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In recognition that in modern applications billions of images are stored into distributed databases in dif-
ferent logical or physical locations, we propose a similarity search strategy over the cloud based on the
dimensions value cardinalities of image descriptors. Our strategy has low preprocessing requirements by
dividing the computational cost of the preprocessing steps into several nodes over the cloud and locating
the descriptors with similar dimensions value cardinalities logically close. New images are inserted into the
distributed databases over the cloud efficiently, by supporting dynamical update in real-time. The proposed
insertion algorithm has low computational complexity, depending exclusively on the dimensionality of de-
scriptors and a small subset of descriptors with similar dimensions value cardinalities. Finally, an efficient
query processing algorithm is proposed, where the dimensions of image descriptors are prioritized in the
searching strategy, assuming that dimensions of high value cardinalities have more discriminative power
than the dimensions of low ones. The computation effort of the query processing algorithm is divided into
several nodes over the cloud infrastructure. In our experiments with seven publicly available datasets of im-
age descriptors, we show that the proposed similarity search strategy outperforms competitive methods of
single node, parallel and cloud-based architectures, in terms of preprocessing cost, search time and accuracy.
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1. INTRODUCTION
With the ubiquitous presence of capture devices such as phones, digital cameras, and
camcorders, the Internet has been transformed into a major channel for multimedia
content delivery [Tian et al. 2010]. Searching for images in large databases based on
visual similarity is a main challenge for the multimedia community [Zhang and Rui
2013]. Over the last two decades, several similarity search strategies were proposed
to retrieve the visual nearest neighbors of images’ high dimensional descriptors. Ini-
tially, researchers were focused on exact similarity search strategies, capable of pre-
serving the visual nearest neighbors of sequential search. Nevertheless, exact simi-
larity search strategies often face the Dimensionality Curse problem, increasing thus
the computational cost of retrieving the visual nearest neighbours. Therefore, several
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approximate similarity search strategies were proposed, performing an approximation
of the visual nearest neighbors of sequential search, by highly reducing the computa-
tional cost. For example, approximate similarity search strategies are the Dimension-
ality Reduction [Cheng et al. 2008; Liang et al. 2010; Wang and Binbin 2011], Data
Co-Reduction [Huang et al. 2011], Vantage Indexing [Bozkaya and Ozsoyoglu 1999;
Fu et al. 2000; Van Leuken and Veltkamp 2011] and Hashing methods [Gionis et al.
1999; Jegou et al. 2011; Heo et al. 2012; Liu et al. 2014]. Recently, the MSIDX method
[Tiakas et al. 2013] exploited a new key factor of the image descriptor vectors, namely
the dimensions value cardinalities. The dimensions value cardinalities represent the
number of discrete values occurred in a specific dimension throughout a dataset of
image descriptor vectors. The dimensions value cardinalities highly depend on the ex-
traction strategy of the image descriptors. The ability of the extraction strategy to
model correctly image characteristics, such as color, texture, illumination and resolu-
tion variations, play the most important role on the final performance of the image
descriptor. Image descriptor vectors are extracted by forming histograms that describe
the value distribution of each attribute, defining the aforementioned characteristics of
each descriptor. By applying values’ normalization or quantization techniques [Lowe
2004] to descriptor vectors, comparable histograms are produced for search and re-
trieval process. However, the value cardinalities of each dimension vary significantly,
depending on the descriptors’ extraction strategy. For instance, high dimensional de-
scriptors that come from the bag-of-words process with large number of centroids, tend
to be sparse, holding zeros in many dimensions. Therefore, these dimensions do not
have more discriminative power than the rest of dimensions of high value cardinali-
ties. By considering the dimensions value cardinalities in the search strategy, MSIDX
clearly outperformed competitive similarity search strategies. Further details about
similarity search based on dimensions value cardinalities can be found in the online
Appendix A.

However, MSIDX, Dimensionality Reduction, Data Reduction, Vantage Indexing and
Hashing methods are of single node architecture, having thus memory limitations, ex-
pensive computational preprocessing costs and high search times for very large-scale
datasets of a few million or billion images. Therefore, similarity search strategies
emerge the imperative need of parallelization, in order to highly reduce the compu-
tational cost. Much work has been done to parallelize database structures in recogni-
tion that modern databases tend to contain billions of images. Cloud computing is an
emerging technology aimed at providing various computing and storage services over
the Internet [Zhu et al. 2011]. For multimedia applications, there are strong demands
for cloud computing services because of the significant amount of required computa-
tions. Moreover, in modern applications images are stored into distributed databases in
different logical or physical locations, a case which is handled by distributed or cloud-
based approaches. However, similarity search strategies in distributed databases or
over cloud infrastructures cannot efficiently query the high-dimensional data of im-
ages mainly for the following reasons, (a) complex index structures (M-Trees, R-Trees,
KD-Trees, etc.) are required to be built either locally per node or globally over the
cloud, increasing thus the preprocessing cost; (b) such strategies do not support the
efficient dynamical insertion of new images; finally (c) they fail to preserve the visual
nearest neighbors of sequential search efficiently in low search time (Section 2).

In this paper, we propose a large-scale similarity search strategy over the cloud
based on image descriptors’ dimensions value cardinalities. Our contribution is sum-
marized as follows,

— The preprocessing cost and the memory requirements are low, by dividing the com-
putational effort into several nodes over the cloud, efficiently. In each node, the pre-
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processing step locates the descriptors with similar dimensions value cardinalities
logically close. This comes in contrast to the most related work of similarity search
strategies in distributed databases or over cloud infrastructures, which have the high
preprocessing requirement of building complex index structures either locally per
node or globally over the cloud.

— New images are inserted into the distributed databases efficiently, by supporting
dynamical update in real-time. The proposed insertion algorithm over the cloud is of
low computational complexity, since it depends on (a) the descriptors’ dimensionality
and (b) a small subset of descriptors that have similar dimensions value cardinalities.

— The query processing steps are divided into several nodes over the cloud infrastruc-
ture, efficiently. Therefore, the high-computational cost is significantly reduced. In
the searching strategy, the dimensions of image descriptor vectors are prioritized,
assuming that dimensions with high value cardinalaties have more discriminative
power. In doing so, the query processing over the cloud achieves high accuracy in low
search time.

In our experiments with seven publicly available datasets of image descriptor vec-
tors, we show that the proposed similarity search strategy outperforms competitive
methods of single node, parallel and cloud-based architectures in terms of prepro-
cessing cost, search time and accuracy. The remainder of the paper is organized as
follows. Section 2 summarizes the related work of similarity search strategies in dis-
tributed databases and over cloud infrastructures. Then, in Section 3 we present the
proposed similarity search strategy over the Cloud based on image descriptors’ Dimen-
sions Value Cardinalities (CDVC). In Section 4 we evaluate the proposed CDVC frame-
work against state-of-the-art similarity search strategies and Section 5 concludes the
paper.

2. RELATED WORK
Several exact similarity search strategies in distributed databases were proposed, such
as M-Chord by Batko et al. [2008]. To further speed up the search process several
approximate distributed similarity search algorithms were introduced [Novak et al.
2008; 2012; Zhu et al. 2012; Vlachou et al. 2012]. All the aforementioned similar-
ity search strategies in distributed databases rely on an underlying structured P2P
network and focus on the parallelism of the query processing. Each node of the P2P
network has a replication instance of the multimedia data and a local indexer. There-
fore, the replication of the multimedia data in several nodes hinders the insertion of
new multimedia objects, since they need to be inserted into multiple nodes. Addition-
ally, the aforementioned similarity search strategies have high computational cost to
build a global indexer from local ones. Meanwhile, several similarity search strategies
over cloud infrastructures were proposed. The main differences between distributed
and cloud-based approaches are the different strategies that are followed for handling
the problems of (a) scalability & elasticity; and (b) data consistency & integrity. Dis-
tributed approaches do not handle the incremental growth of resources due to the
many changes that are required in both the hardware and software. Also, in a dis-
tributed architecture, several replication techniques are used to ensure data consis-
tency into the distributed memory, by adding thus an intensive computation cost. On
the contrary, cloud infrastructures focus on maximizing the effectiveness of the shared
resources by dynamically reallocating the nodes based on the service’s load capacity.
Additionally, cloud infrastructures provide their own data management system, where
distinct nodes access common data, ensuring thus the data consistency and integrity.
For instance, Wang et al. [2010] propose RT-CAN, a distributed R-tree indexer to sup-
port multidimensional range queries over cloud infrastructures. RT-CAN integrates
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the CAN-based routing protocol [Ratnasamy et al. 2001] and each node uses its own
R-tree structure to index the data that are locally stored. Nevertheless, using an R-
Tree structure locally, RT-CAN is not suitable for the high dimensional descriptors of
multimedia, since a significant preprocessing cost is required.

