=0.8, simply ranking by the rank value as in filter ordering in
database queries is sufficient, whereas, when DoF=0.2, there is relatively small
space for improvements. In other words, when DoF is low there is small space for
re-orderings, whereas, for high DoF values, the need for sophisticated constraint-
aware algorithms is ameliorated.



Table 1. Maximum observed times RO-III is faster

alg \ DoF 0.2 0.4 0.6 0.8

PM-based 1.84 2.41 4.77 2.06

Swap 1.84 3.30 3.62 1.39

Regarding the behavior of our algorithms, RO-I outperforms RO-II by a
small factor, for DoF values greater than 0.2. Also, the supremacy of RO-III is
more evident for DoF=0.6.

The numbers thus far discussed are median values. However, in individual
DAGs, we observed significantly larger improvements due to RO-III. The maxi-
mum improvements of RO-III are presented in Table 1, and as shown, for these
30-task flows executed in PDI, RO-III can run up to more than 4 times faster.

7.2 Synthetic Scenarios

In this section we present a more extensive set of experiments, where the size
of flows n ranges from 10 to 100 (without including the source and sink tasks).
Each combination of DoF, costs, selectivities and flow size is instantiated 100
times. In Section 2, we presented the clear gap between the best heuristic to
date, namely Swap, and the accurate solution for a real small flow. We aim to
show how the rank ordering-based solutions are capable to significantly improve
the performance of the data flow execution and how the parallelism of L-SISO
flows can be beneficial. Finally, we evaluate the proposals for MIMO flows.

Performance of Rank Ordering-based Solutions Our first experiment
compares the techniques for L-SISO flows, and extends the evaluation ratio-
nale of the previous section in the sense that we include the performance of an
initial non-optimized flow, derived by simple topological ordering of the con-
straints. Figure 16 presents the median speed-up achieved by the optimization
solutions compared to the non-optimized case.

Several observations can be drawn. First, RO-III is a clear winner and its
median performance is better in all cases without a single exception. Second, PM-
based solutions achieve significantly lower speed-ups than the other optimization
algorithms. This supports our observation that using rank values only is not
sufficient. Third, the median improvements of RO-III over the best heuristic
of the state-of-the-art Swap and PM-based can be significant, as the RO-III
can have 3 times better performance than these heuristics; this difference is
observed for n = 90 and DoF = 0.8 and for n = 100 and DoF = 0.8, 0.4. We
compare RO-III against Swap and PM-based more thoroughly later. Fourth,
RO-I outperforms RO-II for DoF=0.2 on average, while RO-II outperforms
RO-I for DoF=0.8. For DoF=0.6,0.4, there is not a clear winner between RO-I
and RO-II. Finally, we see that RO-II behaves worse than RO-III, which implies
that the extensions of the latter are effective.
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Fig. 16. Speed-ups with regards to the non-optimized flow for DoF=0.8 (top-left), for
DoF=0.6 (top-right), for DoF=0.4 (bottom-left) and for DoF=0.2 (bottom-right).

When considering average instead of median execution times, the average
speed-ups for RO-III reach three orders of magnitude. This can be explained
with isolated runs, where the speed-ups are five or six orders of magnitude. In
other words, the plots in Figure 16 are rather conservative in terms of potential
of our proposals for improving on the SCM.

The numbers mentioned above refer to all the 100 flows for each combina-
tion of parameters. In Table 2, we present the speed-up that RO-III yields with
regards to the best performing technique between PM-based or Swap on a more
detailed basis (in each flow, a different technique may yield the highest perfor-
mance). The table shows both the number of occurrences that one algorithm
outperforms the others in each set of 100 random flows. For small flows of 10
tasks, there is a probability that all solutions yield the same execution plan. This
probability ranges from 16% to 59% for flows with DoF equal to 0.8 and 0.2,
respectively. For larger flows, it is extremely rare PM-based or Swap to find the
same or a better plan (less than 1% of the cases).

The table also shows the average and median speed-ups. For flows with 100
tasks, the SCM drops to the half on average, if not more. For example, when
n = 100 and DoF = 0.4, PM-based (resp. Swap) runs 11.35 (resp. 3.6) times
slower than RO-III on average. In isolated runs, the performance improvements



Table 2. Detailed comparison of RO-III against the best performing between Swap

and PM-based : number of cases, average and median speed-ups.

