
23

Processing Top-k Dominating Queries in Metric Spaces

ELEFTHERIOS TIAKAS, Aristotle University of Thessaloniki
GEORGE VALKANAS, Stevens Institute of Technology
APOSTOLOS N. PAPADOPOULOS and YANNIS MANOLOPOULOS,
Aristotle University of Thessaloniki
DIMITRIOS GUNOPULOS, University of Athens

Top-k dominating queries combine the natural idea of selecting the k best items with a comprehensive
“goodness” criterion based on dominance. A point p1 dominates p2 if p1 is as good as p2 in all attributes
and is strictly better in at least one. Existing works address the problem in settings where data objects are
multidimensional points. However, there are domains where we only have access to the distance between
two objects. In cases like these, attributes reflect distances from a set of input objects and are dynamically
generated as the input objects change. Consequently, prior works from the literature cannot be applied,
despite the fact that the dominance relation is still meaningful and valid. For this reason, in this work,
we present the first study for processing top-k dominating queries over distance-based dynamic attribute
vectors, defined over a metric space. We propose four progressive algorithms that utilize the properties of the
underlying metric space to efficiently solve the problem and present an extensive, comparative evaluation
on both synthetic and real-world datasets.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Dominating queries, metric spaces, distance computation

ACM Reference Format:
Eleftherios Tiakas, George Valkanas, Apostolos N. Papadopoulos, Yannis Manolopoulos, and Dimitrios
Gunopulos. 2016. Processing top-k dominating queries in metric spaces. ACM Trans. Datab. Syst. 40, 4,
Article 23 (January 2016), 38 pages.
DOI: http://dx.doi.org/10.1145/2847524

1. INTRODUCTION

Preference-based queries [Hristidis et al. 2001] allow users to enforce additional con-
straints and better guide the object selection process. One way to express such prefer-
ences is to provide a scoring function over the object’s attributes. Another way is to give
some hints regarding the maximization or minimization of attribute values, without
giving an explicit scoring function. Based on these alternatives, there are two clas-
sic preference-based query types that have been studied extensively in the literature:
(1) top-k queries and (2) skyline queries.

Top-k query processing has been an active research area spanning disciplines like
Web search, p2p-based retrieval, and multimedia databases, to name a few. The query’s

Authors’ addresses: E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos, Department of Informatics, Aristotle
University of Thessaloniki, 54124 Thessaloniki, Greece; emails: {tiakas, papadopo, manolopo}@csd.auth.gr;
G. Valkanas, Stevens Institute of Technology, Howe School of Technology Management, Hoboken, New Jersey,
USA; D. Gunopulos, Department of Informatics and Telecommunications, University of Athens, Athens,
Greece; email: dg@di.uoa.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/01-ART23 $15.00
DOI: http://dx.doi.org/10.1145/2847524

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.

http://dx.doi.org/10.1145/2847524
http://dx.doi.org/10.1145/2847524


23:2 E. Tiakas et al.

Fig. 1. The three types of preference queries: (a) skyline, (b) top-k, and (c) top-k dominating (for k = 3).

power lies in its flexibility, supporting user-defined and ad hoc scoring functions, and
its ability to bound the number of results through the parameter k. Unfortunately, the
selection of a meaningful scoring function is not always easy, since different scoring
functions generally produce different results. Moreover, top-k queries are sensitive to
value scaling. For example, it is not straightforward to combine the attributes “price”
and “screen size” when selecting the laptop that best suits our needs. Moreover, scaling
an axis (e.g., from dollars to cents) in general will change the ranking of the objects.

On the other hand, skyline queries rely on the dominance property. More specifically,
p dominates q if p is at least as good as q in every attribute and it is strictly better than
q in at least one of them. The most important advantage of skyline queries is that no
magic parameters or scoring functions are required. The result also remains unaffected
by attribute scaling. However, the result is a set (i.e., no inherent ranking of the points
is supported), whereas its size depends on the dataset’s underlying properties such as
the data distribution and dimensionality.

It is not hard to realize that these preference-based queries are complementary. In
an attempt to combine their advantages and cancel out their disadvantages, a hybrid
approach was proposed in Yiu and Mamoulis [2007, 2009]: the top-k dominating query.
This new query ranks objects (as in top-k queries) according to a scoring function that
relies on dominance (as in skyline queries): the score of an object pi equals the number
of points that pi dominates. Overall, top-k dominating queries exhibit the following
desirable properties: (1) the result size is controllable, (2) the result is scale invariant,
(3) an intuitive dominance-based score is assigned to each object, and (4) no other
user-defined scoring function is required.

Figure 1 depicts an example for each of the three query types, that is, skyline queries,
top-k queries, and top-k dominating queries for the two-dimensional case (there are only
two attributes of interest). For the top-k query, we assume that the scoring function
used is the sum of the attribute values.

The importance of this query type has been prominently exemplified by numer-
ous works on the topic and is partly due to its simple yet intuitive explanation: the
more points a point p dominates, the better p is. Moreover, it simulates how users
select items, in lack of better alternatives: for example, if the “best” camera is out
of stock, the second best is picked, and so forth. The query was initially proposed
in Yiu and Mamoulis [2007] and enhanced later in Yiu and Mamoulis [2009]. It has
been found useful in uncertain databases [Lian and Chen 2009] and in a streaming
setting [Kontaki et al. 2012]. Its practicality was also demonstrated in subspace domi-
nance queries [Tiakas et al. 2011], where the computation of dominance relationships
is based on a (user-defined) subset of the attributes.

Motivation. The aforementioned techniques operate under the assumption that each
object is associated with an attribute vector with fixed values, and that dominance is

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:3

based on these attribute values. However, there are domains and areas of application
where these techniques cannot be employed, because the fixed-value vector-based rep-
resentation is impossible or inefficient. Some characteristic examples of these domains
include biology, social and road networks, and graphs.

Consider, for instance, a road network that models the distance between points in
a city. A food chain is interested in opening a new store in the area but is unsure
about the location where to open it. Knowing its customer base, it has identified three
distinct subareas that will provide its basic pool of customers. Each subarea can be
represented on the road network by its centroid, or the point closest to it. Starting
with these three points, the chain wants to identify a set of alternatives where the new
store can be situated, so that it is convenient for its clientele to visit and/or deliver to
them.

Any possible location for the store can be defined by its distance to the three subareas,
d = (d1, d2, d3), where the distance is computed on the road network. A location l1 that
is farther from all three centroids as opposed to a location l2 is dominated by l2, and is
therefore a poorer choice. In simpler terms, l2 is more convenient to reach than l1 for
all three subareas. However, each location is also associated with a price, and perhaps
the most convenient of all is not an affordable option. Therefore, the food chain would
have to consider the second-best option, perhaps the third, and so on.

Instead of using the sum of distances to rank the alternatives, the chain could use
the dominance relation and select the top-k dominating locations. To begin with, the
overall distance is implicitly captured, as the location with the minimum distance for
all three locations will be the top-1. Moreover, ranking by top-k dominance also con-
siders the distance of the alternatives and puts things into perspective. For example,
the point with the minimum sum distance—which seems like a good choice, optimizing
convenience in a combined way—tells us nothing about the distribution of the other
alternatives and could be entirely isolated. On the other hand, a location that domi-
nates 30 alternatives tells us that there are at least 30 other locations distributed in
approximately the same area: given that they are dominated points, their distances
are constrained in a certain way, placing them (roughly) on the same part of the re-
gion that the food chain is considering. The number of alternatives in a region could
be indicative of that region’s status (e.g., economic growth); therefore, a location that
dominates 30 alternatives is not only closer but also most likely in a better-off area
compared to a location that dominates only five. Finally, knowing about the number of
dominated alternatives, the food chain could now evaluate whether a location is worth
the price, and potentially leverage that information as a negotiation tool.

Similar situations may arise in social networks, where we want to recommend new
connections. Using the user’s profile, we can identify, for instance, the top-5 topics of
interest and then extract one representative (e.g., expert) node for each topic from
the network. The recommendation engine would then come up with the top-k nodes
in the social network that are most similar with these five representatives. Following
the same rationale of our previous example, the recommended nodes can be derived
through a top-k dominating query, returning those nodes that are consistently more
similar with all five representatives, compared to other nodes in the network. That
does not necessarily mean that the recommended nodes have the maximum values
in all dimensions—though, in that case, they would be the top-k result—but rather
that for each selected node, its similarity with each of the five representatives is better
than a portion of the network that the selected node dominates. Therefore, the top-k
dominating query inherently takes into account the underlying data distribution.

We stress that in both examples, the only information we have is the distance between
the points in the query set Qand the dataset. The naive approach would be to transform
the original data to a |Q|-dimensional space, where each point in the original dataset
is denoted by its distance to each point in the query set. After this transformation, we

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:4 E. Tiakas et al.

Fig. 2. A top-3 dominating query with two query objects q1 and q2.

can apply the top-k dominating query, as described in Yiu and Mamoulis [2007, 2009].
Such a solution, however, would entail a huge transformation overhead, which we must
pay for in every query set Q. It is therefore in our best interest to solve the problem in
the original space. For these reasons, we study, for the first time, algorithms for top-k
dominating queries, where objects are defined in any metric space and attributes are
based on the distances among data objects and query objects.

Outline of Our Solution. As we will demonstrate throughout our work, top-k dom-
inating queries in metric spaces may be addressed by adapting existing techniques.
However, such approaches are highly inefficient, due to a high degree of unnecessary
recomputations and increased I/O costs. To overcome these deficiencies, we propose
a novel, theoretically sound, and efficient technique, which operates directly on the
original (metric) space, without the need for data transformations.

To better understand the inner workings of our solution, consider Figure 2, showing
a top-3 dominating query in the 2-dimensional Euclidean space. Two query objects q1
and q2 are also depicted. We start by extracting the nearest neighbors of each of the
query points, q1 and q2. Point p1 is the first nearest neighbor of both query points, and
consequently is the top-1 object of the top-k dominating query. The reason is that no
other point lies inside either the circle C1(q1, d(q1, p1)) or C2(q2, d(q2, p1)), meaning that
no other point has lower distances from both q1 and q2. Therefore, p1 dominates all
other points and its dominance score is dom(p1) = 11.

Since we have not already retrieved the top-3 objects, we proceed by extracting the
second nearest neighbor for the two query points. In this case, however, the nearest
neighbors are not the same: the second nearest neighbor of q1 is p2, whereas that of q2
is p3. Since d(q1, p2) < d(q1, p3) (p3 lies outside C3(q1, d(q1, p2))) and d(q2, p2) > d(q2, p3)
(p2 lies outside C4(q2, d(q2, p3))), p2 and p3 do not dominate each other. However, p2 and
p3 dominate all other points since there are no points lying inside the corresponding
dashed circles (except p1). As a result, their dominance score is dom(p2) = 9 and
dom(p3) = 9, respectively, whereas the remaining points have a dominance score less
than 9. Based on the previous discussion, we conclude that the set {p1, p2, p3} is the
final answer to the top-3 dominating query based on query points q1 and q2.

As explained through our illustrative example, our proposed technique operates in
rounds. During each round, we retrieve, for each query object qi ∈ Q, its next nearest
neighbor from the dataset D. We then identify objects that are common neighbors across
all query objects, and based on their rank position for each qi, we establish whether the
item will be in the top-k result or not. Using the same information of an object’s rank
position, we can determine whether we should continue extracting more neighbors or

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:5

terminate the process. The terminating condition is based on a variation of Fagin’s
Thresholding Algorithm [Fagin et al. 2001], tailored to our problem’s characteristics.
We also apply a number of heuristics, using similarly inspired ideas, to reduce the
computational and memory footprint of our algorithm.

Contributions. In summary, the contributions of our work are summarized as
follows:

(1) We introduce, for the first time, the concept of (dynamic) top-kdominating queries in
metric spaces, generalizing the concept of dominating queries in multidimensional
datasets.

(2) We propose efficient techniques for answering metric-based top-k dominating
queries, all of which exhibit the progressiveness property. In particular, we study
two algorithms, the Skyline-Based Algorithm (SBA) and the Aggregation-Based
Algorithm (ABA), that are based on the adaptation of existing techniques. How-
ever, the most efficient computation is achieved by using the new Pruning-Based
Algorithms (PBAs) that use intelligent pruning mechanisms.

(3) We present a detailed performance evaluation of all studied techniques, based
on real-life and synthetic datasets, under different distance functions. Our
pruning-based algorithms (PBA1 and PBA2) offer a performance improvement by
one to three orders of magnitude, compared to the alternatives, provided that the
underlying metric access method supports incremental nearest neighbor to ensure
progressiveness.