Additionally, multiple randomized KD-trees were proposed by Silpa-Anan and Hart-
ley [2008] to generate space partitions to accelerate similarity search. In the query
stage, the search is performed simultaneously in the multiple trees, through a shared
priority queue. Muja and Lowe [2009] perform a wide range of comparisons showing
that multiple randomized KD trees are suitable for similarity search, by also perform-
ing an automatic configuration method for the internal parameters of the multiple
randomized KD-trees method. Aly et al. [2011] used the MapReduce architecture to ef-
ficiently build and distribute the KD-Tree indexer (distributed KD-trees) for millions of
images. A single KD-Tree is considered, where the top of the tree is located on a single
root-node and the bottom part of the tree is divided into several nodes, called leaf-
nodes. Then, similarity search is performed into the leaf-nodes and the root-node ag-
gregates the results of the leaf-nodes and returns the top-k results. The disadvantage
of the aforementioned similarity search strategy of distributed KD-trees over cloud
infrastructures is that a high preprocessing cost is required to construct both global
and local complex index structures per node. Muja and Lowe [2014] proposed FLANN,
where they examined the best performance between the priority search k-means trees,
the multiple randomized KD-trees and the hierarchical clustering tree. FLANN per-
forms an automatic configuration for the internal parameters of the examined methods
(e.g. number of randomized trees, branching factor, number of k-means iterations) and
use hyperparameters to control the relative importance of the build/preprocessing time
and memory overhead in the overall cost. Finally the FLANN library performs simi-
larity search in distributed databases across multiple machines of a computer cluster,
based on a Map-Reduce like algorithm and a Message Passing Interface (MPI) speci-
fication. There are several variations of the KD-trees such as trinary projection trees
[Jia et al. 2010; Wang et al. 2014], which differ in the way they perform the space par-
titioning, by using different partitioning functions. All the aforementioned tree-based
methods have high preprocessing cost to build the complex structures in large-scale
high dimensional datasets. Despite the fact that tree-based methods achieve high ac-
curacy, a significant cost is required to search the constructed trees in parallel and to
retrieve the most similar results.

Several nearest neighbor graph techniques [Wang et al. 2012; Wang et al. 2013] have
been proposed for similarity search. Nearest neighbor graph techniques build an ap-
proximate nearest neighbor graph structure in which multimedia-points are vertices
and edges connect each multimedia-point to its nearest neighbors. Afterwards, similar-
ity search is performed by guiding the search in the neighborhood graph. However, the
nearest neighbor graph methods suffer from an expensive construction of the graph
structure [Muja and Lowe 2014; Wang et al. 2014].

The inverted index algorithms have been widely used for similarity search due to
their small memory cost. An inverted index initiates by clustering algorithms to build
a codebook with K codewords, splitting the dataset into K lists and then given a query
and a desired candidate list T the inverted index generates a list of T multimedia-
points close to the query. Babenko and Lempitsky [2012] proposed the Inverted Multi-
Index which replaces the standard quantization in an inverted index with product
quantization, splitting high dimensional vectors into more detailed dimension groups.
The key idea is to use a product quantizer which generates an exponentially large
codebook at very low memory/time cost. The product quantization of the vectors is
performed so that the K2 lists correspond to all possible pairs of codewords, generating
thus a more detailed subdivision of the search space, compared to the K lists that a
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inverted index generates. In doing so, the candidate lists produced by querying multi-
indices were more accurate, compared to standard inverted indices. However, the size
of the list of the T multimedia points plays a crucial role in the performance of Inverted
Multi-Index, where large sizes of lists significantly increase the search time and the
preprocessing cost of Inverted Multi-index. Also, Norouzi and Fleet [2013] proposed the
Cartesian k-means method for similarity search with a parameterization of the cluster
centers such that number of centers is super-linear in the number of the involving
parameters. In particular, given a query, the distances between the query and a subset
of centers is pre-computed and stored in a query lookup table, which is used to compare
all candidate points to the query. The number of the clusters play an essential role in
the performance of the Cartesian k-means algorithm, since large number of clusters
improve the search accuracy while significantly increasing the search time and the
preprocessing cost. Moreover, both the Inverted Multi-Index and Cartesian k-means
do not work in parallel in the preprocessing and search steps.

In contrast to the aforementioned similarity search methods, Norouzi et al. [2014]
proposed a multi-index hashing framework, by avoiding to construct complex index
structures. Binary codes from the database are indexed M times into M different hash
tables, based on M disjoint binary substrings. For large-scale datasets, the substrings
must be chosen so that the set of candidates is small and the storage requirements are
low. The framework of Norouzi et al. [2014] uses different hashing methods such as
LSH [Gionis et al. 1999] or MLH [Norouzi and Fleet 2011]. Consequently, the frame-
work preserves the search accuracy of the used hashing methods. Since the multi-
index hashing framework performs exact similarity search in the hamming space, the
framework’s performance highly depends on the search accuracy of the used hashing
methods. The big advantage of the framework is that a distributed implementation of
multi-index hashing is straightforward, in which each substring hash table is stored
on a separate node, by parallelizing thus the similarity search process. However, the
preprocessing cost is high, since parallelization is not supported.

3. THE PROPOSED CDVC FRAMEWORK
The architecture of the proposed CDVC framework is presented in Figure 1. CDVC
supports the following functionalities: (a) parallel preprocessing of datasets’ descriptor
vectors for storage management in distributed databases over the cloud, (b) insertion
of new images in real-time and (c) efficient query processing for searching the top-k
similar results to a query image q.

The preprocessing phase is initialized by the CDVC Scheduler to analyze the N im-
ages, stored in the distributed databases over the cloud. A Cloud Storager Interface
acts as a middleware to connect the distributed databases with the CDVC compo-
nents. In particular, this interface permits the components to interact with the dis-
tributed databases, through the Cloud Database Server, in order to retrieve and store
the available image data. After the preprocessing phase has finished, users are able
to access the proposed CDVC framework using personal devices, such as computers,
laptops or smartphones. Users pose image queries to the CDVC framework to retrieve
top-k results from the distributed databases. This is achieved within the insertion and
query processing phases. The search process starts with the CDVC Scheduler, which
receives the D-dimensional descriptor vector vq, of query image q 1. The CDVC Sched-
uler component orchestrates the components of the insertion and the query processing

1In this paper we assume that extraction of descriptor vectors of images is performed locally and not over
the cloud. Nevertheless, several works, such as the work of Jarrah and Guan [2008], achieve to parallelize
the descriptor vector extraction process.
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Fig. 1. CDVC framework.

phases to initially insert the new image query q and furthermore, to return the top-k
similar image results in set R.

According to the architecture of the CDVC framework in Figure 1, the preprocess-
ing phase takes as input a set V of the N D-dimensional descriptor which are stored
in the distributed databases via the CDVC Scheduler and the Cloud Database Server.
The goal of the preprocessing phase is to generate a global double linked list L with
the logical sorted positions of all N descriptor vectors based on DVC, assuming that
dimensions with high DVC are more discriminative. The preprocessing phase consists
of three steps, including four basic components of the CDVC framework: (1) the set of
M Dimension Value Cardinality Extractor nodes (preprocessing step 1); (2) the Prior-
ity Indexer (preprocessing step 2); (3) the set of M Image Sorter nodes (preprocessing
step 3); and (4) the Global Image Sorter (preprocessing step 3). The role of each Di-
mension Value Cardinality Extractor node is to calculate the value cardinalities of a
subset of dimensions of the N D-dimensional image descriptors based on M different
predefined lower lb(m) and upper ub(m) dimensions’ bounds, with m = 1, . . . ,M . The M
different dimension value cardinality vectors C(m) are provided as input to the Prior-
ity Indexer component which is responsible to merge the M different dimension value
cardinality vectors C(m) into a global dimension value cardinality vector C. The out-
put of the Priority Indexer is a priority indexer vector p of the dimensions, which is
calculated by sorting the global dimension value cardinality vector C in a descending
order, assuming that dimensions with high DVC are more discriminative. Then, based
on the generated priority index vector p, each Image Sorter node retrieves a subset
of the image descriptor vectors V(m) to perform the logical sorting, generating thus
M different double linked lists L(m), which contain the logical sorted positions of the
image descriptors in V(m). The M different double linked lists L(m) are merged into
a global double linked list L by the Global Image Sorter. After the preprocessing step
terminates, the double linked list L and the priority indexer p are both stored into the
Cloud Database Server for the insertion and the query processing steps. Given a query
vq the CDVC Scheduler initiates firstly the insertion and then the query processing
step, where the goal is to retrieve the top-k similar image results in a set R. The goal
of the insertion step is to identify the position posq in the double linked list L based
on the priority index vector p and furthermore to insert the query in the position posq
by updating the double linked list from L to L′ via the Dataset Updater component.
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Afterwards, given the updated double linked list L′ and the position posq of the image
query q, the Candidates Images’ IDs Retrieval generates a set V2W of image descriptors
which are located in the update double linked list L′, in W previous and W next to the
position posq. The set V2W of image descriptor vectors and the query image descriptor
vector vq are retrieved by the set of M Image Comparator nodes which are responsi-
ble for calculating the respective distances between vq and V2W . The M different sets
d(m) of the calculated distances are collected by the Distance Collector, which gener-
ates the top-k similar image results in set R. Finally, R is returned to the users via the
Cloud Database Server and the CDVC Scheduler. In the remainder of the section, we
describe the basic components of CDVC, accompanied by the implementation details
of the algorithms and the respective complexity analysis.

3.1. Preprocessing Over The Cloud
Role: To generate the global double linked list L with the logical sorted positions of
all N descriptor vectors. The basic components are: (a) the set of M Dimension Value
Cardinality Extractor nodes (Section 3.1.1), (b) the Priority Indexer (Section 3.1.2), (c)
the set of M Image Sorter nodes and the Global Image Sorter (Section 3.1.3).
Input: V, the set of the N D-dimensional image descriptor vectors vi ∈ V, i = 1, . . . , N ..
Output: (1) L, the global double linked list; (2) p, the priority index vector of the D di-
mensions; (3) pk, the primary key to the dimension with the highest value cardinality.
Parameters: M , the number of nodes for parallelization over the cloud infrastructure,
i.e. M Dimension Value Cardinality Extractor and M Image Sorter nodes.

