IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

1433

Correspondence

Efficient Expressions for Completely and Partly
Unsuccessful Batched Search of Tree-Structured Files

S.D. Lang and Yannis Manolopoulos

Abstract—1In this correspondence, closed-form, nonrecurrent expres-
sions for the cost of completely and partly unsuccessful batched searching
are developed for complete j-ary tree files. These expressions are applied
to both the replacement and nonreplacement models of the search queries.
The expressions provide more efficient formulas than previously reported
for calculating the cost of batched searching. The expressions can also
be used to estimate the number of block accesses for hierarchical file
structures.

Index Terms—Access strategy, batched searching, performance evalu-
ation, physical database design, sequential and tree-structured files.

I. INTRODUCTION

In modeling the performance of a database system, it is important
to accurately estimate the number of block accesses for satisfying
a given query. This estimation is used ih the physical design of
database systems [17]; it is also used in the selection of access paths
for query optimization, such as that used in the distributed database
system SDD-1 [1], System R [15], and System R* [9]. Several results
exist in the literature for estimating the number of block accesses for
retrieving k records, in a file of T blocks each containing N/T records,
assuming the k records are uniformly distributed among the T blocks
of the file [2], [3], [19]. These results differ in their assumptions
on whether the records are chosen with replacement (i.e., allowing
duplications) or without replacement (i.e., not allowing duplications).
Recently, these results have been extended to consider finite buffer
storage and nonunique records for each key value, where exact and
approximate formulas are obtained and validated on the R* distributed
relational database system [10].

A problem closely related to estimating block accesses is known
as batched searching [16]. In an off-line or batch environment, disk
I/0 can be greatly reduced if searches are processed in a batched
fashion, compared to being processed individually. Shneiderman and
Goodman argued for the many benefits of batched searching, and
provided expressions for the expected cost (i.e., number of block
accesses) of batched searching for sequential and tree-structured
files, assuming the search queries satisfy a uniform distribution with
replacement [16].

Recently, several results on batched searching have been reported.
Palvia [12] obtained expressions for the cost of batched searching
using a uniform distribution without replacement for the search
queries. Also, Piwowarski [13] rounded out the work in [16] and
obtained a closed-form expression for the batched searching cost of
the tree-structured files considered in [16]. Recognizing the simi-
larity between the analysis of batched searching and the analysis
of estimating block accesses in database systems, Lang et al. [8]
provided a unified analysis and obtained closed-form, nonrecurrent
expressions for the expected cost of batched searching of sequential
and tree-structured files. Extending the work in [12], Manolopoulos
and Kollias [11] considered the case of search queries that are either

Manuscript received November 27, 1989; revised April 30, 1990. Recom-
mended by M. Jarke.

S.D. Lang is with the Department of Computer Science, University of
Central Florida, Orlando, FL 32816.

Y. Manolopoulos is with the Department of Electrical Engineering, Aris-
totelian University of Thessaloniki, Thessaloniki 54006, Greece.

IEEE Log Number 9039339.

completely or partly nonexisting in the file, and obtained expressions
for the batched searching cost of sequential and tree-structured files,
using both replacement and nonreplacement models.

One type of the tree-structured files being considered is the
complete j-ary tree file. This is a multiway, balanced search tree
where each node is completely filled with j — 1 records (hence
each node, except the leaf node, has j children). For such tree-
structured files, the expressions of the batched searching cost ob-
tained in [11] were computed by iterative and recurrent formulas.
For example, let COST(ky, k2,1 + 1) denote the cost of batched
searching k; existing records and k, nonexisting records in a com-
plete j-ary tree with /+ 1 levels (using replacement or nonre-
placement model). In [11], this expression is calculated as 1 +
iYk vk COST(i,m,!)PROB(i,m,!), where PROB(i, m,1)
gives the probability that i records out of the k; existing records
and m records out of the k; nonexisting records in the batch,
involve access to a subtree of I levels. Because this formula is
iterative and recurrent, it requires an exponential number O((k1k2)")
iterations to calculate the exact value. In each iteration, the expression
PROB(i,m,!) requires calculating 6 binomial coefficients [11].
Faster but approximate formulas for calculating COST (k1, k2,1 + 1)
were then developed requiring O(!) iterations; the relative error of
the approximation was reported to be approximately less than 5% for
a ternary tree file of 4 levels [11].