Extensions Beyond the Conference Version. This article is an extended version
of the EDBT 2014 paper [Tiakas et al. 2014]. This journal version contains several
enhancements with respect to the conference version. The most significant changes
are summarized here:

—We have included two more datasets in the performance evaluation, the San
Francisco (SF) road network and the Proteins (PR) dataset. The purpose of SF is to
validate the results reported in the conference version for the California (CAL) road
network, whereas the purpose of PR is to test the performance of the algorithms
when the distance measure is the Levenshtein distance. Thus, we cover the most
widely used distance measures, namely: L1, L2, shortest path, and Levenshtein.

—We have included a proof of correctness for the PBA2 algorithm. Essentially, we provide
proofs of some important lemmas that guarantee the correctness of the exact score
computation process applied by PBA2. This new material is given in Section 4.4.1.

—Algorithms PBA1 and PBA2 are based on several pruning rules. The effectiveness of
pruning is a significant performance factor. In Section 5.3, we give a short discussion
on this issue, whereas Figure 14 depicts the number of eliminated objects for the
CAL dataset.

—In the performance evaluation, we have included a study of the main memory foot-
print required by the priority queue data structure. It is shown that the additional
memory requirements of the algorithms are very small.

—Finally, we provide in Section 6.4 a preliminary study of an approximate solution.
In particular, we show that if we group query objects, it is possible to achieve better
performance by penalizing the accuracy of the results.

Roadmap. The rest of the article is organized as follows: Section 2 describes briefly
related work in the area. Section 3 presents some preliminary concepts regarding the
topic of research, and Section 4 studies in detail the query processing algorithms SBA
and ABA, which are based on adaptations performed on existing algorithms. Then,

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:6 E. Tiakas et al.

in Section 5, we provide the details for the proposed techniques PBA1 and PBA2 as
well as the theoretical infrastructure that these algorithms are based on. Section 6
offers performance evaluation results based on diverse datasets and distance functions.
Finally, Section 7 concludes the work and discusses briefly future work in the area.

2. RELATED WORK

In this section, we discuss related work, focusing on query types and concepts re-
lated to our research, in order to keep the article self-contained. In particular, we
cover briefly (1) top-k queries, (2) skyline queries, (3) top-k dominating queries, and
(4) nearest-neighbor queries. Top-k queries are at the core of our research, since our
proposed algorithms extend existing algorithms that have been proposed previously
for general top-k processing. The concept of the skyline is used by one of the baseline
algorithms that we study in Section 4. Finally, nearest-neighbor queries are one of the
core components to facilitate progressive computation.

2.1. Top-k Queries

Top-k queries model a fundamental notion of human behavior, whereby objects are
ranked according to some criteria (e.g., importance, urgency, etc.), and the k highest-
ranked items are then selected. Examples are prevalent across settings, such as “top-10
movies of all times,” “top-5 best guitarists,” “top-20 places to visit,” and so on.

As a result of the query’s ubiquity, there is a large body of work focusing on efficient
algorithms for top-k query processing. Top-k queries have been successfully applied in
both structured (e.g., relational databases) and unstructured domains (e.g., document
collections) [Dwork et al. 2001]. For example, web search engines are based on top-k
query processing to return the most similar documents with respect to a user’s query
[Culpepper et al. 2012]. In addition, top-k queries are an excellent alternative process-
ing mechanism in database systems [Ilyas et al. 2008] as well as in web-accessible data
stores [Marian et al. 2004]. The challenge is to provide efficient algorithms in order to
deliver the k best objects by avoiding the score computation of every single object in
the collection.

Top-kqueries are strongly related to the ranking (or scoring) function used to compute
the score of the objects. The score quantifies the quality of an object, allowing us to
order the query set. Fagin has significant contributions in the area [Fagin et al. 2001],
proposing several algorithms such as TA (Threshold Algorithm) and NRA (No Random
Access). These algorithms require attribute values to be presented in descending (or
ascending) order, to enable the effective use of thresholding.

Based on the pioneering work of Fagin, several novel techniques have been reported
in the literature for top-k query processing. In addition to top-k selection queries based
on monotone ranking functions, more complex operators such as joins have been studied
thoroughly [Ilyas et al. 2004].

2.2. Skyline Queries

Skyline queries, in the context of databases, were initially proposed in Börzsönyi et al.
[2001], and since then, they have attracted considerable attention by the database
and data analysis community. This surge of interest is due to the query’s simplic-
ity and expressive power: they support multiobjective optimization without the need
for user-defined scoring functions. The only input required by the user is the prefer-
ences regarding the minimization/maximization of attribute values. For example, if
price and quality are two of the attributes, then users prefer to minimize price and
maximize quality by selecting items that are (objectively) better than (i.e., dominate)
others.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:7

Several algorithms have been presented to compute the skyline of a dataset, with
BBS [Papadias et al. 2005a] being the most preferred when using an R-tree index, due
to its progressiveness and I/O optimality. Efficient algorithms have also been proposed
in Das Sarma et al. [2009] and Sheng and Tao [2011] for such cases where indexing
cannot be applied.

Unlike top-k queries, skyline queries cannot control the size of the output. In fact,
depending on the data distribution and dimensionality, it is very likely that the skyline
will contain a significantly high number of points. More formally, the expected skyline
cardinality of a set of n randomly generated points in d dimensions is m = O((ln n)d−1)
[Bentley et al. 1978]. In a dataset containing 109 points, having about 103 skyline
points may not be that much compared to the dataset cardinality, but it is impractical
for the user to inspect manually. This problem has long been a major criticism against
skyline queries and is what top-k dominating queries—which we focus on in our current
work—are trying to address.

2.3. Top-k Dominating Queries

Top-k dominating queries were first introduced in Papadias et al. [2005a] as an alter-
native to the other widely used preference-based queries, such as general top-k and
skyline queries, which we described in the previous paragraphs. A more detailed study
of this query type was later performed in Yiu and Mamoulis [2007, 2009].

The main advantages of top-k dominating queries are as follows: (1) the ranking pro-
vided is quite intuitive, (2) it does not require specialized scoring functions (as opposed
to top-k queries), and (3) the size of the output is controlled by the parameter k (in
contrast with skyline queries). Among the algorithms proposed in the literature, CBT
[Yiu and Mamoulis 2007] shows the best overall performance. However, it requires
the existence of an aggregate R-tree index [Lazaridis and Mehrotra 2001] and lacks
progressiveness, since all k points must be first determined before the answer is re-
turned. In addition, query processing involves all the available dimensions, which is
quite restrictive taking into account that users usually focus on a small subset of the
available attributes.

In Lian and Chen [2009], an algorithm has been proposed supporting top-k dominat-
ing queries in uncertain databases. The proposed approach shares the same limitations
with CBT, since it is again based on aggregate R-trees. The novelty of this method is
that it handles uncertainty in a clear and meaningful way in applications where un-
certainty cannot be avoided (e.g., GPS locations). In Zhang et al. [2010], a randomized
algorithm is proposed that supports probabilistic top-k dominating queries in uncertain
data. Again, the proposed approach is based on aggregate R-trees. The proposed algo-
rithm is highly accurate when the data cardinality and the dimensionality are low. The
concepts of top-k dominating queries have been also used in Skoutas et al. [2009]. That
work studies web service discovery issues by using dominance relationships through
multicriteria matching. Finally, continuous monitoring of top-k dominating query re-
sults has been studied in Kontaki et al. [2012] by taking a sliding-window approach.

The common denominator among the aforementioned approaches is that they
are based on vector spaces, where the concept of dominance is directly applied on at-
tribute values, which are a priori available. There is no work in the literature studying
the problem of dominating query processing under the scenario where attribute val-
ues are generated on the fly, representing distances from user-defined query objects.
Although skyline queries have been studied over dynamic attributes [Sharifzadeh and
Shahabi 2006] and metric spaces [Chen and Lian 2008, 2009; Fuhry et al. 2009; Deng
et al. 2007], there is no work studying the problem of top-k dominating query process-
ing in a metric space, where coordinates are dynamically defined by means of a metric
distance function. This seems a natural generalization, taking into account that many

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:8 E. Tiakas et al.

modern applications rely solely on triangular inequality to support similarity queries
[Chávez et al. 2001].

In addition to the absence of algorithms for metric-based dominating queries,
another limitation of previously proposed methods is that they lack progressiveness.
Progressiveness is a significant and desirable property, since it enables the incremen-
tal production of results: relevant objects are retrieved one by one as soon as they
are available. The only related progressive algorithm is Branch-and-Bound Skyline
(BBS) [Papadias et al. 2005a], which has been designed to answer skyline queries
in multidimensional datasets indexed by an R-tree. Therefore, BBS is not applicable
in our case. Moreover, although the algorithm in Chen and Lian [2009] works with
metric-based access methods, it is designed to report the skyline, and it is not equipped
to handle the concept of the dominance score.

Tiakas et al. [2011] study efficient progressive algorithms for top-k dominating
queries in multidimensional datasets, where the user may select a subset of the avail-
able dimensions. These techniques assume a vertical decomposition of the dataset,
where each dimension is organized separately. Unfortunately, this requirement ren-
ders them unfit for the metric case explored in this article. However, some results from
Tiakas et al. [2011] are adapted and utilized in our current work, in order to provide
(1) efficient score computation and (2) effective pruning.

2.4. Nearest-Neighbor Processing

From the brief outline of our top-k dominating technique for metric spaces presented in
Section 1, one can easily see that incremental nearest-neighbor processing is a core com-
ponent of our approach. Given its integral role, we provide a short survey of techniques
and results in this area.

Determining the k nearest neighbors of a query object is a fundamental operation,
due to its importance in database query processing as well as in machine-learning
algorithms (e.g., k-NN classification). Nearest-neighbor queries have been successfully
applied in a broad spectrum of domains, such as spatial databases [Roussopoulos et al.
1995], spatiotemporal databases [Raptopoulou et al. 2003], sensor networks [Xu et al.
2007], and metric spaces [Ciaccia et al. 1997], to name a few. Typically, given a query
object q and an integer k, the output of a k-NN query contains the k closest objects with
respect to q, where proximity is computed by means of a distance function. Note that
nearest-neighbor queries can be considered as a special case of top-k queries, where
the ranking function corresponds to the distance among the objects.

In this work, we are mostly interested in incremental nearest-neighbor computa-
tion, where given a query object q, we require by the access method to deliver the next
best object upon request. This means that we do not provide the number of nearest
neighbors (k) in advance, and each neighbor is delivered by executing a get-next op-
eration incrementally. The concept of incremental nearest-neighbor computation has
been introduced in Hjaltason and Samet [1995] in spatial databases.

The requirement for incremental retrieval allows us to support progressiveness of re-
sult output. In this work, we are using incremental nearest-neighbor queries over met-
ric access methods. Since the number of active incremental nearest-neighbor queries
equals the number of query objects, the efficient computation of the final result is not
straightforward.

3. FUNDAMENTAL CONCEPTS

In this section, we present some basic concepts and definitions regarding the focus
of our research, in order to keep the work self-contained. Table I depicts the basic
notations that are frequently used in the upcoming sections.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:9

Table I. Frequently Used Symbols

Symbol Description
D the set of data objects
n = |D| the number of data objects
Q the set of query objects
m = |Q| the number of query objects
d() a metric distance function
NN(q, k) k-NN of object q
ANN(Q, k) top-k aggregate NN objects of Q
adist(p, Q) aggregate distance of object p from Q
p ≺ r object p dominates object r
dom(p) = dom(p, Q) exact dominance score of p, with respect to Q
estdom(p) = estdom(p, Q) estimated dominance score of p, with respect to Q
eq(p) number of objects equivalent to p
MSS(Q) metric space skyline with respect to Q
MSD(Q, k) top-k dominating objects with respect to Q

3.1. Basic Definitions

Let U be a universe and d() a function such that d : U × U −→ R, which quantifies the
dissimilarity between data objects satisfying the following properties:

∀p, q ∈ U , d(p, q) ≥ 0 (positivity)
∀p, q ∈ U , d(p, q) = d(q, p) (symmetry)
∀p ∈ U , d(p, p) = 0 (reflexivity)
∀p, q, x ∈ U , d(p, q) ≤ d(p, x) + d(x, q) (triangular inequality)

Then, d is called a metric function and the pair (U , d) is called a metric space. If
the objects of the metric space are tuples (records) with numeric attributes, then the
pair (U , d) is called a vector space, and, among others, any Lp norm may be used as
the distance function. Note that a vector space is a special case of a metric space.
Practically, we are interested in a subset of D of U , which is called the dataset and
contains the underlying data objects of interest.

Definition 3.1. Let D be a dataset, q ∈ D, and d() be a distance function. A k-nearest
neighbor query based on q, denoted as NN(q, k), determines the k closest objects with
respect to q. Formally: NN(q, k) = A : |A| = k ∧ ∀p ∈ A,∀x ∈ (D − A),d(q, p) ≤ d(q, x).