3.1.1. Dimension Value Cardinality Extractor Nodes - Preprocessing Step 1.
Role: To calculate the value cardinalities of the N D-dimensional image descriptors.
Input: V, the set of the N D-dimensional image descriptor vectors.
Output: M different dimensions value cardinalities vectors c(m), where c(m) is the di-
mensions value cardinalities vector of the m-th Dimension Value Cardinality Extractor
node
Parameters: M , the number of Dimension Value Cardinality Extractor nodes.
Algorithm Description
The outline of a Dimension Value Cardinality Extractor node is presented in Algo-
rithm 1. M nodes are allocated to calculate the dimensions value cardinalities. Let
set S denote the image IDs, with |S| = N . To avoid calculating all value cardinalities
of the overall D dimensions of the N image descriptor vectors, upper ub(m) and lower
lb(m) dimensions’ bounds, m = 1, . . . ,M , are initialized for an m-th node to define the
dimensions’ range that the m-th node will process. Therefore, each node is responsible
for the computation of ⌈ D

M ⌉ dimensions value cardinalities of the N image descriptor
vectors. In line 1, ⌈ D

M ⌉ distinct hash-maps2 HashMaph, with h = 1, . . . , ⌈ D
M ⌉ are ini-

tialized to efficiently insert a new dimension’s value or search for an already existing
one. In line 2, the value cardinalities vector c(m) is initialized. Therefore, in lines 3
to 12, N image descriptor vectors vi are retrieved by the Cloud Database Server, with
i = 1, . . . , N . In line 4 the respective descriptor vi ∈ V is retrieved separately for each it-
eration, avoiding thus the bulk-loading of all N descriptors. For each j-th dimension of
a descriptor vi within the range of the lower lb(m) and upper ub(m) dimensions’ bounds,
the existence of the corresponding vij value, i = 1, . . . , N and j = lb(m), . . . , ub(m) is
inspected to the corresponding hash-map HashMaph. If the vij value does not exist to
the hash-map HashMaph, then it is inserted. Consequently, in lines 13-17, after the N
descriptor vectors have been analyzed, the number of distinct values that are in each
hash-map HashMaph are assigned to the value cardinalities vector c(m). Then, the

2http://en.wikipedia.org/wiki/Java collections framework
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value cardinalities vector c(m) is returned for further analysis to the Priority Indexer
component (preprocessing step 2).

ALGORITHM 1: Dimension Value Cardinality Extractor Node
Input: S: the set of IDs of the N descriptor vectors
lb(m): dimensions’ lower bound for the m-th Dimension Value Cardinality Extractor node
ub(m): dimensions’ upper bound for the m-th Dimension Value Cardinality Extractor node
Output: c(m): the dimensions value cardinalities vector of the m-th node

1 set ⌈ D
M
⌉ hash-maps HashMaph ← ∅, ∀h = 1, . . . , ⌈ D

M
⌉;

2 set c(m) ← ∅
3 foreach i ∈ S do
4 vi = retrieve the i-th descriptor vector;
5 set h = 0;
6 for j = lb(m) to ub(m) do
7 if vij /∈ HashMapk then
8 insert the vij value into hash-map HashMaph;
9 end

10 h = h + 1;
11 end
12 end
13 set h = 0;
14 for j = lb(m) to ub(m) do
15 c

(m)
j = number of distinct values inserted in hash-map HashMaph;

16 h = h + 1;
17 end
18 return c(m);

Complexity Analysis
For each dimension j of the N descriptor vectors, the value cardinality is calculated in
O(N), since the common-used hash-map structure requires O(1) complexity for inser-
tion. Accordingly, in a single node architecture the complexity for the dimensions value
cardinalities’ computation would be O(N ·D). However, in our approach, since the di-
mensions of each vector are divided into M distinct nodes, the complexity to compute
the value cardinalities for all D dimensions is

O(N · D
M

) (1)

3.1.2. Priority Indexer - Preprocessing Step 2.
Role: To calculate the priority index vector p of the D dimensions.
Input: M different dimensions value cardinalities vectors c(m) (Algorithm 1).
Output: p, the priority index vector, where pj , j = 1, . . . , D, is the priority index of the
j-th dimension.
Parameters: -
Algorithm Description
The outline of Priority Indexer is presented in Algorithm 2. In lines 1-7, the algorithm
aggregates the values of the M different c(m) vectors to generate the global value car-
dinalities vector C, which contains the value cardinalities of all D dimensions of the
N image descriptor vectors. In line 8, the global dimensions value cardinalities vec-
tor C is sorted in descending order, generating thus the final C′ sorted vector. Since
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dimensions with high value cardinalities have more discriminative power, the higher
the value cardinality of the j-th dimension is, the higher the respective priority in-
dex for the j-th dimension must be. Respectively, in line 9, the priority index vector
p is generated based on the sorted value cardinalities vector C′, providing high pri-
ority to the dimensions of high value cardinalities. In doing so, dimensions with high
discriminative power are highly prioritized, reflecting to the dimensions of high value
cardinality.

ALGORITHM 2: Priority Indexer

Input: M c(m): the M different dimensions value cardinalities vectors
Output: p: the priority index vector, where pj is the priority index of the j-th dimension,

∀j = 1, . . . , D
1 for j = 1 to D do
2 for m = 1 to M do
3 if c(m)

j ̸= 0 then
4 Cj = c

(m)
j ;

5 end
6 end
7 end
8 sort dimensions value cardinalities vector C in descending order to generate the sorted vector
C′ ;

9 create the priority index pj of dimension j based on the sorted value cardinalities vector C′
j ,

∀j = 1, . . . , D;
10 return p;

Complexity Analysis
The complexity analysis of the Priority Indexer algorithm is analogous to the dimen-
sions’ number (D) of the image descriptor vectors and the number of nodes (M ) that are
assigned to the Dimension Value Cardinality Extractor component. The aggregation of
the M different c(m) vectors requires a O(D · M) complexity. The cardinalities sort
procedure and, respectively, the priority index creation is performed using the quick
sort algorithm in O(D · logD) cost. Summarizing, the total complexity of the Priority
Indexer algorithm is

O(M ·D) +O(D · logD) (2)
3.1.3. Image Sorter Nodes and Global Image Sorter - Preprocessing Step 3.
Role: To generate the global double linked list L with the logical sorted positions of all
N descriptor vectors. The descriptor vectors’ sorting process is divided into M Image
Sorter nodes and then the Global Image Sorter component performs the final sorting
in L with a single node.
Input: (1) p, the priority index vector (Algorithm 2); (2) V, the set of the N image
descriptors.
Output: (1) L, the global double linked list; (2) pk, the primary key to the dimension
with the highest value cardinality.
Parameters: M , the number of the Image Sorter nodes.
Algorithm Description
Image Sorter nodes: Each Image Sorter node applies the dimensions’ sorting to ⌈N

M ⌉ de-
scriptor vectors. Therefore, a set V(m) of image descriptor vectors constitute the input
of the m-th Image Sorter node, m = 1, . . . ,M . Initially, the Image Sorter node reorders
the descriptor vectors’ dimensions based on the priority index p (Algorithm 2). Then,
the descriptor vectors in V(m) are sorted in descending order by performing the quick
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sort algorithm based on the comparative Algorithm 3, which produces a new set V ′(m).
Then, a double linked list L(m) is computed, where L

(m)
i denotes the ID of the image

descriptor vector, which is allocated in position posi in list L(m), i = 1, · · · , ⌈N
M ⌉.

Global Image Sorter: The computed M distinct double linked lists L(m) are retrieved
by the Global Image Sorter. Based on Algorithm 3, Global Image Sorter compares the
M distinct L

(m)
1 descriptor vectors, where L

(m)
1 is the ID of the descriptor vector with

the highest position in L(m). According to the comparison, the respective ID of the
descriptor vector is inserted to the first available slot of a global double linked list L.
Then, the inserted ID to the global list L is removed from the respective list L(m). The
aforementioned process is performed recursively until the global double linked list L
contains the positions of all N descriptor vectors. Then, the global double linked list L
is finally stored to each distributed database, via the Cloud Database Server, so as to
preserve the final logical sorting of the descriptor vectors.

Finally, in the current step of the preprocessing phase, we set a primary key pk to the
dimension with the highest value cardinality, that is the dimension with the highest
priority index based on vector p. In doing so, the Dataset Updater component is able to
efficiently retrieve the minimum number of image descriptor vectors in the insertion
step of CDVC, as we will describe in the following Section.