In this correspondence, we improve the efficiency of the formulas
in [11] by extending the formulas developed in [8] to include
search queries that are either completely or partly nonexisting in the
complete j-ary file. We obtain exact and efficient expressions for the
expected cost of batched searching. These expressions can also be
used to estimate the number of block accesses for hierarchical file
structures. Our expressions are iterative but nonrecurrent and require a
linear time O(1) iterations in calculation. In addition, in each iteration
only 4 binomial coefficients (not 6) need to be calculated. The
derivation of these expressions is described in Section II. Section III
concludes the paper and points out some future work.

11. BATCHED SEARCHING OF TREE STRUCTURED FILES

Consider a complete j-ary tree with height /, where the root is at
level 0 and the leaves are at level . In the tree, there are j' nodes at
level i, 0 < ¢ < I. Suppose there are k search queries in a batch. The
following theorem gives a closed-form expression for the expected
number of node accesses in batched searching.]

Theorem 1: For each node p at level i, 1 < p < j',0< i<, let
Y: p denote the following random variable:

in batched searching,

1 if node p at level ¢ is accessed
Yoo
0 otherwise.

Then

COST(k,! + 1) = the expected number of node accesses
of batched searching

ji

1
=YY PROB[Y:, =1]
i=0 p=1
[

= (1 - PROB[Y;, = 0]).

0098-5589/90/1200~1433$01.00 © 1990 IEEE

1434

Proof: This theorem has been proved in [8]. For completeness
the proof is reproduced here. By definition,

i

J
>3 %

1
i=0 p=1

COST(k,1+1) =E

3

I J

=Y S ElYi,]

i=0 p=1
1t
Y PROB[Y;, = 1]

i=0 p=1

fl

.

<

(1 - PROB[Y; , = 0]).

=0 p:

H
—

We now apply the theorem to the analysis of batched searching
of uniformly distributed search keys. When k; keys are existing and
k> keys are nonexisting in the file, there are four types of uniform
distribution to consider, depending on whether the search keys
follow a replacement or nonreplacement model [11]. The following
theorem applies Theorem 1 to these cases and obtains iterative but
nonrecurrent formulas for the expected cost of batched searching.

Theorem 2: Let COST(k1, k2,1 + 1) denote the expected number
of node accesses in batched searching of k; + k2 uniformly distrib-
uted keys, where k; search keys are existing, and & keys are nonex-
isting in a complete j-ary tree of height I. Then COST(ky, k2,1 + 1)
can be calculated as follows:

1) If the k) existing keys satisfy a replacement model and the &,

nonexisting keys also satisfy a replacement model, then

]
COST(ki, ko, I +1) =14 Y j* (1 -

i=1

C(jl+l _ jl—i+1 + kl _ 1, kl)c(jH—l __jI—H-l + k2 . 1, k2)
COM + k=2, k)CG™ + k2 — 1, F2)

2) If the k; existing keys satisfy a replacement model and the k;
nonexisting keys satisfy a nonreplacement model, then

COST(kl, ko, 1 + 1) =1+
i]"' (1 ~ C(j”l _ jI—:‘+1 + k-1, kl)C(j”'l _ jl—i+1’k2))

CHH 4+ by — 2,k1)C (5, ko)

i=1

3) If the k; existing keys satisfy a nonreplacement model and the
k> nonexisting keys satisfy a replacement model, then