DoF=0.8

RO-III better same RO-III worse

n ♯times avg median ♯times ♯times avg median
10 84 1.2895 1.1238 16 0 - -
20 99 1.6539 1.3200 0 1 1.0656 1.0656
40 100 2.2130 1.3243 0 0 - -
60 100 2.7779 1.4920 0 0 - -
80 100 2.2587 1.2209 0 0 - -
100 100 3.0435 1.1691 0 0 - -

DoF=0.6

RO-III better same RO-III worse

n ♯times avg median ♯times ♯times avg median
10 82 1.2981 1.1431 18 0 - -
20 100 1.6657 1.2537 0 0 - -
40 100 3.0637 1.4808 0 0 - -
60 99 2.2811 1.4993 0 1 1.0103 1.0103
80 100 2.7548 1.8658 0 0 - -
100 99 2.1876 1.3618 1 0 - -

DoF=0.4

RO-III better same RO-III worse

n ♯times avg median ♯times ♯times avg median
10 47 1.1993 1.1081 53 0 - -
20 96 1.4283 1.2477 1 3 1.2489 1.0817
40 100 1.8940 1.3474 0 0 - -
60 99 2.0278 1.4952 0 1 1.0909 1.0909
80 100 2.2472 1.5798 0 0 - -
100 99 3.5996 1.5130 0 1 1.0793 1.0793

DoF=0.2

RO-III better same RO-III worse

n ♯times avg median ♯times ♯times avg median
10 41 1.1375 1.0520 59 0 - -
20 81 1.1495 1.0431 17 2 1.0471 1.0471
40 99 1.3974 1.1899 0 1 1.004 1.0471
60 100 1.5893 1.3329 0 0 - -
80 99 1.6200 1.3645 0 1 1.0047 1.0471
100 100 1.9962 1.4778 0 0 - -

are more impressive and reach two orders of magnitude. For example, we have
observed speed-ups of up to 645 (resp. 98) times with regards to PM-based (resp.
Swap) for n=100. For smaller flows of n = 50, the maximum observed speed-up
is 76 (resp. 41) times.

We conclude this part of the discussion with a comment on RO-III vs. RO-
I. In average, RO-III is more efficient than RO-I, but in 1-6% of the cases, it
produces costlier plans than RO-I by up to 44%. Also, in some combinations of
parameters, the plans may be the same. By design, RO-III is never worse than
RO-II.

Performance of Parallel Optimization Solutions This set of experiments
is conducted in order to evaluate the performance of data flows when they are ex-
ecuted in parallel according to the techniques discussed in Section 5. To this end,
we compare the parallel version of Swap, named as PSwap, against the parallel



Table 3. Normalized SCM for data flows with n=50,100 tasks.