ALGORITHM 3: Compare Image Descriptors
Input: va,vb: D-dimensional descriptor vectors
Output: 1 (if va > vb), -1 if( va < vb), 0 if(va = vb)

1 vaj = value of va in dimension j = 1, ..., D;
2 vbj = value of vb in dimension j = 1, ..., D;
3 for j = 1 to D do
4 if vaj > vbj then
5 return 1;
6 end
7 if vaj < vbj then
8 return -1;
9 end

10 end
11 return 0;

Complexity Analysis
Given M Image Sorter nodes, the total complexity of the Image Sorter and Global Im-
age Sorter is O(D · N

M · log N
M ). Summarizing the total complexity of the Preprocessing

step consists of the complexities of (a) Dimension Value Cardinality Extractor; (b) Pri-
ority Indexer; and (c) Images Sorter and Global Image Sorter. Therefore, based on (1)
and (2), the total complexity of the Preprocessing step is

O(N · D
M

) +O(M ·D) +O(D · logD) +O(D · N
M

· log N
M

) (3)

3.2. Insertion Algorithm
Role: To insert a new image descriptor vector vq to the cloud infrastructure, by updat-
ing the global double linked list L.
Input: (1) vq, the new image descriptor vector; (2) p, the priority index vector (prepro-
cessing step 2); (3) L, the global double linked list (preprocessing step 3); (4) pk, the
primary key to the dimension with the highest value cardinality (preprocessing step
3).
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Output: posq, the logical position of the new image descriptor vector vq in the updated
global double linked list L.
Parameters: -
Algorithm Description
The insertion algorithm is presented in Algorithm 4. In line 1, a set Vpk is generated
(|Vpk| ≪ N ), which consists of the descriptor vectors with primary key pk equal to
vqp1 . Value vqp1 is the value of the highest priority dimension of the new descriptor
vq. In line 2, the set Vpk of descriptor vectors are sorted in descending order based
on the logical positions in the global double linked list L. Based on Algorithm 3, the
descriptor vector vq is compared with descriptor vhp, i.e. the descriptor vector in Vpk

of the highest position in L, to determine the logical position posq (lines 3-7). Finally,
in line 8, the new image q is inserted into the allocated position posq via the Cloud
Database Server and the global double linked list L is updated, respectively.

ALGORITHM 4: Insertion Algorithm
Input: vq: the D-dimensional descriptor vector of image q
p: the priority index vector of the dimensions
L: the double linked list of the logical positions
pk: the primary key to the dimension with the highest value cardinality
Output: posq: the position of image q in the updated double linked list L

1 generate set Vpk of the descriptor vectors with primary key pk equal to value vqp1 ;
2 sort v ∈ Vpk in descending order based on the logical positions in L and retrieve the first

descriptor vhp ∈ Vpk of the highest position;
3 if (Compare Images vhp and vq) = 1 then
4 set posq after the position of vhp in L;
5 else
6 set posq prior to the position of vhp in L;
7 end
8 insert descriptor vector vq to the storage via the Cloud Database Server;
9 update the double linked list L;

10 return posq;

Complexity Analysis
The complexity of the insertion algorithm is highly correlated to the size of the subset
Vpk and the dimensionality D of the image descriptor vectors. To perform the sorting
of descriptors in Vpk based on their logical locations in L, the quick sort algorithm
requires a O(|Vpk| · log|Vpk|) cost. Then, since the comparison is always performed be-
tween the descriptor vector vq and the descriptor vector vhp ∈ Vpk of the highest logical
position in L, a O(D) complexity is required. Therefore, the total complexity of the in-
sertion algorithm is

O(|Vpk| · log|Vpk|) +O(D) (4)

3.3. Query Processing Algorithm
Role: To retrieve the top-k results of the query image descriptor vector vq.
Input: (1) vq, the new image descriptor vector; (2) p, the priority index vector (prepro-
cessing step 2); (3) L, the global double linked list (preprocessing step 3); (4) pk, the
primary key to the dimension with the highest value cardinality (preprocessing step
3).
Output: R, the result set of the top-k results.
Parameters: (1) M , the number of Image Comparator nodes; (2) 2W , the search ra-
dius.
Algorithm Description
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Firstly, the insertion algorithm is utilized, in order to calculate the logical position posq
in the double linked list L. Then, the query processing algorithm compares the query
image descriptor vector vq to 2W descriptor vectors vi, with i = 1, . . . , 2W , where W
is a user defined search radius. The similarity search is divided into M nodes over the
cloud. The Candidate Images’ IDs Retrieval component aggregates the 2W candidate
image IDs for query q. W is a constant range denoting the number of the candidate
images prior and next to posq in the double linked list L. Then, two descriptor vectors
are always reserved into one Image Comparator node, i.e. vq and vi, i = 1, . . . , 2W . The
output of each Image Comparator node is the respective distance between the query
descriptor vector vq and the candidate image descriptor vector vi. Each calculated dis-
tance is retrieved by the Distance Collector node and stored into a min-Heap3 H. After
all the 2W comparisons have been performed, the top-k image IDs similar to query q
form the result set R. The algorithm of CDVC’s Query Processing step is presented in
Algorithm 5.

ALGORITHM 5: Query Processing Algorithm
Input: vq: the D-dimensional descriptor vector of the query image oq
p: the D-dimensional priority index vector
k: the number of top-k results
W : the search radius
pk: the primary key to the dimension with the highest value cardinality
Output: the top-k results set R of the query image q

1 set R← ∅;
2 set min-heap H← ∅
3 posq = Insert(vq) based on Algorithm 4;
4 generate V2W by retrieving W descriptors prior to posq and W descriptors next to posq;
5 for iter = 1 to 2 ·W do
6 compute the distance d(viter,vq) from an available m-th Image Comparator node, with

viter ∈ V2W ;
7 insert the ID of image descriptor vector viter and the distance d(viter,vq) into H;
8 end
9 for iter = 1 to k do

10 retrieve and remove the image t located on top of H;
11 R = R

∪
t;

12 end
13 return the top-k results set R;

In line 3, the query descriptor vector vq is inserted based on Algorithm 4, returning
the respective position posq in L. Then, vq is stored and the linked list L is updated
respectively. In order to increase the probability of retrieving the top-k most similar im-
ages, a specific constant range is used, denoted by the search radius W , with W ≫ k.
In line 4, a set V2W of descriptor vectors is generated. The 2W descriptor vectors are
the W previous and W next to the position posq in L. In lines 5 to 8, ∀ viter ∈ V2W ,
the respective distance d(viter,vq) is calculated by an m-th available Image Compara-
tor node, based on a predefined distance measure d(·), e.g. L1, L2, squared-L1, etc.
Since the Image Comparator node contains the most essential process of the query
processing algorithm, on each m-th Image Comparator node multi-core instances are
assigned to parallelize each distance calculation in T threads. In doing so, the com-
putational cost of each distance calculation is further reduced, achieving thus lower

3http://en.wikipedia.org/wiki/Min-max heap
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V =



v1 = ⟨9, 6, 3, 1, 2, 7⟩
v2 = ⟨9, 6, 0, 1, 3, 8⟩
v3 = ⟨9, 5, 3, 0, 5, 7⟩
v4 = ⟨9, 6, 3, 0, 4, 6⟩
v5 = ⟨9, 4, 3, 1, 9, 6⟩

v6 = ⟨9, 6, 8, 1, 10, 9⟩
v7 = ⟨9, 3, 3, 0, 8, 9⟩
v8 = ⟨9, 6, 4, 0, 6, 4⟩
v9 = ⟨9, 6, 6, 0, 7, 0⟩
v10 = ⟨9, 6, 6, 0, 6, 0⟩

V ′(1) =


v′
5 = ⟨9, 6, 3, 4, 1, 9⟩

v′
3 = ⟨5, 7, 3, 5, 0, 9⟩

v′
4 = ⟨4, 6, 3, 6, 0, 9⟩

v′
2 = ⟨3, 8, 0, 6, 1, 9⟩

v′
1 = ⟨2, 7, 3, 6, 1, 9⟩

V ′(2) =


v′
6 = ⟨10, 9, 8, 6, 1, 9⟩
v′
7 = ⟨8, 9, 3, 3, 0, 9⟩

v′
9 = ⟨7, 0, 6, 6, 0, 9⟩

v′
8 = ⟨6, 4, 4, 6, 0, 9⟩

v′
10 = ⟨6, 0, 6, 6, 0, 9⟩

V ′ =



v′
6 = ⟨10, 9, 8, 6, 1, 9⟩
v′
5 = ⟨9, 6, 3, 4, 1, 9⟩

v′
7 = ⟨8, 9, 3, 3, 0, 9⟩

v′
9 = ⟨7, 0, 6, 6, 0, 9⟩

v′
8 = ⟨6, 4, 4, 6, 0, 9⟩

v′
10 = ⟨6, 0, 6, 6, 0, 9⟩
v′
3 = ⟨5, 7, 3, 5, 0, 9⟩

v′
8 = ⟨4, 6, 3, 6, 0, 9⟩

v′
9 = ⟨3, 8, 0, 6, 1, 9⟩

v′
1 = ⟨2, 7, 3, 6, 1, 9⟩

Fig. 2. Toy example.

similarity search time. Then, each calculated distance d(viter,vq) is retrieved by the
Distance Collector node, via a queue, which stores the respective distance and the can-
didate image ID into a minimum-heap H (line 7). Then, in lines 9-12, after all 2W
distance measurements have been completed, the top-k image IDs are extracted by
the top of the minimum-heap H. The final set of top-k IDs constitutes the result set R.
Finally, the top-k IDs in R are stored into the cloud storager, via the Cloud Database
Server and returned to users via the CDVC Scheduler component.
Complexity Analysis
The complexity of the query processing algorithm is calculated as the aggregation of:
(a) the allocation of the storage position posq based on the Insertion Algorithm 4; (b) the
construction of the minimum-heap structure H; and (c) the generation the result set R.
Based on (4), the complexity of allocating position posq is O(|Vpk|·log|Vpk|)+O(D). More-
over, the distance calculations of the 2W closest images’ positions are performed by the
corresponding M nodes, assigned to the Distance Comparator component. Therefore,
the complexity of the distance calculations is O( 2·W