Definition 3.2. Let a1, . . . , am be the m attributes defining the objects. A ranking
function f is monotone if f (a1, . . . , am) ≤ f (a′

1, . . . , a′
m) whenever ai ≤ a′

i, ∀i.

Definition 3.3. If (D, d) is a metric space, Q is a set of query objects Q =
{q1, q2, . . . , qm}, and f () is a monotonically increasing function, then the aggregate dis-
tance between an object p and the query set Q is defined as follows:

adist(p, Q) = f (d(p, q1), d(p, q2), . . . , d(p, qm)).

The result of an aggregate nearest -neighbor query, denoted as ANN(Q, k), contains
the k objects with the minimum aggregate distance computed according to the distances
from Q. An important factor is the selection of the aggregate function f (), which affects
the performance of these queries. Commonly used aggregate functions are min, max,
avg, and sum (see Papadias et al. [2005b]).

Definition 3.4. Let (D, d) be a metric space and Q be a set of query objects Q =
{q1, q2, . . . , qm}. For any two objects p, r ∈ D, p dominates r (p ≺ r) if the following

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:10 E. Tiakas et al.

condition holds:

∀i : 1 ≤ i ≤ m, d(p, qi) ≤ d(r, qi) ∧ ∃qj ∈ Q, d(p, qj) < d(r, qj).

Therefore, p dominates r if and only if p has an equal or smaller distance than r to all
query objects qi ∈ Q, and p has a strictly smaller distance than r to at least one query
object. The set of objects in D that are not dominated by any other object (according to
the distances from Q) is called the metric space skyline with respect to Q, denoted as
MSS(Q).

In Yiu and Mamoulis [2007], top-k dominating queries were defined for objects with
fixed coordinates. In this article, we generalize this concept by considering metric space
dominating queries, denoted as MSD(Q, k). We use the function dom(p) to denote the
number of objects dominated by an object p with respect to a particular query set, that
is, dom(p) = |{r ∈ D : p ≺ r}|. dom(p) is referred to as the dominance score of p. The
answer to such a query consists of the set of k objects that have the highest scores
with respect to the ranking function dom(). In some cases, the distance vectors of two
or more objects with respect to a query set may be the same. In this case, we say that
these objects are equivalent.

Definition 3.5. Two objects p1 and p2 are called equivalent with respect to a query
set Q = {q1, q2, . . . , qm} if ∀i : 1 ≤ i ≤ m, dist(p1, qi) = dist(p2, qi).

We can also generalize equivalence, denoting by eq(p) the set of points from the
dataset D that are equivalent to p, with respect to a query set Q. More formally,
eq(p) = {x ∈ D : dist(p, qi) = dist(x, qi), qi ∈ Q,∀i, 1 ≤ i ≤ m}.

Definition 3.6. Let Q = {q1, q2, . . . , qm} be a set of query objects, and consider a k-
nearest-neighbor query NN(qi, k) for each query object qi. An object p ∈ D is considered
a common neighbor if and only if it is found among the k-nearest neighbors for every
NN(qi, k). Formally, p is a common neighbor if p ∈ ⋂

NN(qi, k), 1 ≤ i ≤ m.

In the upcoming sections, we study progressive algorithms for efficient processing of
metric space dominating queries. The performance of the algorithms is measured by
considering the CPU and I/O cost and, most notably, the number of distance computa-
tions applied. In applications where the distance measure is computationally expensive
(e.g., protein-protein interaction, DNA sequences), the cost of distance computations is
the most significant performance factor, dominating the overall processing cost. Note
that this problem poses some nontrivial challenges such as the following: (1) attributes
and their values are generated dynamically, depending on the query set Q; (2) the dom-
inance relationship can only be instantiated once the set of query objects Q is provided;
and (3) progressive computation is desirable.

Definition 3.7. Let qj ∈ Q be a query object and oi ∈ D be an object from the dataset.
Then, the rank position of oi with respect to qj is k, denoted by rank(qj, oi) = k, if oi is
the kth nearest neighbor of qj .

We can also use the alternative notation qjk = oi, which has the same exact mean-
ing: the kth nearest neighbor of qj is oi. More generally, we denote qj1, qj2, . . . , qjn the
nearest-neighbor order of the n objects from query object qj , ∀ j = 1, . . . , m. As an ex-
ample, qj2 is the second-nearest neighbor with respect to query object qj . This notation
allows us to center our focus on the query objects and present its ranking without
knowing which item oi ∈ D is ranked at position k.

The objects are ordered in ascending order of their distance from qj , that is,
d(qj, qj1) ≤ d(qj, qj2) ≤ · · · ≤ d(qj, qjn),∀ j = 1, . . . , m. Also, note that the n objects
are not necessarily ordered in the same way across query objects. Therefore, an object
ok ∈ D can be ranked second for qi, while it may be ranked 30th for qj .

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:11

Fig. 3. Access methods employed.

3.2. Indexing Structures for Metric Spaces

One of the most important factors that may affect performance is the indexing scheme
used. Since we focus on metric spaces, metric-based access methods should be employed
toward efficient processing. Among the available metric-based access methods studied
in the literature [Bozkaya and Ozsoyoglu 1999; Brin 1995; Chávez et al. 2001; Hjaltason
and Samet 2003], we select the M-tree [Ciaccia et al. 1997], which is well appreciated
due to its simplicity, its resemblance to the B-tree, its excellent performance, and
its ability to handle dynamic datasets (i.e., insertions and deletions). However, our
methods are orthogonal to the indexing scheme used, as long as incremental nearest-
neighbor queries are supported.

Figure 3 depicts the access methods utilized by the studied techniques. In addition
to the M-tree, an auxiliary B+-tree (denoted as AuxB+-tree) is being used, which serves
as a temporary index for intermediate computations. Each record contains the object
ID and specific counters that keep the current cardinalities of intermediate set cal-
culations, such as the number of times that an object was retrieved during scanning,
a counter that is used for exact score computation during backward scanning, and
its current max-rank position in the nearest-neighbor order from the query objects.
During execution, the scanned object IDs are inserted into the AuxB+-tree and their
corresponding counters are updated. The usefulness of this structure will be clarified
later. Both the M-tree and the AuxB+-tree are supported by an LRU buffer, which
reduces the I/O cost due to locality of references and thus helps in reducing the total
computation time.

3.3. Fagin’s Threshold Algorithm

As stated previously, our proposal uses some concepts present in Fagin’s Threshold
Algorithm studied in Fagin et al. [2001]. Here, we discuss briefly the main concepts
of TA in order to keep the article self-contained. To illustrate the way TA works, we
assume that the dataset is composed of n tuples, where each tuple contains m numeric
attributes. Therefore, each object can be considered as a point in the mth dimensional
space. We will also assume that the scoring function is the sum of the attribute values.
TA reports the k-best objects with respect to the scoring function used. Instead of using
sum, other monotone scoring functions can be used equally well.

For simplicity, assume that each attribute is sorted in nondecreasing order of the
attribute values. This is equivalent to a table containing n rows (the number of objects)
and m columns (the number of attributes), where each column is stored in nondecreas-
ing order of its values. TA works in two alternating phases: sorted access and random

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:12 E. Tiakas et al.

access. A sorted access corresponds to fetching the objects’ IDs and the associated at-
tribute values from the next row of the table. Evidently, in the first sorted access the
first row is retrieved, in the second sorted access the second row is retrieved, and so
on. Let p denote the position of the last row retrieved by a sorted access. The values
contained in this row in general correspond to different objects. If all attribute values
correspond to the same object (which is a special case), then we could immediately de-
termine the score of this object. Otherwise, a sequence of random accesses takes place
in order to determine the missing values.

TA maintains a buffer of the best k objects determined so far. Therefore, every time
the score of a newly discovered object is determined, we must check if this object should
be inserted in the buffer. If not, the object is discarded. In order to decide if we should
continue with more sorted accesses, a threshold T is determined that equals the sum of
the attribute values of the current row (p). If T is larger than all scores currently stored
in the buffer, then the algorithm terminates and reports the k objects determined so
far. Otherwise, the algorithm proceeds with the next sorted access, fetching the next
row in position p + 1.

4. ADAPTING EXISTING ALGORITHMS

As a starting point for processing the top-k dominating queries, we provide algorithmic
solutions that build on existing techniques and that we adapt accordingly. We present
two such algorithms: (1) the Skyline-Based Algorithm (SBA) and (2) the Aggregation-
Based Algorithm (ABA). These two algorithms use different methodologies to provide
the result. In particular, SBA exploits skylines, whereas ABA uses aggregation. There-
fore, if either of these two functionalities is present, metric-based top-k dominating
queries can be supported. Both algorithms assume the existence of an M-tree as the pri-
mary access method. However, any metric-based access method can be applied equally
well.

4.1. The Skyline-Based Algorithm

The first algorithm we study is based directly on the observation of Papadias et al.
[2005a] that the top-1 object of a monotone scoring function belongs to the skyline. As
the following lemma states, this fact is valid in the case of the top-1 dominating object
as well.

LEMMA 4.1. The top-1 dominating object is always a metric skyline object, that is,
MSD(Q, 1) ⊆ MSS(Q).

PROOF. The top-1 dominating object t has the maximum dominance score in D, that
is, dom(t, Q) ≥ dom(r, Q),∀r ∈ D. Object t cannot be dominated by any other object x,
because in that case x would have a greater dominance value than t(x ≺ t ⇒ dom(x) >
dom(t)), which does not hold. Therefore, t is definitely a skyline object.

The concept of the Skyline-Based Algorithm (SBA) is very simple: compute the skyline
S of D, determine the top-1 dominating object TopObject in D from S, remove TopObject
from D, and repeat the same process until all top-k results have been reported.

The outline of SBA is given in Algorithm 1. The metric skyline set S (Line 2) is
computed using the B2MS2 algorithm proposed in Fuhry et al. [2009], which is the
state-of-the-art algorithm for general metric-based skyline queries, since it outperforms
previously proposed algorithms, such as MSQ [Chen and Lian 2008, 2009]. The B2MS2

algorithm in our case operates over an M-tree index. The objects of the skyline set S
and their corresponding dominance values are kept and updated in the AuxB+-tree.
Therefore, both random and sorted accesses are supported.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:13

ALGORITHM 1: SBA(D,Q,k)
Input: D dataset, Q query objects, k number of results
Output: the k best objects

01. for i ← 1 to k
02. S ← MSS of D with respect to Q using B2 MS2;
03. Max ← 0;
04. TopObject ← ∅;
05. for each object o ∈ S
06. dom(o) ← 0;
07. for each object p ∈ D, p �= o
08. if (o ≺ p) dom(o) + +;
09. if (dom(o) > Max)
10. Max ← dom(o);
11. TopObject ← o;
12. report TopObject;
13. remove TopObject from D;

SBA reports the top-k results in a progressive manner. However, this method has
two important limitations: (1) it performs many unnecessary score computations, since
the skyline is often larger than k, and (2) when there is a large number of query
objects (|Q|), the skyline grows significantly and in some cases approaches the dataset
cardinality |D|. These characteristics may lead to significant performance degradation
due to increased processing costs.

4.2. The Aggregation-Based Algorithm

The next algorithm we study uses the concept of aggregation. The following lemma
shows the relationship between the results of an aggregate query to those of a metric
top-k dominating query.

LEMMA 4.2. If an object p dominates another object r, then p will be returned before or
together with r in the result list of a top-h aggregate nearest-neighbor query (ANN(Q, h))
by using any monotonically increasing aggregate distance function f (.). Formally: p ≺
r ⇒ adist(p, Q) ≤ adist(r, Q), where adist(p, Q) = f (d(p, q1), d(p, q2), . . . , d(p, qm)) and
adist(r, Q) = f (d(r, q1), d(r, q2), . . . , d(r, qm)).

PROOF. Let p and r be two objects such that p ≺ r. From the definition of dominance
in metric spaces, it holds that

∀qi ∈ Q, d(p, qi) ≤ d(r, qi) ∧ ∃qj ∈ Q, d(p, qj) < d(r, qj).

Due to the monotonicity of f (.), it holds that

∀qi ∈ Q, d(p, qi) ≤ d(r, qi) ⇒ f (d(p, q1), . . . , d(p, qm)) ≤ f (d(r, q1), . . . , d(r, qm)) ⇔

⇔ adist(p, Q) ≤ adist(r, Q).

Therefore, for any monotonically increasing aggregate distance function, the object p
has a smaller than or equal aggregate distance to r, and it is located before or along
with r in the aggregate nearest-neighbor query results.

Lemma 4.2 associates a top-k dominating query with a top-h aggregate nearest-
neighbor query using any monotone aggregate function (e.g., sum, avg, min, max). For
the rest of the discussion, we will assume for simplicity that the aggregate function
used is the sum. However, in the performance evaluation in Section 6 we provide some
results for other aggregation functions. Based on the previous lemma, the result of

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:14 E. Tiakas et al.