COST(kl, ko, 1 + 1) =1+

21:]" <1 _ C(j“l _ jl—i+1,kl)c(]~1+l _ jl—i+1 +hy—1, kz))

CU™ = LE)C(GH + k2 — 1, k2)

i=1

4) If the & existing keys satisfy a nonreplacement model and the
k2 nonexisting keys also satisfy a nonreplacement model, then

COST(ky, ks, 1 +1)

g O O
=’ TG = 1, k)G, k) '

Proof: Note that in a complete j-ary tree of height [, there are
a total of j'*! — 1 existing keys and a total of j**! subintervals for
nonexisting keys. Similarly, in any subtree at level i, 1 < ¢ < I, there
are j'~**! — 1 existing keys and j'~**' subintervals for nonexisting
keys. Since the proofs for these four cases are very similar, let us
consider only case 3, where &, existing keys are uniformly distributed

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

among j"*' — 1 keys without replacement and k, nonexisting keys
are uniformly distributed among j'*! subintervals with replacement.

In this case, there are C(j**' — 1, k1) possible combinations for the
k1 existing keys, and there are C(j'*! + k2 — 1, k») combinations for
the k; nonexisting keys (see [6] for an explanation on these formu-
las for replacement and nonreplacement models). Therefore, there
are C(j*!' = 1, k) C (" + k2 — 1, k2) many combinations of the
k1 + k; keys in the batch. Using a similar argument, for each subtree
at level i, 1 < i < I, there are (j'*' — 1) — (j'*1 —1) = ;! -
77! keys existing in the nodes outside of the subtree, and there
are j'*' — j'=**1 subintervals outside of the subtree for nonexisting
keys. Therefore, there are C'(5'*! — '~ k)C(3™* — j'=* +
k2 — 1, k2) combinations of k1 + k2 keys that do not involve access
to the root node of the subtree in batched searching. Thus, using the
notation in Theorem 1,

PROB[Y; , = 0]

= probability that node p at level ¢
is not accessed in batched searching

c J-H-l__jl—iﬂ’kl C j’+l—j’_‘+l+k2—1,k2 .
(C(j“‘l—l,k)l)c('(j’+l+k2—l,k2)) if ¢ Z 17
={0 ifi=0
(the root is
always accessed).

Thus, by applying Theorem 1,
COST(ky1, k2,1 + 1)
=1+

i‘ . O™ = =, k) O — 7 4 by — 1, k)
CH™ = Lk)CGH + ke — 1, k)

M-~

1 p=1

1+
i]’i (1 _ C(j”l —jl_i+1,k1)C(j'+l _jl—i+1 +hp—1, k2))
=1

I

CG™ =1, k)CG™ + k2 — 1, k)

Note that in Theorem 2, if k2 = 0, this is the case that all search
keys are existing in the file and this case has been analyzed in [8]. If
k2 # 0, Theorem 2 analyzes the case of completely unsuccessful
batched searching (k; =0) and the case of partly unsuccessful
batched searching (k; # 0), both have been considered in [11].
However, the results of Theorem 2 provide nonrecurrent formulas
that are much more efficient for calculating the exact value of the
batched searching cost.

III. CONCLUSION AND FUTURE WORK

In this correspondence, we obtained closed-form, nonrecurrent
expressions for the cost of batched searching for complete j-ary tree
files. The search queries in the batch can be completely or partly
nonexisting in the file, and the search queries are assumed to be
uniformly distributed satisfying either a replacement or nonreplace-
ment model. Our expressions provided more efficient formulas than
previously reported for calculating the cost of batched searching.
These expressions can also be used to estimate the number of block
accesses for hierarchical file structures.

When large files are stored in a tree structure, it is possible that the
data records are stored on the leaf level only (e.g., the B+ tree [5]),
thus the nonleaf nodes are used as an index. In that case, expressions
for the cost of batched searching have been obtained if the search
queries are existing in the file [8]. As future work, we plan to apply
Theorem 1 to such tree structures to include the case of search queries
that are completely or partly nonexisting in the file.