M ·T · D), where T is the number of
threads that are used to parallelize each distance calculation in each Image Compara-
tor node. Additionally, since 2W image IDs are inserted into the heap H, the insertion
of each image t into the heap is performed in O(log2 ·W ). However, in our implementa-
tion we improved the complexity by preserving in the heap the k most similar images
to query q, over the execution of the Query Processing algorithm. In particular, let c
be the current candidate image for being inserted into the heap H. Also, let tk be the
image ID with the k largest distance from query q, where tk is currently stored into
the heap H. If the condition d(vq,vc) < d(vq,vtk) does hold, then c is discarded. Oth-
erwise, tk is removed from the heap H and candidate c is inserted. Therefore, over
the execution of the Query Processing algorithm, k images are preserved into the heap
H and thus, the complexity of the insertion of each image t into the heap is reduced
from O(log2W ) to O(logk). In doing so, the complexity of the distance calculations is
O( 2·W

M ·T ·D · logk). Finally, the retrieval of the k image IDs from the heap H has a O(k)
complexity. Summarizing, the final complexity of the CDVC’s Query Processing algo-
rithm is

O(|Vpk| · log|Vpk|) +O(D) +O(
2 ·W
M · T

·D) +O(k) (5)

3.4. Toy Example
In Figure 2, we present an example of N = 10 image descriptor vectors of D = 6 di-
mensions of integer value type [Tiakas et al. 2013]. The stored dataset over the cloud
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infrastructure is denoted by the set V of descriptor vectors. In the Preprocessing phase,
2 nodes of each of the following components are assigned: Dimension Value Cardinality
Extractor, Image Sorter and Image Comparator. After the Preprocessing phase termi-
nates, the final sorted set V ′ is generated. Then, the goal is to retrieve the top-1 similar
image descriptor ∈ V ′ to a query descriptor vector v11 /∈ V ′.

In the Preprocessing step 1 (Section 3.1.1), the 2 Dimension Value Cardinality Ex-
tractor nodes have lower lb, 1 and 4, and upper ub, 3 and 6, dimensions’ bounds.
Thus, the dimensions’ ranges are [1 3] and [4 6] for Dimension Value Cardinality
Extractor nodes 1 and 2, respectively. The generated value cardinalities vectors are
c(1) = ⟨1, 4, 5, 0, 0, 0⟩ and c(2) = ⟨0, 0, 0, 2, 9, 6⟩ for nodes 1 and 2, respectively. For in-
stance, c(1)2 =4 denotes that for the 1st node in the 2nd dimension of all 10 descriptor
vectors in V there are 4 distinct values, i.e. 6, 5, 4 and 3. In the preprocessing step 2
(Section 3.1.2), the Priority Indexer component aggregates the c(1) and c(2) value cardi-
nalities vectors into the global dimensions value cardinalities vector C = ⟨1, 4, 5, 2, 9, 6⟩.
Then, according to C, the priority index vector p = ⟨5, 6, 3, 2, 4, 1⟩ is calculated, where
the dimensions of high value cardinalities have high priority indexes. For instance,
given D=6, the 5th dimension, with C5 = 9 has the highest value cardinality, and thus
p1 = 5, whereas the 1st dimension, with C1 = 1 has the lowest value cardinality and
thus p6 = 1. Then, in preprocessing step 3 (Section 3.1.3), the 2 Image Sorter nodes
retrieve the priority index vector p as well as the subsets of image IDs 1-5 and 6-10,
respectively. Firstly, each Image Sorter node reorders the dimensions of the descrip-
tors based on p, from the highest to the lowest priority index. For instance, according
to priority index vector p = ⟨5, 6, 3, 2, 4, 1⟩ the m = 1 Image Sorter node reorders the di-
mensions of descriptor v1 = ⟨9, 6, 3, 1, 2, 7⟩, generating descriptor v′

1 = ⟨2, 7, 3, 6, 1, 9⟩
of sorted dimensions. Then, the positions of the descriptors are sorted in descend-
ing order based on Algorithm 3, generating the V ′(1) and V ′(2) subsets. In doing so,
the two Image Sorter nodes compute the lists of logical positions L(1) = ⟨5, 3, 4, 2, 1⟩
and L(2) = ⟨6, 7, 9, 8, 10⟩, respectively. Finally, the Global Image Sorter node retrieves
both L(1) and L(2) position lists and iteratively compares the respective descriptors
based on Algorithm 3, until the final V ′ is generated. Therefore, the double linked list
L = ⟨6, 5, 7, 9, 8, 11, 10, 3, 4, 2, 1⟩ is generated. For instance, L1 = 6 denotes that the de-
scriptor v′

6 is located in the first position pos1 in L. Finally, the dimension with the
highest cardinality value (the first sorted dimension) is defined as the primary key pk,
depicted in green fonts in Figure 2.

Given, the new query descriptor vector v11 = ⟨9, 5, 3, 0, 6, 3⟩ /∈ V ′, the Dataset Up-
dater component initializes the insertion algorithm (Section 3.2). According to p =
⟨5, 6, 3, 2, 4, 1⟩, the query vector is reordered into v′

11 = ⟨6, 3, 3, 5, 0, 9⟩. Then, according
to Algorithm 4 and based on the primary key (the first sorted dimension in V ′), images
8 and 10 form the Vpk set, since v′

8,1 = v′
10,1 = v′

11,1 = 6. Image IDs 8 and 10 are sorted
based on their storage position in L, i.e. pos5 and pos6, respectively. Since pos6 > pos5,
we set vhp = v′

10, i.e. the descriptor in the Vpk set of the highest position in list L.
Then, v′

11 is compared with the v′
10 descriptor vector based on Algorithm 3, and then

v′
11 descriptor vector is stored in position pos6 in L. Finally, the double linked list is

updated as L = ⟨6, 5, 7, 9, 8,11, 10, 3, 4, 2, 1⟩.
Let the search radius W be equal to 2 for the query processing algorithm (Section

3.3). The Candidate Images’ Retrieval component retrieves a set V2W of 2W = 4 candi-
date image IDs that are the 2 descriptors prior and the 2 descriptors next to position
pos6 of query 11 in the updated list L, with V2W = {v′

9,v
′
8,v

′
10,v

′
3}. The 2 Images

Comparator nodes retrieve v′
11 and subsets V(1)

2W = {v′
9,v

′
8} and V(2)

2W = {v′
10,v

′
3}, re-

spectively. For the first Images Comparator node, the distances between the descriptor
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vectors in V(1)
2W and v′

11 are 3.4641 and 1.732 respectively, based on the Euclidian dis-
tance measure. For the second Images Comparator node, the distances between the
V(2)
2W and v′

11 are 4.359 and 7.746, respectively. The calculated distances along with
the corresponding image IDs are retrieved by the Distance Collector component and
stored into the min-heap H. The top-1 result is image 8, having the minimum distance
d(v′

8,v
′
11)=1.732. Finally, image 8 is returned to the CDVC Scheduler component.

4. EXPERIMENTS
4.1. Datasets
In our experiments we evaluate the proposed CDVC framework on seven publicly
available datasets of image descriptor vectors. The first 5 lower-scale datasets were
also used in the experimental evaluation of the MSIDX method of [Tiakas et al.
2013] of single node architecture 4. The ImageClef Wikipedia Retrieval 2010 Col-
lection 5 features N=240K images. The collection provides global CIME descriptors
[Stehling et al. 2002] of 64-dimensions (CIME-240K-64d), global CEDD descriptors
[Chatzichristos and Boutalis 2008] of 144-dimensions (CEDD-240K-144d) and global
SURF descriptors [CBay et al. 2008] of 5000-dimensions (SURF-240K-5000d). Addi-
tionally, we evaluate the proposed framework on the TEXMEX collection 6 featuring
two descriptor datasets of N=1M images, namely local SIFT [Lowe 2004] descriptors
of 128-dimensions (SIFT-1M-128d) and global GIST [Oliva and Torralba 2001] de-
scriptors of 960-dimensions (GIST-1M-960d). For the very large-scale experiments we
evaluate CDVC on the Tiny Image collection 7 of N=80M images of GIST descrip-
tors of 348-dimensions (GIST-80M-348d) and N=1B images of SIFT descriptors of
128-dimensions of the TEXMEX collection (SIFT-1B-128d). The last two large-scale
datasets were also used in the experimental evaluation of the Multi-Index Hashing
framework of [Norouzi et al. 2014] of parallel architecture.

4.2. Experimental Settings
Following the evaluation protocol of [Heo et al. 2012; Tiakas et al. 2013], we performed
1,000 test queries, which were randomly chosen and did not participate into the train-
ing/preprocessing phase. For each query, the search accuracy is measured in terms of
mAP according to the following ratio:

mAP =
|Rseq ∩Rind|

k
(6)

where, Rseq is the set of the top-k results (Euclidean neighbors) retrieved by the se-
quential search based on the Euclidean distance, and Rind is the set of the top-k re-
sults retrieved by the examined similarity search method. The final performance of
each method is measured by the mAP variable, which is defined as the average search
accuracy of the 1,000 performed queries.

Two are the most crucial parameters in the CDVC framework, the number of nodes
M and the search radius 2W . Parameter M denotes the number of nodes that are used
for parallel processing over the cloud infrastructure affecting (a) the total preprocess-
ing cost based on (3) and (b) the search time in the query processing algorithm based
on (5). In our experiments, we evaluate the CDVC framework, using 2, 4, 6, 8 nodes
for parallel processing over the cloud infrastructure. The search radius 2W is used in

4Similarity search strategies in single node architectures employ a single core CPU.
5http://www.imageclef.org/wikidata
6http://corpus-texmex.irisa.fr/
7http://horatio.cs.nyu.edu/mit/tiny/data/index.html
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the query processing algorithm, affecting the search time based on (5) and the mAP
accuracy. We varied the search radius 2W in (0.1%, 1%, 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45%, 50%), expressed as a percentage of the N total dataset size.