Fig. 4. Example for ABA description.

a top-k dominating query is always a subset of the result set of a top-h aggregate
nearest-neighbor query (for a sufficiently large h such that h ≥ k), that is, MSD(Q, k) ⊆
ANN(Q, h). This is useful for defining a specific search region around the query objects
to retrieve candidate objects for the top-k dominating results.

In order to better show the usefulness of Lemma 4.2, Figure 4 depicts a simple
example in the 2-dimensional Euclidean space. There are two query objects q1, q2, and
let p be an object of the dataset. Each circle is centered at a query point and the
associated radius corresponds to the distance d(p, q1) and d(p, q2), respectively. It is
already known from Sharifzadeh and Shahabi [2006] that their intersection area is
called the dominator region of p and contains all points that dominate p. Moreover, all
points that are dominated by p lie outside the area of both circles, which is called the
dominance region of p. On the other hand, all objects that have smaller sum-aggregate
distances from Q lie in an elliptic area, which is defined by the query points q1, q2
and intersects point p. The ellipsis crosses the intersection points of the previous two
circles; thus, the corresponding elliptic area contains the dominator region of p. This
suggests that all points that dominate p have smaller sum-aggregate distances than p.

In the case where we have more query points, the shapes of these regions become
more complicated and more difficult to compute. Details for some interesting cases can
be found in Papadias et al. [2005b] and Sharifzadeh and Shahabi [2006]. The main
difficulty, however, is that we do not know in advance a convenient value of h such that
MSD(Q, k) ⊆ ANN(Q, h), which will allow us to answer a top-k dominating query. Even
if such an h value were known, it would have to be much larger than k to retrieve the
correct top-k result, and the performance of such an algorithm would be significantly
impacted. Finally, the algorithm would operate under a filter-and-refine scheme, where
h objects are retrieved first and then we discard objects until we have the top-k result,
which we will report all at once at the end of query execution. It is easy to see that
such an algorithm would invalidate the progressiveness property, and as such would
not meet our requirements.

Therefore, we pursue an alternative methodology, which is based on the following
lemma.

LEMMA 4.3. The first sum-aggregate nearest neighbor of Q is always a metric space
skyline object, that is, ANN(Q, 1) ⊆ MSS(Q).

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:15

PROOF. Let t be the top-1 sum-aggregate nearest-neighbor object of Q, that is, t =
ANN(Q). Then t cannot be dominated by any other object, because if we assume that
there is an object x that dominates t, then using Lemma 4.2, we get adist(x, Q) <
adist(t, Q), which contradicts that t is the top-1 sum-aggregate nearest-neighbor object
of Q. Therefore, t is definitely a skyline object.

Initially, the top-1 sum-aggregate nearest-neighbor object p of Q is computed, that is,
p = ANN(Q, 1). Following Lemma 4.3, p is a skyline object and, as a result, there are no
objects that dominate p. This means that there are no objects inside p’s dominator re-
gion and, additionally, p dominates all other objects lying in its dominance region. This
result ensures that the top-1 dominating object cannot lie in the dominator/dominance
regions of p. Thus, we should search for the top-1 object in the rest of the dataset. Can-
didates for the top-k result are collected in set C by performing simple range queries
centered at the query objects q1, q2, . . . , qm with radius d(p, q1), d(p, q2), . . . , d(p, qm),
respectively. Then, we compute the dominating scores of all objects in C and we deter-
mine the top-1 dominating object TopObject. Next, we remove the TopObject from D
and we repeat the same process until all top-k results are reported.

In order to have a better view of those candidates, let us consider the example of
Figure 4. The candidates are the objects contained inside the circles with centers the
query points and radii their corresponding distances from p. In our case, there are no
objects inside the circle intersection area (dominator region), as p cannot be dominated.
Moreover, there are no objects inside the elliptic area, since p is the first sum-aggregate
nearest neighbor of Q.

The outline of ABA is given in Algorithm 2. For the aggregate nearest-neighbor query
ANN(Q) of Line 2, we use the MBM algorithm of Papadias et al. [2005b], which is
the state-of-the-art algorithm for ANN queries with the sum-aggregate function. The
main difference is that we implemented the MBM method to manage M-tree nodes
instead of R-tree nodes supported by the original proposal. Range queries (Line 5) are
efficiently supported by the M-tree structure. The candidate objects of the set C and
their dominance values are stored and updated into the AuxB+-tree.

ALGORITHM 2: ABA(D,Q,k)
Input: D dataset, Q query objects, k number of results
Output: the k best objects

01. for i = 1 to k
02. p ← 1st sum-aggregate NN of Q using MBM;
03. C ← ∅;
04. for each query object qj ∈ Q
05. R ← range query from qj with radius d(p, qj);
06. C ← C ∪ R;
07. Max ← 0;
08. TopObject ← ∅;
09. for each object o ∈ C;
10. dom(o) ← 0;
11. for each object x ∈ D, x �= o
12. if (o ≺ x) dom(o) + +;
13. if (dom(o) > Max)
14. Max ← dom(o);
15. TopObject ← o;
16. report TopObject;
17. remove TopObject from D;

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:16 E. Tiakas et al.

ABA reports the top-k results in a progressive manner. It benefits from the fact that in
most cases, it is expected that the cost of the ANN query of Line 2 plus the cost of the
simple range queries of Line 5 is lower than the cost of a complete skyline computation
(as performed by SBA). The limitations of ABA are as follows: (1) it recalculates up
to k times the dominance values of some nearest-neighbor candidate objects of C;
(2) when the cardinality of Q increases, we must perform a large number of range
queries (Line 5), which deteriorates the performance of the algorithm; and (3) when
the query objects are far from each other, the range queries may return a large number
of candidates, and thus C grows significantly, leading to high computational costs.

5. PROPOSED APPROACH: THE PRUNING-BASED ALGORITHM

As we pointed out in the previous paragraphs, algorithms SBA and ABA are faced with
some severe shortcomings, mainly a high degree of recomputations and a possibly high
memory footprint, depending on the cardinality of the query set Q. For these reasons,
a more efficient alternative is necessary for processing top-k dominating queries in
metric spaces. Therefore, in this section, we present and discuss in detail our proposed
approach, the Pruning-Based Algorithm (PBA).

The key idea behind the Pruning-Based Algorithm is to incrementally retrieve the
nearest neighbors of the query objects in a round-robin fashion and compute the dom-
inance scores of their common neighbors. PBA also employs early termination criteria,
allowing us to to extract the top-k results without visiting all of the points in D (unless
absolutely necessary), thereby reducing computational costs even further. We briefly
introduced these notions in the beginning of our work, with an illustrative example
(Figure 2) of a top-3 dominating query in a 2-dimensional Euclidean space.

Our technique comes in two variations, PBA1 and PBA2, both of which operate within
the same framework and share the properties of PBA. We will discuss the two variants,
and their differences, extensively in the following paragraphs, but first we provide a
general overview of their common ground, PBA. In short, PBA incorporates the following
ideas, which contribute significantly to the reduction of CPU time, I/O cost, and the
number of distance computations performed:

—Efficient techniques are used to compute the score of an object, which are based
on incremental nearest-neighbor search combined with a round-robin examination,
resulting in more efficient processing.

—Effective pruning rules are employed, toward eliminating as early as possible objects
that cannot be part of the answer.

5.1. Theoretical Foundations of PBA

PBA’s correctness relies on a set of properties that associate the dominance relation
with the rankings of the objects, while these are retrieved during the incremental
nearest-neighbor search. These properties, which we theoretically prove in the follow-
ing paragraphs, also serve as the basis for efficient processing of top-k dominating
queries in metric spaces. They allow us to estimate upper bounds of the dominance
score of an object from D and can be used to apply effective pruning, thereby reducing
computational and memory costs of our proposed approach.

We begin with those properties related to the dominance relation alone and proceed
with theoretical results that focus on the dominating power of an object o ∈ D.

LEMMA 5.1. When we have more than one query object q1, . . . , qm (m = |Q| > 1) and p
has been found as the nearest neighbor of all query objects (not necessary with the same
nearest-neighbor order position), then p dominates all the following nearest neighbors
that have not yet been seen in the nearest-neighbor order from any query object.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:17

PROOF. Let pj1, pj2, . . . , pjn be the nearest-neighbor order of the n objects from the
query object qj , ∀ j = 1, . . . , m. First, we examine the case that these orderings are
unique (without equal distances from the query objects), that is,

d(qj, pj1) < d(qj, pj2) < · · · < d(qj, pjn),∀ j = 1, . . . , m. (1)

If p has been found as the kjth nearest neighbor of qj , ∀ j = 1, . . . , m, and x is any
object that has not been found yet, then p = pjkj ,∀ j = 1, . . . , m and x is an object
pji, where i > kj,∀ j = 1, . . . , m. Then, using inequality 1, we have d(qj, pj1) < · · · <
d(qj, pjkj ) = d(qj, p) < · · · < d(qj, pji) = d(qj, x) < · · · ,∀ j = 1, . . . , m. Therefore,
d(qj, p) < d(qj, x),∀ j = 1, . . . , m, and thus p dominates x. In case there are equal
distances:

d(qj, pj1) ≤ d(qj, pj2) ≤ · · · ≤ d(qj, pjn),∀ j = 1, . . . , m,

the object p again dominates x, as x belongs to the next nearest neighbors and not to
the objects that have d(qj, p) = d(qj, x),∀ j = 1, . . . , m.

The following lemma offers an upper bound for the exact dominance score of a re-
trieved object oi. We use this bound as an estimation of the dominance score of oi
denoted as estdom(oi).

LEMMA 5.2. If an object oi has been retrieved as the (ri, j)-th nearest neighbor of query
object qj, where ri, j = rank(oi, qj), then:

dom(oi) ≤ n − max
j

rank(oi, qj) + eq(oi).

PROOF. The object oi cannot dominate all objects located before its rank position in
the nearest-neighbor order from the query object qj . Since this holds for the nearest-
neighbor order from any query object, it holds also for the order from the query object
that maximizes the rank position of oi. Therefore, max j rank(oi, qj) objects cannot be
dominated by oi (including itself). Moreover, oi cannot dominate all its equivalent
objects eq(oi). But, as the equivalent objects of oi may lie in neighbor order positions
before or after oi, they may be already included in the max j rank(oi, qj) counted objects.
Therefore, oi may dominate at most n − (max j rank(oi, qj) − eq(oi)) objects.

PBA uses incremental nearest-neighbor retrieval, which is efficiently supported in
the M-tree implementation of Ciaccia et al. [1997]. Incremental retrieval is performed
by using all query objects in a round-robin fashion (i.e., first NN from q1, . . . , first NN
from qm, second NN from q1, . . . , second NN from qm, etc.). This idea was first proposed
in the Threshold Algorithm of Fagin et al. [2001] and has been subsequently employed
in several other problems, such as distributed skyline queries [Balke et al. 2004] and
aggregate nearest-neighbor queries [Papadias et al. 2005b].

Using this round-robin incremental retrieval, every time a common neighbor object
o is detected, it is inserted into a maxheap data structure (H), along with its estimated
dominance score estdom(o) = n − max j rank(o, qj) + eq(o). The heap is prioritized ac-
cording to the dominance scores of the stored objects (either estimated or exact). It is
important to note that H maintains only the common neighbor objects determined so
far.

The first two common neighbors are retrieved and inserted into the heap. Then
the current top object is deheaped and its exact dominance score is calculated (if not
available). After that, and before the extraction of the next candidate object from
the heap and its score calculation, we always detect and insert into the heap the
next common neighbor object along with its estimated score. Therefore, the heap will
always contain a common neighbor object with an estimated score greater than or equal

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:18 E. Tiakas et al.

to all subsequent estimated scores. The next result suggests how the current common
neighbor object should be handled.

LEMMA 5.3. If oa and ob are the top-2 common neighbor objects in the heap, and oa
has an exact dominance score dom(oa) such that:

dom(oa) ≥ estdom(ob) or dom(oa) ≥ dom(ob),

then oa can be immediately reported as the next top dominating object.

PROOF. This follows from the fact that any next retrieved common neighbor object
(which is a candidate for the top-k dominating results) will have a smaller estimated
(and subsequently exact) dominance value.

Lemma 5.3 is the reason for the progressive behavior of PBA. If the common neighbor
object oa, currently under examination, satisfies the condition of Lemma 5.3, then it
is reported as the next top-i dominating query result. Otherwise, oa is reinserted into
the heap H with its exact score and the process is repeated until all top-k results are
reported.