Also, it should be noted that the results of Theorem 1 can be
applied to search queries satisfying arbitrary distributions. It is
well known that the assumption of uniform distribution may lead

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

to pessimistic estimation on block accesses in database systems,
when the search distribution is in fact nonuniform [4]. Recently,
Vander Zanden et al. [18] investigated approximation methods to
estimate block accesses under nonuniform distributions. As future
work, we plan to apply our results to consider batched searching with
nonuniform distributions. In another direction, we plan to extend our
work to cover batch insertions [7] and batch (incremental) updates
[14] in tree-structured files.

ACKNOWLEDGMENT

The authors would like to thank the referees and editors for their
speedy reviews and helpful suggestions.

REFERENCES

[1] P.A. Bemnstein, N. Goodman, E. Wong, C.L. Reeve, and J. B. Rothnie,
Jr., “Query processing in a system for distributed databases (SDD-1),”
ACM Trans. Database Syst., vol. 6, no. 4, pp. 602—625, Dec. 1981.

[2] A.F. Cardenas, “Analysis and performance of inverted database struc-
tures,” Commun. ACM, vol. 18, no. 5, pp. 253-263, May 1975.

[3] T.-Y. Cheung, “Estimating block accesses and number of records in file

management,” Commun. ACM, vol. 25, no. 7, pp. 484—487, July 1982.

S. Christodoulakis, “Implications of certain assumptions in database

performance evaluation,” ACM Trans. Database Syst., vol. 9, no. 2,

pp- 163-186, June 1984.

[5] D. Comer, “The ubiquitous B-tree,” ACM Comput. Surveys, vol. 11,

no. 2, pp. 121-138, June 1979.

W. Feller, An Introduction to Probability Theory and its Applications;

Vol. I, 2nd ed. New York: Wiley, 1957, pp. 28-32.

[7] S.D. Lang, J.R. Driscoll, and J.H. Jou, “Batch insertion for tree
structured file organizations—Improving differential database represen-
tation,” Inform. Syst., vol. 11, no. 2, pp. 167-175, June 1986.

[8] ——,”A unified analysis of batched searching of sequential and
tree-structured files,” ACM Trans. Database Syst, vol. 14, no. 4,
pp. 604-618, Dec. 1989.

[9] G.M. Lohman, C. Mohan, L.M. Haas, B.G. Lindsay, P.G. Selinger,

P.F. Wilms, and D. Daniels, “Query processing in R*,” in Query

Processing in Database Systems, Kim, Batory, and Reiner, Eds. New

York: Springer-Verlag, 1985, pp. 31-47.

L.F. Mackert and G.M. Lohman, “Index scans using a finite LRU

buffer: A validated 1/O model,” ACM Trans. Database System., vol. 14,

no. 3, pp. 401-424, Sept. 1989.

Y. Manolopoulos and J.G. Kollias, “Expressions for completely and

partly unsuccessful batched search of sequential and tree-structured

files,” IEEE Trans. Software Eng., vol. 15, no. 6, pp. 794—799, June

1989.

P. Palvia, “Expressions for batched searching of sequential and hierar-

chical files,” ACM Trans. Database Syst., vol. 10, no. 1, pp. 97106,

Mar. 1985.

M. Piwowarski, “Comments on batched searching of sequential and

tree-structured files,” ACM Trans. Database Syst, vol. 10, no. 2,

pp. 285-287, June 1985.

N. Roussopoulos and H. Kang, “Principles and techniques in the design

of ADMS=,” Computer, vol. 19, no. 12, pp. 19-25, Dec. 1986.

P.G. Selinger, M. M. Astrahan, D.D. Chamberlin, R. A. Lorie, and

T. G. Price, “Access path selection in a relational database management

system,” in Proc. ACM-SIGMOD Conf., 1979, pp. 23-34.