In Table I, we present the insertion times and the sizes of |Vpk| for the seven evalua-
tion datasets. According to (4), the insertion time of a new image descriptor vq depends
on the dimensionality D of the descriptors and the size of the small subset |Vpk| ≪ N .
Therefore, the insertion time does not depend on the number of M nodes and the
dataset size N . For instance, SURF-240k-5000d has the highest dimensionality, re-
quiring thus the most expensive insertion time. Additionally, despite the fact that the
sizes of SIFT-1M-128d and SIFT-1B-128d differ in three orders of magnitude, the in-
sertion times are comparable, 4.099 and 4.217 msecs respectively, due to the datasets
same dimensionality and similar |Vpk| sizes, i.e. 147 and 192. Finally, the insertion
times are significantly lower than the online search times of CDVC (Figures 3-5).

Table I. INSERTION TIME (MSEC) AND |Vpk|
CIME-64d CEDD-144d SURF-5000d SIFT-128d GIST-960d SIFT-1B-128d GIST-80M-384d

Insertion time 2.726 6.824 19.123 4.099 13.087 4.217 8.27
|Vpk| 26 6 1,000 147 2,692 192 2,235,194

The proposed CDVC framework 8 was implemented in Java using the Windows
Azure Emulator 9 under the SDK 2.1. All experiments were conducted on a machine
of 3.3 GHz CPU with 18 GB main memory, running Windows Server 2008 R2 Enter-
prise Edition 64-bit. Since our experiments were performed on emulated clouds, we
report average CPU time. Moreover, on each node of our proposed CDVC framework,
we allocated 1 CPU and 2 GB RAM for all CDVC components, whereas in the case of
the Image Comparator node we allocated 4 CPUs and 4 GB RAM providing the maxi-
mum amount of T=8 parallel threads. Finally, in our online Appendix B, we report the
experimental results on the two large-scale datasets SIFT-1B-128d and GIST-80M-
348d over a real cloud infrastructure, including the network latency and the CPU
overhead of the proposed CDVC framework.

4.3. Comparison Of CDVC Against Similarity Search Strategies in Single Node Architectures
In Figure 3, we present the experimental results in the CIME-240K-64d, CEDD-
240K-144d, SIFT-1M-128d SURF-240K-5000d datasets for 100-NN queries and the
GIST-1M-960d dataset for 1000-NN queries, where CDVC for all node variations
clearly outperforms the MSIDX method of single node architecture. This happens be-
cause CDVC is based on our cloud-based architecture of the parallel query process-
ing algorithm (Algorithm 5). Moreover, by increasing the number of nodes in CDVC
the search time is significantly decreased. CDVC has similar performance in terms
of mAP with the MSIDX method for the same 2W search radius, since both meth-
ods are based on dimensions value cardinalities of the images descriptor vectors. In
doing so, both techniques assume that dimensions of high value cardinalities have
more discriminative power and thus prioritize the dimensions in the searching strat-
egy, accordingly. However, the search time is highly reduced, especially in the case of
CVDC with 8 nodes, compared to MSIDX. Additionally, since the MSIDX method is of
single node architecture, it is not able to work in distributed databases, having also
memory limitations for very large-scale datasets, in contrast to our cloud-based archi-
tecture of CDVC. Moreover, in Figure 3(f) we compare CDVC against state-of-the-art
hashing methods of single node architecture, as presented in [Heo et al. 2012]. The

8We made the source code of CDVC publicly available at http://github.com/stefanosantaris/CDVC
9http://www.windowsazure.com/en-us/
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hashing methods are: LSH [Gionis et al. 1999]; LSH-ZC [Datar et al. 2004]; PCA-ITQ
[Gong and Lazebnik 2011]; GSPICA-RBF [He et al. 2011]; RMMH [Joly and Buisson
2011]; LSBC [Raginsky and Lazebnik 2009]; SpecH [Weiss et al. 2008]; and SPH [Heo
et al. 2012]. In Figure 3(f), we varied the number of bits from 32 to 512 for the hash-
ing methods. For 32, 64, 128, 256, 512 bits the search times of the hashing methods
are comparable (i.e. 364, 537, 743, 1014 and 1438 msecs, respectively). In order to have
similar search times for each number of bits variation, we varied the search radius 2W
for MSIDX and CDVC with 8 nodes analogously, i.e. (5%, 7.5%, 10%, 15%, 22.5%) and
(7.5%, 12.5%, 25%, 42.5%, 50%). CDVC clearly overcomes the rest similarity search
strategies of single node architectures in terms of mAP for the same search time.

In Table II, the preprocessing time requirements of CDVC are presented in the first 5
lower-scale evaluation datasets. We also report the respective requirements for MSIDX
and SPH of single node architectures, which outperform the rest of hashing methods
in terms of mAP for comparable online search time. CDVC has clearly lower prepro-
cessing requirements, especially in the case of using 8 nodes, compared to the rest
of similarity search strategies of single node architectures. This happens because the
preprocessing algorithm of CDVC performs in parallel over the cloud, by significantly
decreasing the time requirements. Finally, the influence of CDVC’s preprocessing steps
to the overall time is presented and discussed in our online Appendix C.

Table II. PREPROCESSING TIME REQUIREMENTS IN THE LOWER-SCALE DATASETS (SEC)
CIME-240K-64d CEDD-240K-144d SIFT-1M-128d GIST-1M-960d SURF-240K-5000d

CDVC (2 nodes) 2.12 2.83 16.49 19.35 20.36
CDVC (4 nodes) 1.97 2.03 12.90 16.08 18.48
CDVC (6 nodes) 1.82 1.86 10.67 13.8 16.76
CDVC (8 nodes) 1.8 1.75 9.98 11.08 12.98
MSIDX 3.90 4.21 20.28 24.68 29.93
SPH (64 bits) 75.5 104.71 114.37 1,149.37 3,263.96
SPH (128 bits) 164.13 257.68 243.74 2,350.71 7,041
SPH (256 bits) 373.34 534.76 510.68 4,669.38 13,759.61
SPH (512 bits) 837.15 1,168.82 1,103.28 9,405.82 28,129.58
SPH (1024 bits) 2,020.5 2,638.82 2,402.61 19,186.04 58,079.64

4.4. Comparison of CDVC Against Similarity Search Strategies In Parallel Architectures And
Cloud Infrastructures

In the next set of experiments, we compared CDVC against the Multi Index Hash-
ing 10 (MIH) method of Norouzi et al. [2014] of parallel architecture. The MIH method
achieves parallel processing by using multiple hash tables. For making fair compari-
son, we evaluate the performance of CVDC of M nodes against MIH of M hash tables.
Following the experimental evaluation of MIH, we used the hashing methods of Local-
ity Sensitive Hashing (LSH) and Minimal Loss Hashing (MLH) of Norouzi and Fleet
[2011]. For both hashing methods in the MIH framework, we varied the number of
bits by 8, 16, 32 and 64. The reason for limiting the number of bits variation to 64
bits is that the implementation of MIH caused memory overflows for higher number
of bits for both LSH and MLH. The number of hash tables were varied as the nodes in
CDVC, i.e. 2, 4, 6 and 8 nodes/hash tables. Additionally, we compared CDVC against
the distributed KD-Trees similarity search strategy over cloud infrastructures 11 by
Aly et al. [2011]. Following the evaluation strategy of Aly et al. [2011], in the online
search process we used the parameter of backtracking steps, denoting the fixed budget

10In our experiments, we used the implementation of MIH, publicly available at
https://github.com/norouzi/mih
11We made the implementation publicly available at http://github.com/stefanosantaris/KD Trees.
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Fig. 3. Performance of CVDC on the evaluation datasets of (a) CIME-240K-64d, (b) CEDD-240K-144d,
(c) SIFT-1M-128d (d) SURF-240K-5000d and (e) GIST-1M-960d, as presented in [Tiakas et al. 2013]. (f)
Comparison of CDVC against state-of-the-art hashing methods, as presented in [Heo et al. 2012]. For the
same number of bits variations we varied the search radius 2W of MISDX and CDVC analogously to have
comparable search time with the hashing methods.

for doing backtracking steps for every dimension which is shared among all the KD-
Trees searched for this dimension. The backtracking steps were varied in (0.5%, 1%,
3%, 5%, 7%, 9%, 10%, 11%, 12%), expressed as a percentage of the total dataset size N .
The reason for limiting the backtracking steps is that the search time is exponentially
increased for large number of backtracking steps. Following Aly et al. [2011], the num-
ber of KD-trees is equal to the number of the CPU-cores. Also, we compared CDVC
against FLANN [Muja and Lowe 2014]. Following the evaluation strategy of Muja and
Lowe [2014] on large-scale datasets we used the randomized KD-trees algorithm using
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(2, 4, 6, 8) CPU-cores to search in parallel over the constructed KD-trees. In the pre-
processing step, the publicly available implementation of FLANN 12 by default uses
all available CPU-cores. In Flann, we varied the number of randomized KD-trees in
(22, 23,24,25,26,27,28,29,210), where we concluded to 256 and 512 for the SIFT-1B-128d
and GIST-80M-384d datasets, respectively, since we noticed that a further increase
of the number of randomized KD trees, slightly increases the mAP accuracy with-
out paying off in terms of search time. Following [Muja and Lowe 2014;Wang et al.
2014], in our experiments we used the parameter of the branching factor, varied in
(22, 23,24,25,26,27,28,29,210). We also report the experimental results against two single
node architectures Inverted Multi-Index [Babenko and Lempitsky 2012] and Cartesian
k-means (ckmeans) [Norouzi and Fleet 2013], since both methods were also evaluated
on the two large-scale datasets SIFT-1B-128d and GIST-80M-348d. According to the
experimental evaluation in [Babenko and Lempitsky 2012] and [Norouzi and Fleet
2013], for Inverted Multi-Index 13 we varied the list length in the range of (28,212,216)
using a codebook with size 214 and in ckmeans 14 we varied the number of centers
in (28, 216,232,264,2128,2256). Similar to CDVC, the publicly available implementations
of the competitive methods, by default, use the same maximum number of threads
(T=8). For CDVC we varied the search radius 2W as in the previous set of experiments.
In Figures 4 and 5, we present the experimental results of CDVC against MIH, dis-
tributed KD-Trees, FLANN, as well as against Inverted Multi-Index and ckmeans in
the large-scale datasets of SIFT-1B-128d and GIST-80M-348d for 100-NN queries. In
both datasets, CDVC outperforms the similarity search strategies of MIH-LSH, MIH-
MLH, distributed KD-Trees, FLANN, Inverted Multi-Index and ckmeans for the same
settings, i.e. number of nodes are equal to the number of hash tables or to number of
cores.