The outline of PBA is depicted in Algorithm 3. It is important to note that the retrieved
objects o along with other useful information (e.g., the number of times retrieved
from the query objects (qcounter), its current max-rank value, etc.) are inserted into the
AuxB+-tree as shown in Line 4 of Procedure 1. Therefore, all required intermediate
calculations are kept on disk. The only memory resident data structure is the heap
H, which stores the IDs of the retrieved common neighbor objects determined so far
along with their corresponding dominance values (exact or estimated). This reduces the
memory footprint of the employed technique while allowing for the efficient retrieval
of supplementary information.

We also note that to compute eq(o), we continue the round-robin scan until we read all
the objects of the equality group of o for query object qj that has been retrieved last (i.e.,
until we find an object x in the nearest-neighbor order of qj such that d(x, qj) > d(o, qj)).

ALGORITHM 3: PBA(D,Q,k)
Input: D dataset, Q query objects, k number of results
Output: the k best objects

01. H ← ∅
02. for i ← 1 to k
03. do
04 if (H = ∅)
05. call NEXTCOMMONNEIGHBOR(D, Q, H);
06. call NEXTCOMMONNEIGHBOR(D, Q, H);
07. oa ← H.top;
08. H.deheap(oa);
09. ob ← H.top;
10. if (oa has an estimated dominance score)
11. dom(oa) ← EXACTSCORE(oa, D, Q, H);
12. if (dom(oa) < dom(ob) ∨ dom(oa) < estdom(ob))
13. H.enheap(oa);
14. while (dom(oa) < dom(ob) ∨ dom(oa) < estdom(ob))
15. report oa as the top-i dominating object;
16. end for

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:19

PROCEDURE 1: NEXTCOMMONNEIGHBOR(D, Q, H)
00. j = 001. do
02. j++; if (j=m+1) then j=1; (i.e., the next query object qj is selected)
03. o ← NEXTNEARESTNEIGHBOR (qj);
04. insert o in AuxB+ (if not present) and increase qcounter by 1;
05. while qcounter of o is less than m (m = |Q|);
06. compute number of equivalent objects of o, eq(o) and insert them in H;
07. estdom(o) ← n − max

j
rank(o, qj) + eq(o);

08. H.enheap(o);

5.2. Reducing the Cost of Score Computation

The computation of the exact dominance score of an object (Procedure EXACTSCORE of
Line 11 in Algorithm 3) can be performed using the process of the previous algorithms
(i.e., Lines 6–9 of SBA outline, Lines 11–14 of ABA outline). However, we can apply a
more efficient score computation method that is based on reverse scanning [Tiakas
et al. 2011]. Note that the algorithms studied in Tiakas et al. [2011] work with a
multidimensional space, and therefore reverse scanning must be adapted in our case
to work with a metric space. We denote this type of computation by EXACTSCORE-RS and
the algorithm that uses it is termed PBA1.

Let U j be the set of all retrieved nearest-neighbor objects before o for the query object
qj , which have distances strictly smaller than o: U j = {x ∈ D : d(qj, x) < d(qj, o)}. Let
also U be the union of the U j sets defined by all the query objects qj,∀ j = 1, . . . , m:
U = ⋃m

j=1 U j . The following guarantees the computation of the exact score of o:

LEMMA 5.4. For any common neighbor object o with a union set U and a number of
equivalent objects eq(o), its exact dominance value is computed using the formula

dom(o) = n − |U | − eq(o) − 1.

PROOF. First, o cannot dominate the following objects: (1) any object x ∈ U , as it
holds d(qj, x) < d(qj, o) for some qj ; (2) its equivalent objects; and (3) itself.

Moreover, for any other object y, it holds that y is different from o, it is not equivalent
to o, and it is not in U . Therefore, since y /∈ U , it holds that d(qj, y) ≥ d(qj, o),∀ j =
1, . . . , m, and as y is not equivalent with o, it holds that ∃ j ∈ {1, . . . , m} : d(qj, y) >
d(qj, o). Thus, y is definitely dominated by o.

This result is important as it enables the computation of the exact dominance score of
an object o by just counting the already retrieved objects located before o in the nearest-
neighbor order from the query objects and by counting the number of its equivalent
objects. As all these objects are already retrieved and inserted into the AuxB+-tree,
the required counting can be successfully performed inside the AuxB+-tree, without
materializing the sets U j and U . Moreover, the formula of Lemma 5.4 requires only
the cardinality of the set U and not its contents. The outline of the score computation
method using the reverse-scanning technique is given in Procedure 2. For the algorithm
description, aux is the number of all unique objects inserted into the AuxB+-tree to the
time that this procedure is called, that is, the current AuxB+-tree size (this information
is kept in its root and can be retrieved immediately). Moreover, u is an integer variable
that keeps and updates the cardinality of U . However, during the process of this
counting, we must change some of the values of the qcounter counters for some objects
that are already inserted in the AuxB+-tree, but we must keep intact the current values
of the qcounter counters as they must be used for the detection of the next common
neighbor later. Therefore, inside the record of an object x in AuxB+-tree, we use a copy

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:20 E. Tiakas et al.

PROCEDURE 2: EXACTSCORE-RS(o, D, Q, H)
01. u ← aux (initial cardinality of U )
02. for each query object qj ∈ Q
03. do
04. x ← PREVIOUSNEARESTNEIGHBOR(qj);
05. if (d(qj, x) ≥ d(qj, o))then decrease qccounter of x in AuxB+-tree by 1;
06. if (qccounter of x = 0) then u = u − 1;
07. while d(qj, x) ≥ d(qj, o)
08. end-for
09. dom(o) = n − u − eq(o) − 1;
10. return dom(o);

of its qcounter, the qccounter , and we update only the qccounter values. Let us describe this
procedure in more detail:

When the EXACTSCORE-RS procedure is called, object o has already been retrieved
from all query objects (it is a common neighbor object). Due to the round-robin scan,
it may have been retrieved for some query objects in earlier rank positions than the
last one. Therefore, inside the AuxB+-tree, some objects located after o in the nearest-
neighbor orders from the query objects may have been counted (have qcounter > 0),
but they are not included in U . In order to count the objects of U correctly, we scan
backward from each query object qj (Lines 3 and 4) in the corresponding nearest-
neighbor orders until we find an object x such that d(qj, x) < d(qj, o) (Line 7). During
the reverse-scanning process, for every object x that has d(qj, x) ≥ d(qj, o) (Line 5), we
decrease its qccounter in AuxB+-tree by 1 (Line 5). Every time the qccounter of an object x
becomes zero (Line 6), that object must be excluded from the union set U (because that
means that it does not appear at all before o in the nearest-neighbor orders), and thus
we decrease u by 1.

Note that the number of equivalent objects of o has already been computed (Line 6 of
Procedure 1) and the corresponding objects have been inserted in the heap H (Line 8
of Procedure 1).

The exact score computation can also be performed by utilizing information already
stored in the AuxB+-tree structure. We denote by Lposoi (qj) the minimum rank position
of the objects in the nearest-neighbor order from qj , which have an equal distance with
oi, that is, Lposoi (qj) = minh{rank(oh, qj) : d(qj, oh) = d(qj, oi)}. It is important to note
that the Lpos rank positions are recorded in the AuxB+-tree during the incremental
nearest-neighbor retrieval together with the q counters, and thus they are available
before the computation of the exact dominance score of o. However, there is a signif-
icant difference between the common neighbor objects that have been detected so far
(including o) and all other objects that have already been inserted into the AuxB+-tree:
the first group of objects has all their Lpos rank position values already recorded in the
AuxB+-tree, while for the second group only some of their Lpos rank positions values
have been recorded. The reason is that objects from the second group have been de-
tected by only some query objects qj . By analyzing these cases, the following lemmas
guarantee the calculation of the exact score of o.

In order to get a better insight of the proofs, consider Figure 5, which presents a
snapshot of the PBA algorithmic procedure. In particular, Figure 5 depicts the nearest-
neighbor orders from the query objects and the current detected common neighbor
object o together with its equal-distance object groups. We denote by pos the maximum
rank position retrieved so far, and we denote by a the index of the last selected query
object from the round-robin scan (a = j, if we are in the query object qj).

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:21

Fig. 5. Example used in the proof of correctness for PBA2 algorithm.

LEMMA 5.5. For any object oi that has been inserted into the AuxB+-Tree, if it holds
that Lposoi (qj) ≥ Lposo(qj) for all the available Lpos values of oi, and there exists at
least one qj such that Lposoi (qj) > Lposo(qj), then o dominates oi.

PROOF. If all Lpos values of oi are available, then the condition Lposoi (qj) ≥ Lposo(qj)
ensures that d(qj, o) ≤ d(qj, oi),∀ j = 1, . . . , m. Moreover, the condition Lposoi (qj) >
Lposo(qj) for some qj ensures that ∃ j : d(qj, o) < d(qj, oi) holds and o definitely dom-
inates oi. In Figure 5, object p is a representative of that case. Observe that all the
objects of that case must lie after or inside the equal-distance object groups of o.

In case not all Lpos values of oi are available but only some of them are, then the
condition Lposoi (qj) ≥ Lposo(qj) ensures that d(qj, o) ≤ d(qj, oi) only for some values
of j (corresponding to the available Lpos values). Moreover, the condition Lposoi (qj) >
Lposo(qj) for some qj ensures that ∃ j : d(qj, o) < d(qj, oi) for one of those values
of j. For the remaining values of j, the object oi has not been detected from the
corresponding query objects qj , in which case either oi lies in a next equal-distance
object group with Lposoi (qj) > Lposo(qj) or it lies in the same equal-distance object
group with o (provided that this group has not been completely discovered yet) having
Lposoi (qj) = Lposo(qj). Therefore, in either case, for all the remaining values of j, it
holds that d(qj, o) ≤ d(qj, oi) and o definitely dominates oi. In Figure 5, object r is a
characteristic example of that case. Observe that r has been detected by some query
objects, but not by all of them. For those query objects qj by which o has not been
encountered already, it definitely lies after the position pos.

LEMMA 5.6. Any object oi that has not been inserted yet into the AuxB+-tree is domi-
nated by or is equivalent to the current detected common neighbor object o.

PROOF. As oi has not been inserted yet into the AuxB+-tree, none of its Lpos values
are available. On the contrary, all Lpos values of the current detected common neighbor
object o are available. Therefore, for all values of j, the object oi has not been detected
from the corresponding query objects qj . Consequently, it either lies in a next equal-
distance object group with Lposoi (qj) > Lposo(qj) or it lies in the same equal-distance
object group with o having Lposoi (qj) = Lposo(qj), but the group has not been fully
discovered yet. Whatever the case may be, it holds that d(qj, o) ≤ d(qj, oi),∀ j = 1, . . . , m,
meaning that oi is either dominated by or equivalent with o. In Figure 5, the object s
is a representative of that case. Observe that s has not been detected yet by a query
object qj , placing it after the position pos for all j values.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:22 E. Tiakas et al.

LEMMA 5.7. For any object oi that has been inserted into the AuxB+-Tree, if it holds
that Lposoi (qj) = Lposo(qj) for all the available Lpos values of oi, then o dominates oi or
the objects o and oi are equivalent.

PROOF. If all Lpos values of oi are available (i.e., it has been detected by all
query objects during the incremental nearest-neighbor retrieval), then the condition
Lposoi (qj) = Lposo(qj) ensures that d(qj, o) = d(qj, oi),∀ j = 1, . . . , m. As a result, the
two objects o and oi are definitely equivalent.

In case some Lpos values of oi are missing, while the rest of them are already
available, then the condition Lposoi (qj) = Lposo(qj) ensures that d(qj, o) = d(qj, oi) holds
for some values of j, corresponding to the available Lpos values. For the remaining
values of j, the object oi has not been detected from the respective query objects
qj . Therefore, either oi lies in a next equal-distance object group, having Lposoi (qj) >
Lposo(qj), or it lies in the same equal-distance object group with o, but the group has not
been completely discovered yet. In that latter case, it holds that Lposoi (qj) = Lposo(qj).
In either case, for all values of j = 1, . . . , m, it holds that d(qj, o) ≤ d(qj, oi), meaning
that either o dominates oi or the objects o and oi are equivalent. In Figure 5, this
case is demonstrated by object t, which still remains undetected by some query objects
qj . Consequently, for those j values, object t lies after the current position pos and is
dominated by the current common neighbor o.

Lemmas 5.5, 5.6, and 5.7 cover all of the alternatives whereby an object o can dom-
inate another object oi. In any other case, there will be at least one value of j for
which Lposoi (qj) < Lposo(qj) ⇒ d(qj, o) > d(qj, oi). For these particular cases, o cannot
dominate oi. Briefly explained, the new alternative for the exact score computation
works as follows: (1) it performs one sequential scan over the current contents in the
leaves of the AuxB+-Tree, (2) it checks the appropriate conditions for the Lpos values,
and (3) it counts the dominations of the current detected common neighbor object o.
The variant of PBA that uses this new technique for the exact score computation (called
EXACTSCORE-AUX and outlined in Procedure 3) is denoted as PBA2. Therefore, the two
variations, PBA1 and PBA2, differ only in the way exact scores are computed.