n=50

alg\DoF 0.8 0.6 0.4 0.2

Initial 14.8634 10.6080 6.0250 2.6482

PSwap 1.3871 1.7109 1.4704 1.1854

PSwap′ 1.4139 1.7389 1.5841 1.2188

PPM-based 2.5108 2.1285 1.6159 1.2030

PPM-based′ 2.5813 2.2108 1.6600 1.2215

PRO-I 1.0985 1.2902 1.1688 1.0571

PRO-I′ 1.1082 1.3011 1.1876 1.0748

PRO-II 1.0488 1.1814 1.3028 1.1930

PRO-II′ 1.0538 1.1984 1.3251 1.2368

PRO-III 1.0000 1.0000 1.0000 1.0000

PRO-III′ 1.0000 1.0002 1.0015 1.0037

n=100

alg\DoF 0.8 0.6 0.4 0.2

Initial 37.8602 25.3375 18.3169 7.2005

PSwap 1.7214 2.1954 2.1684 1.8378

PSwap′ 1.7778 2.2805 2.2565 1.9894

PPM-based 4.8242 4.4072 2.6290 1.8643

PPM-based′ 4.8421 4.5622 2.7421 1.9683

PRO-I 1.5256 1.6575 1.4910 1.4188

PRO-I′ 1.5410 1.7268 1.5312 1.5068

PRO-II 1.1097 1.5330 1.9290 1.9040

PRO-II′ 1.1146 1.5670 2.0122 1.9817

PRO-III 1.0000 1.0000 1.0000 1.0000

PRO-III′ 1.0000 1.0001 1.0009 1.0181

Table 4. Times per 100 runs where non-linear plans improve >10%

n=50 n=100

alg\DoF 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

PM-based 7 11 11 10 17 23 25 21

Swap 13 19 20 15 31 37 35 33

RO-I 9 6 10 10 15 17 19 12

RO-III 0 0 2 5 0 3 1 2

proposed rank ordering-based algorithms, denoted as PRO-I,PRO-II,PRO-III,
respectively. We also compare against PPM-based. Initially, we assume that the
merge cost mc is 0 and then, we repeat the experiments considering with non-
zero merge cost. The value of the extra merge cost was defined after experiments
in real data flows with the PDI tool. So, we set the mc = 10, that is an order of
magnitude higher than the less expensive tasks and an order of magnitude lower
than the most expensive ones. We examine data flows consisting of 50 and 100
tasks.



The comparisons are presented in Table 3, where it is shown that the paral-
lelized version of RO-III, PRO-III, strengthens its position as the best performing
technique. When the merge cost is considered, the names of the algorithms are
coupled with the prime symbol (e.g., PSwap′); for the moment we do not focus
on those table rows.

The aim of this evaluation is to show how often and to what extend par-
allelization is beneficial. The observed speed-ups are strongly correlated with
the DoF. For low DoF=0.2, we observe that PRO-III has at least 19% lower
execution cost than PSwap when the flow consists of 50 tasks. The performance
improvement increases as the size of the flow and/or DoF increases. For ex-
ample, when we optimize flows with 100 tasks for the same DoF the observed
improvement is 84% and 86% against Swap and PM-based, respectively. Addi-
tionally, for flows with 100 tasks but higher DoF=0.6, we observe speed-ups up
to 4 times.

The key observation after analyzing the individual runs is that, in the ma-
jority of the cases, parallel execution is beneficial. In the worst case, there is
no performance improvement, producing non-linear plans can never lead to per-
formance degradation. Table 4 shows the number of cases in each set of 100
examples, where the improvement was over 10%. We can see that PSwap is
the algorithm that benefits the most from non-linear plans, whereas there are
small benefits for PRO-III. This is partially due to the fact that RO-III already
produces efficient plan what are harder to further improve upon.

We conclude that further refining the linear orderings with our proposed
light-weight post-processing step can yield tangible performance improvements.
The results after the application of the extra merge cost prove that its impact
is not significant (see bottom part in Table 3) and the above observations still
hold.

Performance of MIMO flows This set of experiments considers the eval-
uation of the methodology that is analyzed in Section 6 for MIMO data flow
optimization. We consider two cases of butterfly flows (see Figure 12(left)). In
each case we consider 10 linear segments with 10 and 20 tasks, respectively; thus
the overall number of tasks is 100 and 200. The DoF of each linear segment is
0.6.

Figure 17 presents the median speed-ups of the PRO-III, Swap and PM-based
algorithms over the non-optimized initial data flow. In the case where the linear
segments are very small (10 tasks) the improvements are up to 86% (PRO-III ).
When the linear segment size increases to 20, PRO-III has median speed-up
3.8 times and 62% and 55% better performance improvement than Swap and
PM-based, respectively. Overall, the results of the previous sections focusing on
L-SISO flows generalize to MIMO flows as well.

7.3 Time Overhead

We also conduct an evaluation of the time overhead of the RO-III, PRO-III
and Swap optimization algorithms. The purpose of this set of experiment is to
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Fig. 18. The optimization time of RO-III, PRO-III and Swap for DoF=0.6.

show how these techniques scale as the size of data flow increases from 10 to
100 tasks for DoF=0.6. The findings show that the optimization time of RO-III
and PRO-III algorithms is similar and their differences are negligible. In Figure
18, the key conclusion is that even for large flows, our proposals are capable of
optimize a data flow in less than a second despite the fact that Swap algorithm
scales better than rank ordering algorithms. The overhead of RO-I and RO-II
lies in between the overhead of RO-III and Swap (not shown in the figure).
Overall, our proposal seems to trade a very small time overhead for significant
improvements in SCM.