In Table III, we present the preprocessing time requirements for CDVC against
MIH-LSH, MIH-MLH, distributed KD-Trees, FLANN, Inverted Multi-Index and ck-
means. The MIH framework performs parallel processing only in the case of online
similarity search by using multiple hash tables. However, the number of hash tables
does not affect the offline preprocessing cost. Therefore, for the MIH framework we
report the preprocessing time requirements for all number of bits variations. For the
distributed KD-Trees method, the number of nodes are equal to the number of the
KD-Trees that are required to be built. As aforementioned, the publicly available im-
plementation of FLANN by default uses all available 8 CPU-cores in the preprocess-
ing step and thus we report only one preprocessing cost. Finally, Inverted Multi-Index
and ckmeans do not support parallel preprocessing; moreover we can observe that the
list length and the number of centers play essential role in the preprocessing costs
of Inverted Multi-Index and ckmeans, respectively. In all cases the proposed CDVC
framework has the less preprocessing requirements.

Summarizing, CDVC has extremely low preprocessing requirements, in contrast to
the competitive similarity search strategies. This happens because the offline algo-
rithms of the preprocessing phase of CDVC (Section 3.1) avoid to use complex index
structures and function in parallel efficiently. For instance, in the case of SIFT-1B-
128d with 8 nodes/HT the preprocessing phases of CDVC, MIH-MLH (16-bit) dis-
tributed KD-Trees and FLANN finish in 20.075, 63.824, 797.04 and 618 secs, respec-
tively. For these settings, CDVC achieves a speed up factor 3, 40 and 33 in the prepro-
cessing time, against these methods respectively. The main differences between CDVC
and the competitive methods are that the MIH’s preprocessing step does not function

12https://github.com/mariusmuja/flann
13https://github.com/arbabenko/MultiIndex
14https://github.com/norouzi/ckmeans
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Fig. 4. Comparison of CVDC on the SIFT-1B-128d evaluation dataset against MIH-LSH, MIH-MLH, dis-
tributed KD-Trees over the cloud (KD-Trees) and FLANN for (a) 2, (b) 4, (c) 6 and (d) 8 nodes / Hash Tables
(HT) / CPU-cores. The performances of Inverted Multi-Index and ckmeans are preserved by varying the
number of nodes, since both methods do not work in parallel.

Table III. PREPROCESSING TIME REQUIREMENTS IN THE LARGE-SCALE DATASETS (SEC)
SIFT-1B-128d GIST-80M-384d SIFT-1B-128d GIST-80M-384d

CDVC (2 nodes) 25.07 27.68 MIH-LSH (8-bit) 55.97 69.57
CDVC (4 nodes) 22.76 25.22 MIH-LSH (16-bit) 61.76 78.15
CDVC (6 nodes) 21.81 23.73 MIH-LSH (32-bit) 87.18 102.78
CDVC (8 nodes) 20.07 21.99 MIH-LSH (64-bit) 120.84 156.80
KD-Trees (2 nodes) 948 972 MIH-MLH (8-bit) 50.35 67.2
KD-Trees (4 nodes) 898.2 943.8 MIH-MLH (16-bit) 63.82 81.30
KD-Trees (6 nodes) 892.08 894.36 MIH-MLH (32-bit) 91.07 124.67
KD-Trees (8 nodes) 797.04 830.94 MIH-MLH (64-bit) 114.92 167.32
ckmeans (28) 1,680 1,500 FLANN 618 918
ckmeans (216) 3,720 2,580 Inverted Multi-Index (28) 94,740 69,660
ckmeans (232) 8,580 3,840 Inverted Multi-Index (212) 116,640 83,880
ckmeans (264) 17,880 7,680 Inverted Multi-Index (216) 134,940 106,620
ckmeans (2128) 21,720 15,120
ckmeans (2256) 24,840 21,360

in parallel, whereas the distributed KD-Tree method and FLANN require a significant
preprocessing cost to built the complex structures of distributed KD-Trees and ran-
domized KD-trees, respectively. Meanwhile, Inverted Multi-Index and ckmeans have
heavy computational costs, by increasing the list length and the number of centers,
without paying off in terms of search time and mAP in the online search. With re-
spect to the online query processing performance, CDVC achieves high mAP in low
search time. This is achieved by exploiting the dimensions value cardinalities and ef-
ficiently splitting the computational effort of the query processing algorithm to the
cloud infrastructure’s nodes (Algorithm 5). This comes in contrast to the competitive
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Fig. 5. Comparison of CVDC on the GIST-80M-348d evaluation dataset evaluation dataset against MIH-
LSH, MIH-MLH, distributed KD-Trees over the cloud (KD-Trees) and FLANN for (a) 2, (b) 4, (c) 6 and
(d) 8 nodes / Hash Tables (HT) / CPU-cores. The performances of Inverted Multi-Index and ckmeans are
preserved by varying the number of nodes, since both methods do not work in parallel.

similarity search strategies which do not reach high mAP in low search time. For in-
stance, despite the fact that the search time of MIH is low, MIH preserves the limited
mAP accuracy of the hashing methods (LSH and MLH). The most competitive method
is FLANN, however it searches the complex structure of KD-tree in parallel, making
thus the search time high.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a similarity search strategy over cloud infrastructures
based on the image descriptors’ Dimensions Value Cardinalities, called CDVC. The
preprocessing algorithm has low requirements, by avoiding to construct complex in-
dex structures over the cloud and dividing the computation cost into several nodes.
Additionally, our proposed insertion algorithm is of low computational complexity, de-
pending on the dimensionality of the image descriptor vectors and a small subset of
image descriptor vectors that have similar dimensions value cardinalities. The CDVC’s
query processing algorithm performs in parallel over the cloud, where the dimensions
of image descriptors are prioritized in the searching strategy based on their dimen-
sions value cardinalities. The query processing effort is divided into several nodes over
the cloud infrastructure and thus the high-computational cost of similarity search is
significantly reduced. Extensive experiments over seven widely used benchmark im-
age datasets have demonstrated the effectiveness of the proposed CDVC similarity
search strategy against competitive methods of single node, parallel and cloud-based
architectures in terms of preprocessing cost, search time and accuracy. An interesting
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topic for future work is to evaluate the proposed CDVC framework on other multime-
dia datasets, such as audio [Knees and Schedl 2013] or video [De Rooij and Worring
2012; Carbunar et al. 2013; Hua 2013].
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Online Appendix to:
Similarity Search Over The Cloud Based On Image Descriptors’
Dimensions Value Cardinalities

STEFANOS ANTARIS and DIMITRIOS RAFAILIDIS, Aristotle University of Thessaloniki

A. SIMILARITY SEARCH BASED ON DIMENSIONS VALUE CARDINALITIES (DVC)
According to Tiakas et al. [2013], the basic idea of similarity search based on Dimen-
sions Value Cardinalities (DVC) is: to reorder the storage positions of images’ descrip-
tors according to value cardinalities of their dimensions, by performing a multiple sort
algorithm, in order to increase the probability of having two similar images in storage
positions that do not differ more than a specific global constant range, denoted by a
parameter 2W . Dimensions Value Cardinalities (DVC) are defined as the unique num-
bers that occur in the dimensions of the image descriptor vectors. Depending on the
extraction strategy of the image descriptor there are the three following cases when
calculating DVCs:

(a) Integer values: In case that the values are integer, only the different values are
considered, and the total count is the value cardinality, denoted by cj for the j-th
dimension of the image descriptor, with j ∈ {1, . . . , D}.

(b) Normalized real values: In case that the values are real, produced by value
normalization techniques of previously integer values, the calculation strategy of
the value cardinality cj is the same with the case of integer values, due to the
restricted value cardinality of the original integer-valued descriptor vector.

(c) Real values: In case that the extraction process of the descriptor generates real
values, the calculation strategy of the value cardinality cj is performed after limit-
ing the decimal accuracy of the descriptor values, as in the case of integer values.
However, in practice, the extracted descriptors have a limited decimal accuracy,
usually between 4 and 6 decimals, due to space and computational restrictions.
In our experiments no additional value quantization was used in all evaluation
datasets.