PROCEDURE 3: EXACTSCORE-AUX(o, Q)
01. domin = 0
02. read all equal-distance groups of o (if still not read)
03. for each object oi ∈ AuxB+-tree
04. f f = true
05. for each query object qj ∈ Q
06. if (Lposoi (qj) �= NULL) ∧ (Lposoi (qj) < Lposo(qj))
07. f f ← false; break;
08. end-for
09. if ( f f = true)
10. f e ← true
11. for each query object qj ∈ Q
12. if (Lposoi (qj) �= Lposo(qj))
13. f e ← false; break;
14. end-for
15. if ( f e = true) f f ← false
16. end-if
17. if ( f f = true) domin + +;
18. end-for
19. dom(o) ← domin + n − |AU X|;
20. return dom(o);

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:23

5.3. Boosting PBA’s Efficiency with Pruning

Algorithms PBA1 and PBA2 enable the usage of several pruning rules, which reduce the
runtime costs further. Some of the proposed pruning rules use a global pruning value
G for the dominance scores. G is initialized to 0 and is updated from the first time that
we have calculated the exact dominance scores of k common neighbor objects (which
have been inserted into the heap H) and after any change of the current exact top-k
dominating object ok in the heap during the retrieval of the next common neighbor
objects. G is always updated with the exact dominance score of the current exact top-k
dominating object minus 1, that is, G = dom(ok)−1. Any object with an exact dominance
value less than or equal to G can be pruned safely.

We propose three different types of pruning rules:

—A Discard Pruning Rule (DPR), allowing us to discard objects that have not yet been
retrieved

—An Early Pruning Rule (EPR), allowing us to prune objects before the computation
of their exact dominance score

—An Internal Pruning Rule (IPR), allowing us to prune objects during the process of
exact dominance score computation

We note that the previous descriptions correspond to a family of rules, considering
that each type may be instantiated in various ways. In the following paragraphs, we
describe the rules that we have employed in our study. More specifically, we applied
a total of seven pruning rules, broken down as follows: one discard rule (DPR), five
early-pruning rules (EPR1–EPR5), and one internal pruning rule (IP R). Each one of
these rules corresponds to a different proposition. The proofs are easily derived and
are based on results that have been proven previously in the article.

Discard Pruning Rule (DPR1): The first time that the exact dominance scores of k
objects in the heap are computed, all other objects that have not yet been inserted into
the AuxB+-tree are ignored. This rule is based on Lemma 5.1, according to which items
that have not been yet encountered will be dominated by items in the top-k result.
Objects are inserted into the AuxB+-tree only after they have been retrieved at least
once, meaning that any object not in that structure has never been previously seen.
Therefore, it is dominated by the k objects with exact scores, which we have in the top-k
heap, and can be safely ignored.

Early Pruning Rule 1 (EPR1): Let ok be the object with the kth exact dominating
score computed so far. Moreover, let o be the current retrieved common neighbor object
for calculations. If ok ≺ o, then o can be pruned.

Early Pruning Rule 2 (EPR2): Let oi be any exact dominating object, calculated after
the exact top-k dominating object into the heap H. Also, let o be the current retrieved
common neighbor object for calculations. If oi ≺ o, then o can be pruned.

Early Pruning Rule 3 (EPR3): Let o be the current retrieved common neighbor object
for calculations. Then, object o can be safely pruned if the following holds:

n − max
j

Lposo(qj) ≤ G.

According to Lemma 5.2, object o will be able to dominate at most n− max j Lposo(qj)
objects. However, this dominance score will be less than or equal to G, which is the
dominance score of the current kth best object. As such, object o will not have a better
score than the current top-k result, and it can be safely pruned.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:24 E. Tiakas et al.

Early Pruning Rule 4 (EPR4): Let o be the current retrieved common neighbor object
for calculations. Then, object o can be safely pruned if the following holds:

n − |AU X| − 1 +
m∑

j=1

[pos − Lposo(qj)] + a ≤ G.

Early Pruning Rule 5 (EPR5): Let oi be any exact calculated dominating object,
present in the heap H. Also, let o be the current retrieved common neighbor object for
calculations. Then, o can be pruned if the following holds:

dom(oi) + eq(oi) +
∑

j:Lposoi
>Lposo

[
Lposoi (qj) − Lposo(qj)

] ≤ G.

Internal Pruning Rule (IPR1): Let o be the current retrieved common neighbor
object, associated with the following values: curDom(o) is the object’s current recorded
score, whereas curPos(qj) is its current rank position in the nearest-neighbor order
from qj during the reverse-scanning process. If during the calculations the following
inequality holds:

N − |AU X| + curDom(o) +
m∑

j=1

[
curPos(qj) − Lposo(qj)

] ≤ G,

then o can be safely pruned, and the remaining calculations can be skipped.

Early and internal pruning rules are applied to heap objects, whereas the discard
pruning rule is applied to both heap and AuxB+-tree elements. Through these rules, we
can eliminate a significant number of objects, which contributes greatly toward more
efficient processing. In addition, pruning also minimizes the memory footprint of PBA,
because it reduces the number of objects stored in the heap structure, residing in main
memory. This result is also verified empirically, in our experimental evaluation.

The rules described previously do not all have the same pruning power. Some rules
may prune more points, whereas others may prune fewer. Moreover, some rules may
start pruning away during the early stages of execution, whereas other rules may
take effect after a while. This is not to say that rules of the latter categories are
useless. It does tell us, however, that the order in which we apply the pruning rules
can significantly impact the performance of the algorithm, with (potentially) noticeable
differences in execution runtime. These runtime differences are easily explained if we
consider that the longer an object survives (i.e., is not pruned), the more computations
will be performed on it. These computations are due to attempts to try to add the object
to the top-k result, as well as attempts to try to prune it in later stages of the algorithm.

The pruning rules are applied in a specific order. Rule DPR1 is applied first, as it must
be applied at exactly the time that the exact dominance scores of k objects in the heap
are computed. Then, EPR rules are applied in an order that is strongly related to their
execution cost. More specifically, any EPR rule can be applied immediately after the
time that the exact dominance scores of k objects in the heap have been computed, and
before the computation of the exact dominance score of the current retrieved common
neighbor object o. However, in order to have an efficient plan, EPR rules are applied in
the following order:

(i) Rules EPR4 and EPR3 are applied first as they require the retrieval of only the
Lpos positions of the current examined common neighbor object o from the AuxB+-
tree.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:25

(ii) Rule EPR1 follows next, as it requires the retrieval of the Lpos positions of the cur-
rent examined common neighbor object o and of the current exact top-k dominating
object in the heap (ok) from the AuxB+-tree, in order to perform the domination
check.

(iii) Rule EPR5 follows next, as it requires the retrieval of the Lpos positions of the cur-
rent examined common neighbor object o and the retrieval of an exact calculated
dominating object oi that is located in the heap, from the AuxB+-tree, in order to
perform the domination check. This rule has an additional cost as oi is selected
according to the minimum absolute difference of positions preservation; that is, we
select the heap object that minimizes the absolute difference of the Lpos positions
between the common neighbor objects that are retrieved.

(iv) Rule EPR2 is enforced next, since it requires the retrieval of the Lpos positions of
the current examined common neighbor object o and the retrieval of all exact cal-
culated dominating objects oi that have been inserted into the heap after the exact
top-k dominating object, from the AuxB+-tree, in order to perform the domination
checks.

Finally, rule IPR1 is applied since it requires that the computation of the exact domi-
nance score of the current retrieved common neighbor object o has been already started.
Based on the previous discussion, we conclude that the rule execution order in increas-
ing execution cost order is DPR1, EPR4, EPR3, EPR1, EPR5, EPR2, IPR1.

6. PERFORMANCE EVALUATION

In this section, we present a set of representative experimental results, demonstrating
the comparative performance of the studied algorithms SBA, ABA, PBA1, and PBA2.

6.1. Preliminaries

All algorithms have been implemented in C++, and all experiments have been con-
ducted on a Pentium IV@3GHz machine. The disk page size is set to 4KB for all access
methods and a cost of 8msec is attributed to each page fault. An LRU buffer has been
used to absorb page faults. Two separate buffers have been used: one for the M-tree
access method (10% of M-tree size) and one for the rest of the access methods (20% of
db size).

We have used both synthetic and real-life datasets from diverse application domains.
The main characteristics of the datasets used are briefly described as follows:

—The FOREST COVER (FC) dataset1 contains 581,012 forest land cells containing
55 attributes. The first 10 numeric attributes have been used, representing posi-
tions, distances to roads, hydrology, and so forth. The distance function used is the
Euclidean (L2) distance.

—The ZILLOW (ZIL) dataset2 contains real estate data, used also in Vlachou et al.
[2008]. It contains more than 2M records, but we selected the 1,224,406 records with
nonzero or empty values in all their attributes. The dataset has five attributes with
the following order: number of bathrooms, number of bedrooms, living area, price,
and lot area. The Euclidean distance was also used as the distance function for this
dataset.

—The CALIFORNIA (CAL) road network3 contains 1,965,206 nodes and 5,533,214
edges. The average node degree is equal to 5.63, the average edge weight is 0.016,

1http://kdd.ics.uci.edu.
2http://www.zillow.com.
3http://snap.stanford.edu/data/index.html.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.

http://kdd.ics.uci.edu
http://www.zillow.com
http://snap.stanford.edu/data/index.html


23:26 E. Tiakas et al.

and the diameter (maximum shortest path distance) is 16.42. The distance function
used is the shortest path between network nodes.

—The SAN FRANCISCO (SF) road network4 contains 174,956 nodes and 223,001
edges. The average node degree is equal to 2.55, the average edge weight is 8.78, and
the diameter (maximum shortest path distance) is 16,828.54. The distance function
used is the shortest path between network nodes.

—The PROTEIN (PR) dataset contains 346,481 atom sequences. The atom sequences
were generated using a sliding window of size 20 applied on 120 large protein struc-
tures, downloaded from the RCSB PDB Protein Data Bank.5 The distance function
used is the Levenshtein metric (edit distance).

—For comparison purposes, we have also used a synthetic dataset (UNI), which con-
tains 1,000,000 four-dimensional data objects with attribute values respecting uni-
formity and independence. The distance used is the Manhattan (L1) distance.

The values reported are averages from 20 different executions of the algorithms,
using randomly chosen query objects. Query objects are selected from the dataset
D according to the parameter c, which gives the coverage of the query set Q. More
specifically, the coverage is defined as the ratio of the minimum radius required to
enclose all query objects in Q over the minimum radius required to cover the whole
dataset. The larger the c value, the more distant the query objects contained in Q.
Unless otherwise specified, the parameters take the following values: (1) number of
query objects (m) ranges between two and 20 with a default value of five; (2) query
coverage (c) takes the values 1%, 5%, 10%, 20%, 30%, 50%, and 100% with a default
value of 20%; and (3) the number of results (k) ranges between one and 30 with a
default value of 10.

There are three basic criteria used to evaluate and compare the performance of the
proposed algorithms: (1) the CPU time required for computations, (2) the I/O time
devoted for disk accesses, and (3) the number of distance computations required. It
is important to note that for the top-k dominating queries with k > 1, due to the
progressiveness property of the proposed algorithms, any top-i result with i < k will
be reported earlier. This behavior enables the retrieval of the first results without the
need for waiting for the computation of the complete set of answers.

6.2. Experimental Comparison of Algorithms

In this section, we report results related to the overall time required by the algorithms
to provide all k results. In addition, we give in a separate subsection results regarding
the distance computations required by the algorithms.

6.2.1. Impact of Aggregation Functions on ABA Performance. An issue that requires our at-
tention is the type of the aggregation function utilized by ABA. Recall that according
to Lemma 4.2, ABA works with any monotone aggregation function. For this reason,
we experimented with four different aggregation functions: sum, avg, min, and max, all
of which satisfy the monotonicity property. Table II depicts the results of this com-
parison among the four aggregates for each dataset, and we have highlighted the
best-performing one for each case. The sum aggregation has the best performance in all
cases, except for the ZIL dataset, where max performs the best.

