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Abstract

In this paper we present C2P, a new clus-
tering algorithm for large spatial databases,
which exploits spatial access methods for the
determination of closest pairs. Several exten-
sions are presented for scalable clustering in
large databases that contain clusters of vari-
ous shapes and outliers. Due to its character-
istics, the proposed algorithm attains the ad-
vantages of hierarchical clustering and graph-
theoretic algorithms providing both efficiency
and quality of clustering result. The superior-
ity of C2P is verified both with analytical and
experimental results.

1 Introduction

Clustering is the organization of a collection of data
into groups with respect to a distance or, equivalently,
a similarity measure. Its objective is to assign to the
same cluster data that are more close (similar) to each
other than they are to data of different clusters. In
data mining, clustering is used for the discovery of
the distribution of data and the detection of patterns,
e.g., finding groups of customers with similar buying
behavior.
The application of clustering in spatial databases

presents important characteristics. Spatial databases
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usually contain very large numbers of points. Thus,
algorithms for clustering in spatial databases do not
assume that the entire database can be held in main
memory. Therefore, additionally to the good quality of
clustering, their scalability to the size of the database
is of the same importance.

1.1 Related work

CLARANS [NH94] is a partitional clustering algo-
rithm which, however, requires multiple database
scans. The efficiency of CLARANS is improved by us-
ing focusing techniques proposed in [EKX95]. Range
queries and the R∗-tree index structure are used to fo-
cus only on related portions of the database. DBSCAN
[EKSX96] is a density-based clustering algorithm for
spatial databases. DBSCAN is based on parameters
that are difficult to determine, whereas DBCLASS
[XEKS98] does not present this requirement (with the
cost of a reduction in clustering performance). Since
both algorithms may follow a dense “bridge” of points
that connects different clusters, they are sensitive to
the “chaining-effect”, i.e., the incorrect merging of
clusters (left part of Figure 1). In [BBBK00] the ex-
ploitation of the similarity join queries, using the R∗-
tree and the X-tree index structures, is proposed to
overcome the necessity for repetitive range queries re-
quired by DBSCAN. The STING algorithm [WYM97]
is based on a grid-like data structure and the experi-
mental results in [WYM97] indicate that STING out-
performs DBSCAN.
The previous algorithms operate directly on the en-

tire database. On the other hand, hierarchical clus-
tering algorithms for data mining in spatial databases
follow different approaches, which are based on data
preprocessing. Algorithm BIRCH [ZRL96] is based on
a pre-clustering scheme with the use of a specialized
spatial index structure, the CF-tree, to determine a
set of sub-clusters that are much fewer than the orig-
inal data points. For the main clustering phase it re-
sorts to a standard hierarchical algorithm for the set
of the centers of the sub-clusters. In [GRS98], the



CURE algorithm is based on sampling and partition-
ing as an initial phase of data preprocessing. For the
main clustering phase it uses a variation of standard
hierarchical algorithms, which is facilitated by the k-
d-tree [Same90] and the nearest-neighbor query. As
described in [GRS98], CURE outperforms existing hi-
erarchical algorithms, including BIRCH, both with re-
spect to quality of result and efficiency.
OPTICS [ABKS99] is based on the concepts

of density-based clustering (DBSCAN) and identi-
fies the structure of clusters. Extensions to OP-
TICS are proposed in [BKS00] and, recently, in
[BKKS01]. WaveCluster [SCZ99] uses the proper-
ties of the wavelet transformation (low pass filtering,
multi-resolution examination). Clustering is done by
merging components of the transformed space in the
quantized grid. This process resembles density-based
clustering algorithms. Hence, dense narrow bands of
points between clusters, not consisting of just isolated
points and thus not removable by the low pass fil-
tering at the level where clustering is done, can ren-
der this procedure sensitive to the “chaining-effect”.
Chameleon [KHK99] finds clusters with complicated
shapes. It is based on graph partitioning, which
presents significant computational requirements. Its
scalability to large databases has not been exam-
ined in [KHK99]. Other related work includes algo-
rithms in [AY00, HK99]. However, those approaches
are not directly comparable with those discussed ear-
lier, due to the peculiarities of high-dimensional space
[HK99, AY00].

1.2 Contribution

In this paper, we present C2P, a new clustering al-
gorithm for large spatial databases. C2P is based on
the Closest Pair query (CPQ), presented in [CMTV00,
HS98], and its variations [CMTV01]. The main objec-
tive of C2P is efficiency and scalability. We show that
for large inputs its time complexity is O(n logn) (n is
the number of input points). Experimental results ver-
ify that C2P achieves both very good scalability and
clustering quality. In summary, the main contributions
of this paper are:

• A novel clustering algorithm, C2P, which com-
bines efficiency and quality of clustering result.

• The recognition of the importance of closest-pair
queries in clustering and the exploitation of the
corresponding spatial access methods for cluster-
ing in spatial databases.