An overview of similarity search based on DVC is presented in Figure 6. Given a set V
of N D-dimensional image descriptor vectors vi ∈ V, i = 1, . . . , N , we firstly calculate
the cj values of the dimensions of the image descriptor vectors according the previous
three cases. Then, we sort the dimensions of the image descriptors in a descending or-
der, assuming that dimensions with high DVC (cj values) are more discriminative. For
all the sorted cj values, we generate a respective priority vector p corresponding to the
sorted dimensions, i.e. higher priority (pj) for the j-th dimension based on the higher
cj value. This means that based on the priority vector p each value v′i,j

15 in Figure 6
corresponds to the value of the highest DVC (cj) value of the j-th dimension of the i-th
descriptor vector v. As depicted in Figure 6, based on the priority vector p, the image
descriptors are grouped as follows: firstly, descriptors are grouped based on the dimen-
sion with the highest DVC (cj) value, i.e. those descriptors that have the same value
in the first sorted dimension. For instance, in Figure 6 the first five image descriptors

15The initial value vi,j has been reordered based on p.
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�

Fig. 6. Similarity Search Based On DVC.

have the same v′i,1 value (i = 1 . . . , 5) in the first sorted dimension (j=1). After gener-
ating the first group based on the first sorted dimension, descriptors that are in the
same group, are recursively grouped based on the second sorted dimension (j=2). For
instance, in the previous example the group of the first 5 descriptors splits into two
groups, i.e. the first 4 image descriptors have the same v′i,2 value (i = 1, . . . , 4) in the
second sorted dimension, and the 5-th image descriptor generates a second group based
on v′5,2. This procedure is repeated until the last sorted D-th dimension is reached. In
case of having groups with only one v′i,j value the procedure is not applied to these
groups. After the image descriptors have been grouped and sorted recursively based
on p, the positions posi, of the N image descriptors are stored in the double linked list
L. In the case of posing an external query q, the goal is to firstly identify the correct
position posq in the double linked list L based on the priority vector p. After identify-
ing the correct position posq, 2W < N image descriptors in W previous and W next to
position posq are retrieved to search for the top-k < 2W most similar results.

B. PERFORMANCE OF CDVC OVER A REAL CLOUD INFRASTUCTURE
To measure the performance of CDVC in terms of network latency and CPU over-
head/usage, CDVC was evaluated on a real cloud infrastructure. Our real cloud
computing infrastructure contains three distinct machines orchestrated under the
Ganeti16 virtual server management software tool. The specifications of each machine
are presented in Table IV. Since the experiments in Section 4 were performed on Win-
dows Azure Libraries, we used the RabbitMQ17 message queuing platform equivalent
to the Windows Azure Queues. Moreover, instead of using Windows Azure Tables we

16https://code.google.com/p/ganeti/
17http://www.rabbitmq.com/
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utilized the HBase18 distributed data storage. The HBase storager was installed over
the cloud using 8 single-core nodes with maximum data storage size equal to 2.4 TB.

Table IV. CLOUD SPECIFICATIONS

CPU Architecture Number of Cores Size of RAM Size of Disk
Intel Xeon 2.9 GHz 8 64 GB 4 TB
Intel i7 2.8 GHz 4 32 GB 2 TB
Amd 2.9 GHz 8 32 GB 2 TB

Following the experimental evaluation of Section 4, we varied the number of the M
nodes in (2, 4, 6, 8). On each node, a single core virtual machine was assigned with 2 GB
of RAM. Additionally, following the parallelization strategy in the Image Comparator
node of the Query Processing Algorithm of Section 3.3 where T =8 parallel threads
were used, a 4-core virtual machine was assigned on each Image Comparator node. In
the case of the distances calculation in the Image Comparator node we used parallel
threads in the same node and not in distinct nodes, in order to reduce the network
latency that it would have been produced while transferring data between different
nodes over the cloud. Finally, in contrast to the experiments of Section 4 over the
emulated cloud, in our experiments over the real cloud infrastructure, the proposed
CDVC framework preprocesses the N D-dimensional image descriptor vectors in a
streaming mode, which means that as soon as each component finishes its task, the
CDVC Scheduler sends the next task immediately. In Figure 7, the network latencies
of the CDVC components are presented. The highest network latency is produced by
the set of the M Image Sorter nodes in the preprocessing step, since they take as input
the N/M D-dimensional descriptor vectors (the largest data transfer in terms of bytes,
compared to the inputs of the rest of the CDVC components, as shown in Figure 1).
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Fig. 7. Networks Latencies of the CDVC components on (a) SIFT-1B-128d and (b) GIST-80M-384d.

In Table V, we present the CPU overhead/usage of each node of the CDVC compo-
nents. The CPU overhead/usage is reduced slightly (up to 4%) by increasing the num-
ber of the M nodes of the CDVC components, with the exceptional case of an Image
Sorter node (Figure 8) whose CPU overhead/usage is highly reduced. This happens be-
cause by increasing the number of the M nodes, each Image Sorter node takes as input
less N/M descriptor vectors to process.

In Figure 9, we present the performance of CDVC on the cloud infrastructure, in-
cluding the network latencies and the CPU times of the respective CDVC components.

18http://hbase.apache.org/

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.



App–4 S. Antaris and D. Rafailidis

Table V. CPU OVERHEAD/USAGE (%) OF EACH NODE OF THE CDVC
COMPONENTS.

SIFT-1B-128d GIST-80M-384d
Preprocessing
DVC Extractor 32% 36%
Priority Indexer 18% 22%
Global Image Sorter 83% 89%
Insertion
Dataset Updater 6% 7%
Query Processing
Candidate Images’ IDs Retrieval 8% 9%
Image Comparator 80% 89%
Distance Collector 13% 15%
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Fig. 8. (a) CPU Overhead/Usage (%) of an Image Sorter node in GIST-80M-384d and SIFT-1B-128d, by
varying the number of the M nodes over the cloud infrastructure.

According to the workflow of our CDVC framework (Figure 1), to retrieve the result
set R from the CDVC Scheduler and the Cloud Database Server, the required time is
the aggregation of the network latencies and CPU times of Dataset Updater, Candi-
date Images’ IDs Retrieval, Image Comparator and Distance Collector. Based on the
experimental results of Figure 9, the overall search time is reduced by increasing the
number of the M nodes.
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Fig. 9. Performance of CDVC on the cloud infrastructure for (a) SIFT-1B-128d and (b) GIST-80M-384d.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.



Similarity Search Over The Cloud Based On Dimensions Value Cardinalities App–5

C. PERFORMANCE OF CDVC PREPROCESSING STEPS
In this Section we present the influence of each preprocessing step of CDVC to the
overall preprocessing cost of Tables II and III. The total preprocessing time is calcu-
lated as the aggregation of the individual preprocessing times of the offline algorithms,
i.e. (1) the M DVC Extractor M -Nodes (preprocessing step 1); (2) the Priority Indexer
(preprocessing step 2); (3) the M Image Sorter Nodes (preprocessing step 3); and (4)
the Global Image Sorter (preprocessing step 3). In Table VI we report the influence
of each individual offline algorithm to the total preprocessing time. We can make the
following observations, by increasing the M nodes, the preprocessing costs of the M
DVC Extractor nodes, the M Image Sorter Nodes and the Global Image Sorter are de-
creased, analogously. This is confirmed by our respective complexity analysis of (1) and
(3), where the M parameter of the nodes is in the denominator of the fraction of the
respective complexity fractions, i.e. O(N ∗D/M) and O(D ∗N/M) ∗ log(N/M)). On the
contrary, by increasing the M nodes, the computational cost of the Priority Indexer is
slightly increased, as expected according to our complexity analysis in (2), since the
M parameter of the nodes is in the nominator of the respective complexity fraction i.e.
O(M ∗D) +O(D ∗ logD). However, as we experimentally show in Table VI the Priority
Indexer has the less computational cost in the preprocessing phase.

Table VI. CPU TIME (SEC) OF CDVC PER PREPROCESSING STEP
M Nodes M DVC Extractor Nodes Priority Indexer M Image Sorter Nodes Global Image Sorter Total
CIME-240K-64d

2 0.317 0.135 1.038 0.63 2.120
4 0.309 0.142 0.976 0.543 1.97
6 0.27 0.159 0.883 0.509 1.821
8 0.292 0.167 0.862 0.48 1.801

CEDD-240K-144d
2 0.501 0.169 1.275 0.898 2.843
4 0.492 0.175 1.102 0.264 2.033
6 0.46 0.183 0.846 0.371 1.86
8 0.422 0.188 0.798 0.346 1.754

SIFT-1M-128d
2 2.907 0.155 11.087 2.338 16.486
4 2.573 0.158 7.66 2.421 12.902
6 2.11 0.165 6.99 1.407 10.672
8 1.979 0.17 6.502 1.304 9.975

GIST-1M-960d
2 3.819 0.49 12.8 2.238 19.347
4 3.552 0.628 10.097 1.798 16.075
6 3.197 0.0.759 8.55 1.292 13.798
8 2.074 0.882 6.913 1.217 11.083

SURF-240K-5000d
2 3.914 1.017 10.672 4.757 20.36
4 3.842 1.12 9.087 4.427 18.476
6 3.273 1.228 8.59 3.671 16.762
8 2.976 1.29 6.834 1.879 12.979

SIFT-1B-128d
2 7.173 0.174 12.834 4.892 25.073
4 6.861 0.185 11.975 3.737 22.758
6 6.273 0.199 11.008 4.329 21.809
8 6.07 0.233 10.43 3.342 20.075

GIST-80M-384d
2 5.973 0.299 13.972 7.44 27.684
4 5.007 0.357 12.587 7.274 25.225
6 4.22 0.366 11.29 7.856 23.732
8 3.891 0.407 9.927 7.767 21.992
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