The second remark is that min and max have a significant difference in their runtime
performance. We also observe a clear trend between the two functions: in the case of
road networks (datasets CAL and SF), min is better than max, whereas in the remaining
cases, the opposite is true. In principle, with the min aggregation, the first radius is

4http://www.rtreeportal.org.
5http://www.rcsb.org/pdb/home/home.do.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.

http://www.rtreeportal.org
http://www.rcsb.org/pdb/home/home.do


Processing Top-k Dominating Queries in Metric Spaces 23:27

Table II. Performance Analysis of ABA with Different Aggregation Functions,
for the Various Datasets

Fig. 6. Running time versus number of objects (n).

small, whereas the subsequent ones are large. This has a heavy impact on the number
of disk accesses, due to the large radii in range queries, performed by ABA-min. On
the contrary, ABA-max does not face this problem, because the max aggregation function
makes the first radius to be large, thereby saving disk accesses compared to min. How-
ever, this is not the case for datasets CAL and SF, where the distance between objects
is given by their shortest path. The shortest path is a costly operation computationally
wise and, as we will demonstrate in the next paragraphs, it can dominate the overall
runtime. When using the max aggregation, the first radius is large, which may reduce
I/O cost, but includes more objects in the range queries, which leads to more distance
computations. This, consequently, degrades performance, given that the CPU cost is
higher than the I/O cost for these datasets, and max performs worse than min, which
constraints distance computations.

Based on this preliminary performance analysis and the fact that the sum aggregation
takes into account distances in a natural way—much more than the alternatives—we
will use it (the sum) as the default variation of ABA in the subsequent experimental
evaluation.

6.2.2. Runtime Results. In this section, we report results related to the overall time
required by the algorithms to provide all k results. We begin by evaluating the perfor-
mance of the four algorithms when we vary the number of objects in the dataset n. For
this particular experiment, we generated synthetic datasets of varied cardinality, with
uniform distribution in the 4D space, following the same process through which the
UNI dataset was created. Figure 6 depicts the total running time of all four algorithms
for this experiment. We observe a linear relation between the total runtime and the
number of objects in all cases. PBA1 and PBA2 have clearly and consistently the best
overall performance, which renders them more suitable for large datasets.

We now proceed to compare the proposed algorithms by varying the cardinality of the
query objects m while keeping the other parameters to their default values. Figure 7
depicts these performance results. We observe that as we increase m, the performance
cost increases as well for all algorithms. SBAhas the worst performance of all techniques,
and its cost increases substantially, even with a few query objects. More specifically,

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:28 E. Tiakas et al.

Fig. 7. Running time versus number of queries (m).

Fig. 8. Running time versus number of results (k), 1 ≤ k ≤ 30.

for m > 5, we observe that the runtime of SBA increases by an order of magnitude. The
other three algorithms have a more stable behavior for the various values of m, across
all datasets, with PBA2 performing clearly better than the rest.

In the following set of experiments, we compare the algorithms by varying the num-
ber of retrieved results (k). Figures 8 and 9 depict the corresponding comparative
evaluation. In particular, Figure 8 depicts the performance of all algorithms when
the number of retrieved results is low, whereas Figure 9 demonstrates the performance
for larger values of k (up to 1,000). We also note that in Figure 9, the area coverage

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:29

Fig. 9. Running time versus number of results (k), 200 ≤ k ≤ 1,000.

parameter (c) has been set to 2%, contrary to the 20% default value, in order to demon-
strate the behavior of the algorithms for smaller coverage values.

We observe that as we increase k, the computational cost of SBA and ABA increases
significantly. The reason is that these two algorithms perform a lot of recalculations
using the same objects, because they each spawn a new top-1 dominating query (as
shown in Algorithm 1 and Algorithm 2) until they retrieve k results. We also observe
that the performance of SBA and ABA is more sensitive to k, whereas PBA1 and PBA2 do
not suffer from this problem. This behavior is observed for both small (Figure 8) and
large (Figure 9) values of k. PBA1 and PBA2 are not faced with this problem because as
soon as they detect the first object, the pruning rules take effect and the remaining top-
k results are more easily discovered. This reduces unnecessary computations and I/O
cost. On the contrary, SBA and ABA cannot use information from previous iterations to
reduce computational costs, as they always search for the top-1 dominating object. It is
also worth noting that once again, PBA2 outperforms the other algorithms consistently
and significantly.

Figure 10 depicts the comparative performance of the four algorithms when we vary
the query coverage c parameter. Query coverage determines how close the randomly
selected query objects will be to each other. By increasing this parameter, the number
of query objects is kept constant, but the distances among them become larger and
we effectively obtain a spatial anticorrelation, thereby increasing the cardinality of
the metric space skyline. As a result, SBA incurs significant I/O costs, which explains
why it shows the worst performance. In contrast, ABA performs better due to fewer I/O
costs but is still worse than PBA1 and PBA2, both of which outperform the alternatives
significantly, by one to three orders of magnitude.

It is worth noting that SBA performs better than ABA for very low c values and
datasets UNI, FC and ZIL. Low c values imply a spatial correlation of the query, making
distances from the query objects more or less the same. As a result, the minimum
enclosing ball of the query set (used by algorithm B2MS2) produces upper bounds that
can prune a significant amount of objects and reduce I/O costs significantly. However,
this is not the case for CAL and SF, where distance computations are far more costly

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:30 E. Tiakas et al.

Fig. 10. Running time versus query coverage (c).

Table III. CPU and I/O Cost (In Seconds) for PBA2

than I/Os and dominate the total runtime. Distance computations are unavoidable
to establish whether an item is outside the minimum enclosing ball, making SBA the
worst-performing alternative for those cases.

6.2.3. Results on Distance Computations. In various applications, such as protein-to-
protein interactions, road networks, and social graphs, a single distance computation
may be more computationally intensive than several I/O operations. In situations like
that, the number of distance computations affects query response time significantly,
and is the dominant cost. To better illustrate this fact, consider Table III, which reports
the CPU and I/O costs of PBA2 for the various datasets. The highlighted entries for CAL
and SF clearly demonstrate that I/O cost is far less significant compared to CPU time,
with the latter dominating the overall runtime. Therefore, it is important to minimize
distance computations as much as possible toward efficient query processing.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:31

Fig. 11. Number of distance computations versus number of query objects (m).

Fig. 12. Number of distance computations versus query coverage (c).

For this reason, we also measure the number of distance computations invoked by the
algorithms, which we portray in Figures 11 and 12 for all datasets. More specifically,
Figure 11 shows the number of computed distances as a function of the number of query
objects m, whereas Figure 12 depicts distance computations compared to query coverage
c. Among the proposed algorithms, PBA2 consistently performs the fewest distance
computations. This behavior is attributed to both the employed pruning rules—also

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:32 E. Tiakas et al.

Table IV. Number of Exact Score Computations for PBA1 and PBA2

Number of Query Objs (m) Number of Results (k) Query Coverage (c)
Data (k = 10, c = 20) (m = 5, c = 20) (m = 5, k = 10)

2 5 10 15 20 5 10 20 30 1% 10% 20% 50%
UNI 25 26 26 31 34 16 26 49 77 20 25 26 29
FC 24 25 26 26 26 12 25 49 69 22 22 25 30
ZIL 26 125 158 192 60 85 125 184 231 22 31 125 51
CAL 263 282 55 61 61 229 282 332 363 273 97 282 285
SF 278 87 366 67 575 73 87 107 125 22 243 87 1269
PR 18 18 20 20 18 9 18 37 53 17 17 18 26

shared by PBA1—and the way the AuxB+-tree structure is exploited to compute the
exact score of objects.

Note that for datasets CAL and SF, PBA1 and PBA2 behave very much in the same
way, whereas there is a significant difference in the number of distance computations
in the other datasets. By cross-referencing these results with the corresponding ones
in Figures 7 and 10, we observe that PBA1 and PBA2 have very similar performances. In
other words, the performance boost for these techniques comes from greatly reducing
CPU costs, which is the dominant factor, and the steady difference in runtime between
them can be attributed to the steady difference of distance computations. On the con-
trary, distance computations alone cannot account for the performance improvement
of PBA1 and PBA2 over SBA and ABA for the other datasets. For example, PBA1 performs
more computations than ABA for low c values but has a lower total runtime. Therefore,
PBA1 and PBA2 are able to reduce both I/O and CPU costs. Unlike SBA, which succeeds
in doing so in a very limited number of cases, the PBA variations can greatly minimize
the dominant cost factor in the general case, whether it is I/O or CPU. This makes them
well suited for a very broad spectrum of applications.

6.3. More Results on the Pruning-Based Algorithms

Our previous set of experiments showed clearly that PBA1 and PBA2 outperform SBA
and ABA in all cases, by at least an order of magnitude. For this reason, in the next
series of experiments, we will focus on these two algorithms alone, to better study their
performance and behavior.

An important factor unique to PBA1 and PBA2 that affects query execution time is the
number of exact score computations performed by these techniques. Recall that, unlike
SBA and ABA, the two PBA variations can establish an estimation of the dominance score
of an object and may reject it immediately without computing its exact score. Therefore,
we would like to know the number of exact computations that PBA1 and PBA2 perform,
which will allow us to better analyze their internal behavior.

Table IV reports on the performance of the two algorithms for this particular mea-
sure, for all datasets. We can immediately observe that the number of exact compu-
tations is only a small fraction of the datasets’ cardinality, which is one of the main
ingredients for the excellent performance of the two techniques. With a more careful
inspection, we also observe that the number of dominance score computations grows, as
a general trend, when we increase the number of query objects, the number of results,
and the query coverage. There are some cases that contradict this trend, which can be
attributed to dataset characteristics, selected query objects, and selected pruning rules.
As an example, we may have to perform more exact score computations when dealing
with two query points (m = 2), compared to having five query points (m = 5), which
is the case for the SF dataset. Although this may seem counterintuitive, in the latter
case we are able to eliminate more objects through our pruning rules compared to the
former one, which then needs to compute the exact scores of more points, to identify

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:33

Fig. 13. Maximum number of objects accommodated in main memory for algorithms PBA1 and PBA2.

the top-k result. Despite these fluctuations, the total number of exact computations is
always kept to a minimum.

Main memory consumption is also an important performance index in query pro-
cessing, especially when we consider the memory used to accommodate temporary
data. In our case, a heap data structure is used to store some objects that are poten-
tial candidates for the next best object. In addition, the incremental nearest-neighbor
mechanism over the M-tree access methods maintains temporary data in main mem-
ory. Figure 13 depicts the maximum number of objects maintained in main memory
during query processing. It is evident that the number of objects is small compared to
the dataset cardinality, and therefore PBA2 does not pose a significant storage overhead.
However, even in cases where the heap capacity is limited, efficient secondary storage
implementations [Fadel et al. 1999] may be employed.

Pruning rules are another distinctive characteristic of PBA1 and PBA2 and play an
integral part in their overall performance, as we have already pointed out. In the
sequel, we will focus on the effectiveness of the employed pruning strategies, and more
specifically on the number of objects that they eliminate. In order to evaluate the
pruning power of each particular family, we consider it independently of the others. In
other words, we perform a set of experiments where only one family of rules is activated
at a time, whereas the other two are disabled. We also note that in this analysis, we
will only consider objects that have been inserted in the AuxB+-tree and are potential
candidates for the top-k result. The reason for focusing on these items alone is that,
unlike items that are immediately rejected, objects inserted in the AuxB+-tree consume
resources (e.g., memory). Therefore, we are interested in the pruning power of each
family of rules on the items that introduce an additional overhead. However, we stress
that the vast majority of objects are actually discarded without consideration. To give
an idea of this fact, we mention that for the CAL dataset, in the case where m = 10,
k = 10, and c = 20, from a total of 1,965,206 objects, 1,824,443 (more than 90%) of
them are completely ignored by PBA1 and PBA2.

The effectiveness of the pruning rules is shown in Figure 14, where we focus
on CAL. Similar results—including the high percentage of pruned points without
consideration—were obtained for the other datasets. The first observation is that a
significant number of objects is eliminated by the pruning mechanisms: of the remain-
ing 140K objects, a total of approximately 10% is pruned by the rules. However, the
number of the eliminated objects per rule family may differ depending on several fac-
tors. For example, in Figure 14(a), it is observed that the number of query objects has
a significant impact on pruning effectiveness. For a few query objects m, DPR and EPR
eliminate more objects than IPR, whereas by increasing the number of query objects,
IPR’s effectiveness improves significantly. This can be explained if we consider that
by increasing the number of query objects, which effectively increases the problem

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:34 E. Tiakas et al.

Fig. 14. Effectiveness of pruning rules in algorithm PBA2: number of eliminated objects for CAL dataset
versus number of query objects (m), number of results k, and query coverage (c).

dimensionality, it becomes more difficult to prune away objects through dominance
checks, because more points belong to the skyline. Consequently, pruning becomes re-
stricted to rules that operate on the dominance score, such as IPR and some rules of the
EPR family. The sophistication of EPR allows it to continue pruning objects even for
larger values of m. A similar behavior is observed when we vary the query coverage in
Figure 14(c). On the other hand, pruning effectiveness is almost steady by increasing
the number of results, as is depicted in Figure 14(b).