B. Shneiderman and V. Goodman, “Batched searching of sequential

and tree structured files,” ACM Trans. Database Syst., vol. 1, no. 3,

pp. 268-275, Sept. 1976.

T.J. Teorey and J.P. Fry, Design of Database Structures. Englewood

Cliffs, N.J.: Prentice-Hall, 1982.

B.T. Vander Zanden, H. M. Taylor, and D. Bitton, “A general frame-

work for computing block accesses,” Inform. Syst, vol. 12, no. 2,

pp. 177-190, June 1987.

S.B. Yao, “Approximating block accesses in database organizations,”.

Commun. ACM, vol. 20, no. 4, pp. 260—261, Apr. 1977.

[4

—

[6

—

[10]

(1]

f12]

[13]

(4]

[15]

[16]

[17]

(18]

[19]

1435

Comments on “Measurement of Ada Overhead
in OSI-Style Communications Systems”

Gerald M. Karam

Abstract—In “Measurement of Ada Overhead in OSI-Style Commu-
nications,” Howes and Weaver compare the overhead between their
proposed dispatcher-server architecture and Buhr’s transport task archi-
tecture for OSI software implementation. This correspondence shows how
their comparison method is weak because they did not consider: 1) the
impact of control flow within a protocol, 2) the coordination required
between multiple entities executing within a layer and which share the
services of a lower layer, and 3) optimizations of Buhr’s architecture
which would have improved its performance efficiency. As a result the
usefulness of their conclusions is very limited.

Index Terms—Ada, communications software, concurrent systems,
multiprocessor, open system interconnection (OSI), protocols.

I. INTRODUCTION

The premise of the work of Howes and Weaver in [4] is that the
Ada tasking structure proposed by Buhr [1] for OSI communications
systems is inefficient because of the large number of tasks involved.
The experiment they use to argue their case is the transmission of an
integer value through the tasking structure of a seven layer OSI-like
test system (see Fig. 1 in [4]). The transmission involves the addition
of message headers when descending through the layers (during a
message send) and the removal of the headers when ascending to
the topmost layer (during a message receive). The outgoing and
incoming message traffic are treated as independent activities. As an
alternative, Howes and Weaver propose a dispatcher-server solution
that allocates parallel transmitter servers on demand, with each server
handling the operations of all seven layers (see [4, Fig. 3]). They do
not consider data reception. Not surprisingly, their structure produces
better experimental results because only two rendezvous are needed
to send a message versus about 2N rendezvous for an N-layer
implementation using Buhr’s approach.

There are several significant failings in their comparison method:
1) their design does not support most protocols because it does
not address control information exchange between communicating
entities (Buhr’s solution does), 2) their design does not support the
resource sharing that occurs between the multiple entities within a
layer or in a higher layer using the services provided by a lower
level entity (Buhr’s solution does), 3) Buhr’s solution is examined
in its most general form, thus, there are several optimizations which
could reduce the rendezvous overhead costs so that Buhr’s solution
would become more attractive.

The discussion of these issues will begin with a brief tutorial on
communication protocols and OSI, continue with a description of the
problems in the comparison method, highlight a research effort that
uses a more rigorous comparison method, and then conclude with a
summary of the main points.

II. A BRIEF TUTORIAL ON PROTOCOLS AND OsI
A. Protocol Basics

A communications protocol is essentially an agreement between
communicating entities on: 1) the format of messages, 2) the seman-
tics of message contents, and 3) the legitimate sequence (or order)
of messages. The message format includes fields containing coded
information, identifiers etc., and may include data to be transmitted.

Manuscript received December 12, 1989; revised June 25, 1990. Recom-
mended by T. Murata.

The author is with the Department of Systems and Computer Engineering,
Carleton University, Ottawa, Ont. K1S 5B6, Canada.

IEEE Log Number 9039340.

0098-5589/90/1200-1435$01.00 © 1990 IEEE