The rest of the paper is organized as follows. Sec-
tion 2 gives necessary background information. The
overview of the proposed method is described in Sec-
tion 3, whereas the detailed algorithm is presented in
Section 4. Section 5 contains the experimental results.
Finally, conclusions are given in Section 6.

2 Background

Given n data points and k required clusters, hierarchi-
cal agglomerative clustering algorithms start with n
clusters and iteratively merge the closest pair of clus-
ters until k clusters are remaining. Several different
measures for the distance between two clusters Ci and
Cj have been proposed, e.g.:

Dmin(Ci, Cj) = min∀x∈Ci,x′∈Cj ||x − x′||
Dmean(Ci, Cj) = ||mi − mj ||, mx center of Cx

Dmin is used by the single-link hierarchical cluster-
ing algorithm, and joins the two clusters which contain
the closest pair of points. It can detect elongated or
concentric clusters, but it is sensitive to the “chaining-
effect”. Each cluster is represented by all its points.
Dmean is appropriate for detecting spherical and com-
pact clusters. Each cluster is represented only by its
center point. In [MSD83] different schemes are pro-
posed for cluster representation, where each cluster is
represented by a subset of distant points within the
cluster. CURE [GRS98] follows this approach and uses
the Dmin distance for the set of representative points.
Moreover, CURE uses a heuristic of shrinking the rep-
resentative points by a factor (called shrinking factor)
towards the center of the cluster to dampen the effect
of outliers.
In [Epps98] it is shown that a hierarchical cluster-

ing algorithm can have O(n2 log2 n) time complexity
and O(n) space complexity, independently of the clus-
ter distance function. In [GRS98], CURE (which uses
the Dmin cluster distance function) is shown to have
O(n2 logn) time complexity and O(n) space complex-
ity (under the assumption of low dimensionality, the
time complexity is reduced to O(n2)). Hence, hierar-
chical algorithms are not directly applicable for large
spatial databases.
Sampling can be used to reduce the size of large

databases [GRS98, PF00, J-HS98, KGKB01]. How-
ever, if clusters are not of uniform size and are not
well separated, small samples may lead to incorrect
result [GRS98, BKS00], as illustrated in the example
at the right part of Figure 1.
To overcome this problem large samples have to be

used, which possibly cannot be stored entirely in main
memory. Two general approaches are proposed for this
purpose [JMF99]: a) Incremental Clustering, which
has been used in [Fish87] and [ZRL96] (BIRCH), but
it is affected by the ordering of points. b) Divide-
and-conquer Clustering, which is based on partitioning
and has been used in [MK80] and [GRS98] (CURE).
Quadratic time complexity is still required for each
partition and for the final clustering [GRS98].
Clustering has also been posed as a graph-theoretic

problem [AM70, RY81]. Based on the Minimal Span-
ning Tree (MST), clusters can be produced as its com-
ponents by removing the longest edges. This proce-
dure is followed in [Zahn71]. For spatial data, the
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Figure 1: Left: “Chaining-effect”: Clusters A and B
are connected with a “bridge” of points (circle-shaped).
Right: Due to few samples in each cluster, the distance
of points inside the rectangle (dash-line) is less than the
distance from the other points of their clusters A and B,
respectively. Thus, points across clusters are incorrectly
merged.

required time complexity is determined by the Eu-
clidean MST construction (the equivalent of MST
for vector spaces), which is done in O(n logn) time
[PS85]. Therefore, graph-theoretic algorithms can be
used for scalable clustering1. However, since all graph-
theoretic algorithms that are based on MST are anal-
ogous to hierarchical clustering with the Dmin dis-
tance [Epps98], they are sensitive to outliers and to
the “chaining-effect”.

3 Clustering based on closest pairs

In this section we present the basic features of C2P,
the proposed clustering algorithm. As it follows from
the description of the previous section, graph-theoretic
(based on MST) and hierarchical clustering algorithms
follow two different approaches, respectively:

1. Static: Cluster distances and representations do
not change during the clustering procedure. The
MST is computed once and the distances of the
clusters, represented by the edges of the MST,
are not updated. This is efficient with respect
to time complexity (O(n log n)) but impacts the
clustering quality.

2. Fully dynamic: Cluster distances and representa-
tions are updated after each merging of a pair of
clusters. This is effective with respect to the clus-
tering quality but the drawback is the high time
complexity (O(n2)).

C2P consists of two main phases. The first phase
efficiently determines a number of sub-clusters. Un-
like hierarchical clustering algorithms, clusters, cluster
distances and representations are not updated repeat-
edly after the merging of each pair of clusters. Unlike
graph-theoretic algorithm, the representations are not
static. The second phase performs the final clustering
by using the sub-clusters of the first phase and a dif-
ferent cluster representation scheme. As a result, C2P

1Actually, the clusters of the single-link algorithm are sub-
graphs of the MST [Epps98].

combines the advantages of both previous approaches,
i.e., the low time complexity and the quality of clus-
tering result. Since C2P is based on the determination
of closest pairs, in the following we first describe the
corresponding algorithms on this subject and then we
present in more detail the clustering procedure.