8 Related Work

In this section, we take a deeper look at the proposals that optimize the flow
execution plan through changes in the structure of the flow graph including task
re-ordering.

For completeness, we start from flow optimization solutions that are inspired
by query processing techniques, which are inferior to those already discussed in
the beginning of Section 4. In [9], an optimization algorithm for query plans with
dependency constraints between algebraic operators is presented. The adapta-
tion of this algorithm in our L-SISO problem setting is reduced to optimization
algorithms that are less efficient than Swap [17]. In [15], ad-hoc query optimiza-
tion methodologies are employed in order to perform structure reformations,
such as re-ordering and introducing new services in an existing workflow; in this
work we investigate more systematic approaches.

Optimizations of Extract Transform Loading (ETL) flows are analyzed in
[25]. In this proposal, ETL execution plans are considered as states and tran-
sitions, such as swap, merge, split, distribute and so on, are used to generate
new states in order to navigate through the state space, which corresponds to
the execution plan alternatives. However, the complete proposal for reducing
the ETL workflow has exponential complexity. In our work, where we deal with
task re-orderings only, the relevant part of the proposal in [25] corresponds to
the Swap algorithm, which is explicitly considered in our evaluation. Additional
simple heuristics proposed for minimizing the SCM have appeared in [20] and
[34]; those heuristics are also reported to be inferior to Swap [17].

Another interesting approach to flow optimization is presented in [13], where
the optimizations are based on the analysis of the properties of user-defined
functions that implement the data processing logic. This work focuses mostly
on techniques that infer the dependency constraints between tasks through ex-
amination of their internal semantics rather than on task re-ordering algorithms
per se. An extension has appeared in [24], but this solution is not scalable.

In addition, there is a significant portion of proposals on flow optimization
that proceed to flow structure optimizations but do not perform task re-ordering,
as we do. As such, they are orthogonal to our work. For example, the propos-
als in [33, 30] fall into this category. Several optimizations in workflows are also
discussed in [4], but the techniques are limited to straightforward application
of query optimization techniques, such as join re-ordering and pushing down
selections. Additionally, there are optimization proposals for the parallel execu-
tion of online Web-Services represented as queries, such as the proposal in [28],
which however aims to minimize the bottleneck cost rather than the sum of the
task costs. The optimization techniques that have been proposed in [2] and [29]
also aim to minimize the bottleneck cost. Another optimization proposal that
targets a different optimization metric, namely throughput maximization in a
parallel setting, is presented in [8]; the distinctive feature of this proposal is
that it provides a set of concurrent execution plans. Finally, numerous proposals
target efficient resource allocation. Contrary to our work, they assume an execu-
tion setting with multiple execution engines and do not deal with optimization



of the flow task ordering, e.g., [18, 26]. [21] discusses methodologies about how
to execute and dispatch task activities in parallel computers, while some other
proposals deal with task scheduling, e.g., [3].

9 Conclusions

In this work, we deal with the problem of specifying the optimal execution order
of constituent tasks of a data flow in order to minimize the sum of the task exe-
cution costs. We are motivated by the significant limitations of fully-automated
optimization solutions for data flows with arbitrary tasks, as, nowadays, the opti-
mization of complex data flows is either left to the flow designers and is a manual
procedure or relies on solutions that have limited efficiency or scalability. To fill
the gap of efficient optimization techniques, we initially focus on flows with a
single data source and sink, and propose a set of approximate algorithms that
can yield improvements of several factors on average, and several orders of mag-
nitude in isolated cases. We then introduce a post-process optimization phase
for parallel execution of the flow tasks to further improve the performance of a
data flow. Finally, we show that we can extend these solutions to more complex
data flow scenarios that deal with arbitrary number of sources and sinks.

There are several avenues for further research, including deeper investigation
of optimizing arbitrary MIMO flows, and consideration of other types of con-
straints, e.g., not allowing two tasks to be placed in the same branch. A more
ambitious goal is to provide more holistic flow optimization algorithms, which
combine task ordering with aspects, such as task implementation and scheduling.
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