In conclusion, the pruning-based algorithms PBA1 and PBA2 perform orders of mag-
nitude better than SBA and ABA and, therefore, are the preferred choices for top-k
dominating queries, where attributes are generated dynamically from distances in a
metric space. The good performance of PBA variations is attributed to the following
reasons:

—The incremental nearest-neighbor technique applied in conjunction with the round-
robin examination of distances from query objects saves a significant number of
distance computations, due to the fact that it works in a way similar to Fagin’s TA,
which has the instance optimality property.

—The use of the auxiliary B-tree access method manages to reduce the number of I/Os
several orders of magnitude in comparison to the baseline algorithms that use a
significant number of iterations to provide the result. This effect has a direct impact
on performance.

—The pruning rules help to decrease the computational costs further since they elimi-
nate objects saving exact score computations.

6.4. Toward an Approximate Solution

Based on the previous results, we observe that the performance of all metric-based
top-k dominating algorithms is strongly dependent on the number of query objects
(m). Every query object forces the execution of an incremental nearest-neighbor search
over the M-tree structure. Therefore, the greater the number of query objects, the more
costly processing becomes (e.g., see Figure 7).

Motivated by this behavior, we performed some additional experiments toward an
approximate solution, whereby we sacrifice the accuracy of the results but reduce
computational costs significantly. Assume, for instance, that m = 2; that is, there are
only two query objects. It is natural to deduce that if two objects are sufficiently close
to each other, which is what we obtain with a low query coverage c value, then it
may be possible to group them together. This would be an interesting alternative to
the aforementioned algorithms provided that the loss of accuracy is not significant. A
simple way to quantify the accuracy is to measure the percentage of the objects that

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:35

Fig. 15. Accuracy versus the percentage of the diameter as a grouping threshold for m = 2 query objects.

are retrieved by the approximate algorithm compared against the result set consisting
of the exact solution.

In order to evaluate the accuracy/speed tradeoff, we have performed a series of
experiments using the UNI and the CAL datasets. In the case of UNI, we replace
the two query objects with their midpoint and we gradually increase their pairwise
distance. The achieved accuracy as a function of the distance between the query objects
is illustrated in Figure 15(a). We observe that when the distance between the query
points is less than 1% of the dataset diameter, the accuracy is more than 70%.

Similar results are obtained for the CAL dataset. Since CAL is a network, the concept
of midpoint is not defined. Instead, we have used two alternatives to group query ob-
jects: (1) we have used the medoid along the shortest path joining the query objects, and
(2) we have used the first common neighbor (FCN) as their representative. The results
for both cases are shown in Figure 15(b). Again, for distances less than 1% of the diam-
eter, the accuracy is more than 60%. In this experiment, we also observe that the group-
ing performed by the FCN alternative performs better than that of selecting the medoid.

The previous discussion leads naturally to an approximation algorithm that gener-
alizes the grouping idea of query objects. Instead of grouping pairs of objects, an initial
clustering may form larger groups that lie within the grouping threshold (e.g., 1% of
the diameter). It is interesting to study in detail this approach and provide approxima-
tion guarantees regarding the error introduced in the result, and also to apply more
sophisticated ways (e.g., rank correlation) to measure accuracy taking into account the
rank position of false positives and false negatives.

7. CONCLUSIONS

Top-k dominating queries combine the benefits of skyline and general top-k query pro-
cessing. The ranking supported by this query type is based on the number of dominated
objects. Therefore, an object x receives a high score if x dominates a large number of
objects. This article contains the first work in metric-based top-k dominating queries,
where distances among objects are computed by means of a metric function and at-
tribute values of each object are generated dynamically, based on the distance between
the object and a set of query objects.

Four progressive algorithms are studied: the first one (SBA) is based on metric skyline
computation, the second one (ABA) is an extension of the aggregation-based nearest-
neighbor technique, and the third and fourth one (PBA1 and PBA2) use incremental
nearest-neighbor search equipped by (1) a set of effective pruning rules to reduce the
search space and (2) an efficient score computation to reduce runtime. All algorithms
operate over any metric-based access method (the M-tree has been used in this work)

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:36 E. Tiakas et al.

with the only requirement that incremental nearest-neighbor queries are supported.
The performance evaluation study shows that the pruning-based algorithms show
the best overall performance in terms of CPU time, I/O cost, and number of distance
computations, offering runtimes that are between one and three orders of magnitude
better than those of SBA and ABA.

An interesting direction for future work is the study of randomized techniques
toward reducing computation time by sacrificing the accuracy of the answer. In
Section 6.4, we gave some preliminary results toward this direction, showing that it
is possible to group query objects if they are sufficiently close to each other. Providing
error guarantees is very important and it is expected to be a difficult task, taking into
account that the analysis of top-k dominating queries is not straightforward. In fact,
recently Kosmatopoulos et al. [2014] have shown that even for the 2-dimensional case,
the worst-case complexity analysis is not trivial. Therefore, it is very interesting to
provide analytical results for both the exact and the approximate solution.

Another interesting extension is to consider the problem in a parallel/distributed
setting, offering significant scalability, especially for massive datasets.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions, as
well as the PC chairs of EDBT 2014 for selecting our paper as a candidate for the ACM TODS Special Issue.

REFERENCES

Wolf-Tilo Balke, Ulrich Gntzer, and Jason Xin Zheng. 2004. Efficient distributed skylining for web informa-
tion systems. In EDBT. 256–273.

John Louis Bentley, Hsiang-Tsung Kung, Mario Schkolnick, and C. D. Thompson. 1978. On the average
number of maxima in a set of vectors and applications. J. ACM 25, 4 (1978), 536–543.

Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The skyline operator. In Proceedings of
ICDE’01. 421–430.

Tolga Bozkaya and Meral Ozsoyoglu. 1999. Indexing large metric spaces for similarity search queries. ACM
Trans. Database Syst. 24, 3 (Sept. 1999), 361–404.

Sergey Brin. 1995. Near neighbor search in large metric spaces. In Proceedings of the 21th International
Conference on Very Large Data Bases (VLDB’95). Morgan Kaufmann Publishers Inc., San Francisco, CA,
574–584.

Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquı́n. 2001. Searching in metric
spaces. ACM Comput. Surv. 33, 3 (Sept. 2001), 273–321.

Lei Chen and Xiang Lian. 2008. Dynamic skyline queries in metric spaces. In Proceedings of the 11th Inter-
national Conference on Extending Database Technology: Advances in Database Technology (EDBT’08).
ACM, New York, NY, 333–343.

Lei Chen and Xiang Lian. 2009. Efficient processing of metric skyline queries. IEEE Trans. Knowl. Data
Eng. 21, 3 (2009), 351–365.

Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An efficient access method for similarity
search in metric spaces. In Proceedings of the 23rd International Conference on Very Large Data Bases
(VLDB’97). Morgan Kaufmann Publishers Inc., San Francisco, CA, 426–435.

J. Shane Culpepper, Matthias Petri, and Falk Scholer. 2012. Efficient in-memory top-k document retrieval.
In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR’12). 225–234.

Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Jun Xu. 2009. Randomized multi-pass streaming
skyline algorithms. Proc. of VLDB Endowment 2, 1 (Aug. 2009), 85–96.

Ke Deng, Xiaofang Zhou, and Tao Shen. 2007. Multi-source skyline query processing in road networks. In
Proceedings of the 23rd International Conference on Data Engineering (ICDE’07). 796–805.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. 2001. Rank aggregation methods for the web.
In Proceedings of the 10th International Conference on World Wide Web (WWW’01). 613–622.

R. Fadel, K. V. Jakobsen, Jyrki Katajainen, and Jukka Teuhola. 1999. Heaps and heapsort on secondary
storage. Theor. Comput. Sci. 220, 2 (June 1999), 345–362.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



Processing Top-k Dominating Queries in Metric Spaces 23:37

Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal aggregation algorithms for middleware. In
Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS’01). ACM, New York, NY, 102–113.

David Fuhry, Ruoming Jin, and Donghui Zhang. 2009. Efficient skyline computation in metric space. In Pro-
ceedings of the 12th International Conference on Extending Database Technology: Advances in Database
Technology (EDBT’09). ACM, New York, NY, 1042–1051.

Gisli R. Hjaltason and Hanan Samet. 1995. Ranking in spatial databases. In Proceedings of the 4th Interna-
tional Symposium on Advances in Spatial Databases (SSD’95). Springer-Verlag, London, UK, 83–95.

Gisli R. Hjaltason and Hanan Samet. 2003. Index-driven similarity search in metric spaces (survey article).
ACM Trans. Database Syst. 28, 4 (2003), 517–580.

Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. 2001. PREFER: A system for the efficient
execution of multi-parametric ranked queries. In Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data (SIGMOD’01). ACM, New York, NY, 259–270.

Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. 2004. Supporting top-k join queries in relational
databases. VLDB J. 13, 3 (2004), 207–221.

Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A survey of top-k query processing techniques
in relational database systems. Comput. Surv. 40, 4, Article 11 (2008), 11:1–11:58.

Maria Kontaki, Apostolos N. Papadopoulos, and Yannis Manolopoulos. 2012. Continuous top-k dominating
queries. IEEE Trans. Knowl. Data Eng. 24, 5 (May 2012), 840–853.

Andreas Kosmatopoulos, Apostolos N. Papadopoulos, and Kostas Tsichlas. 2014. Dynamic processing of
dominating queries with performance guarantees. In Proceedings of the 17th International Conference
on Database Theory (ICDT), Athens, Greece, March 24–28, 2014. 225–234.

Iosif Lazaridis and Sharad Mehrotra. 2001. Progressive approximate aggregate queries with a multi-
resolution tree structure. In Proceedings of the 2001 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’01). ACM, New York, NY, 401–412.

Xiang Lian and Lei Chen. 2009. Top-k dominating queries in uncertain databases. In Proceedings of the
12th International Conference on Extending Database Technology: Advances in Database Technology
(EDBT’09). ACM, New York, NY, 660–671.

Amélie Marian, Nicolas Bruno, and Luis Gravano. 2004. Evaluating top-k queries over web-accessible
databases. ACM Trans. Database Syst. 29, 2 (2004), 319–362.

Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005a. Progressive skyline computation in
database systems. ACM Trans. Database Syst. 30, 1 (March 2005), 41–82.

Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui. 2005b. Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. 30, 2 (June 2005), 529–576.

Katerina Raptopoulou, Apostolos N. Papadopoulos, and Yannis Manolopoulos. 2003. Fast nearest-neighbor
query processing in moving-object databases. Geoinformatica 7, 2 (2003), 113–137.

Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Nearest neighbor queries. In Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data (SIGMOD’95). 71–79.

Mehdi Sharifzadeh and Cyrus Shahabi. 2006. The spatial skyline queries. In Proceedings of the 32nd Inter-
national Conference on Very Large Data Bases (VLDB’06). VLDB Endowment, 751–762.

Cheng Sheng and Yufei Tao. 2011. On finding skylines in external memory. In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’11). 107–116.

Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, Verena Kantere, and Timos Sellis. 2009. Top-k dom-
inant web services under multi-criteria matching. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology (EDBT’09). ACM, New York, NY,
898–909.

Eleftherios Tiakas, Apostolos N. Papadopoulos, and Yannis Manolopoulos. 2011. Progressive processing of
subspace dominating queries. VLDB J. 20, 6 (Dec. 2011), 921–948.

Eleftherios Tiakas, George Valkanas, Apostolos N. Papadopoulos, Yannis Manolopoulos, and Dimitrios
Gunopulos. 2014. Metric-based top-k dominating queries. In Proceedings of the 17th International Con-
ference on Extending Database Technology (EDBT), Athens, Greece, March 24–28, 2014. 415–426.

Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. 2008. Angle-based space partitioning for efficient
parallel skyline computation. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD’08). 227–238.

Yingqi Xu, Tao-Yang Fu, Wang-Chien Lee, and Julian Winter. 2007. Processing K nearest neighbor queries
in location-aware sensor networks. Signal Proc. 87, 12 (2007), 2861–2881.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.



23:38 E. Tiakas et al.

Man Lung Yiu and Nikos Mamoulis. 2007. Efficient processing of top-k dominating queries on multi-
dimensional data. In Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB’07). VLDB Endowment, 483–494.

Man Lung Yiu and Nikos Mamoulis. 2009. Multi-dimensional top-k dominating queries. VLDB J. 18, 3 (June
2009), 695–718.

Wenjie Zhang, Xuemin Lin, Ying Zhang, Jian Pei, and Wei Wang. 2010. Threshold-based probabilistic top-k
dominating queries. VLDB J. 19, 2 (April 2010), 283–305.

Received February 2015; revised August 2015; accepted October 2015

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 23, Publication date: January 2016.