3.1 Closest-pair queries

The Closest-Pair query (CPQ), which is proposed in
[CMTV00, HS98], finds the closest pair of points from
two datasets indexed with two R-tree data structures.
In [CMTV01], two specializations of CPQ are pro-
posed. The first is the Self Closest-Pair query (Self-
CPQ), which finds the closest pair of points in a sin-
gle dataset. The second is the Self-Semi Closest-Pair
query (Self-Semi-CPQ), which, for one dataset, finds
for each point its nearest neighbor point (equivalent
to the all-nearest-neighbor query). In [CMTV01] sev-
eral algorithms are presented for the Self-CPQ and the
Self-Semi-CPQ. Here we follow the Simple Recursive
versions of the two corresponding algorithms, assum-
ing that the points are indexed with one R-tree and
that the distance measure is the Euclidean.
Given n points, the execution time for Self-CPQ

or Self-Semi-CPQ is the sum of time for creating the
R-tree index and the time required by the correspond-
ing Simple Recursive algorithm. The creation of the
R-tree can be done with the bulk-loading algorithm
of [KF93] in O(n log n) time (due to the sorting of
points). The expected search time for the nearest-
neighbor query in an R-tree is O(log n), since the
height of the R-tree is O(log n) and the query searches
a limited number of paths (a similar reasoning is fol-
lowed in [ABKS99] for the cost of the determination
of ε-neighborhood). A naive algorithm for the execu-
tion of the aforementioned CP-queries can be based on
the application of the nearest-neighbor query for each
of the n points. The time complexity in this case is
O(n log n). However, the execution time of the cor-
responding Simple Recursive algorithms in [CMTV01]
require less time, compared to the naive algorithm, due
to the branch-and-bound search procedure [CMTV01].
Hence, an upper bound for the overall time complexity
of these queries is O(n logn). The space complexity in
these cases (stemming from the R-tree) is linear to the
number of points. It has to be noticed that different
spatial index structures, e.g., the k-d-tree, can be used
equivalently, maintaining the above bounds. We focus
on the R-tree family, more particularly, on the R*-tree
structure, mainly because of its popularity (R-trees are
found in commercial database systems, such as Oracle
and Informix).

3.2 Overview of clustering procedure

3.2.1 First phase

The first phase of C2P has as input n points and
produces m sub-clusters, and it is iterative. Initially,



Self-Semi-CPQ finds n pairs of points (p, p′) such that
dist(p, p′) = min∀x{dist(p, x)}, for each p. The pairs
form a graph, where each point corresponds to a vertex
and the weight of an edge (p, p′) is equal to the dis-
tance between p and p′. We store the graph with the
adjacency lists representation, that maintains for each
vertex p′ all the vertices p that are adjacent to it. More
than one vertices may be adjacent to a vertex p′, since
p′ may be the closest point of more than one points.
Similarly, there may exist parallel edges, called cycles
of length two, between a pair of vertices, or cycles of
larger length (due to ties)2. Consequently, the graph
may have less than n− 1 distinct edges. A graph with
fewer than n − 1 distinct edges cannot be connected,
thus consisting of c > 1 connected components.
The c connected components of the graph can be

found with a Depth-First Search in the graph. Each
component comprises a sub-cluster. In case c is equal
to m (required number of sub-clusters), the first phase
terminates. Otherwise, it proceeds to the next itera-
tion. It finds the center of each sub-cluster, that forms
its representation. Then, the same procedure is itera-
tively applied to the set of the c center points.
The connected components of the graph maintain

the proximity of points. The Minimal Spanning Tree
(graph-theoretic algorithm) also connects points which
are close, but it is not allowed to contain cycles, hence
close points may not be connected if they form a cycle.
For C2P, since the points if each component maintain
proximity, they are merged in a single step and not
in multiple, as in the case of hierarchical algorithms,
where only two clusters are merged at each step. Due
to the representation of the clusters with their cen-
ters, C2P uses both the Dmin (within components)
and Dmean (for centers) cluster distance measures.

3.2.2 Second phase

The first phase of C2P has the objective of efficiently
producing a number of sub-clusters which capture the
shape of final clusters. Therefore, it represents clus-
ters with their center points. The second phase uses a
different cluster representation scheme to produce the
finer final clustering. Also, the second phase merges
two clusters (not multiple as the first) at each step
in order to better control the clustering procedure.
Therefore, the second phase is a specialization of the
first, i.e., the latter can be modified in: a) finding dif-
ferent points to represent the cluster instead the center
point, b) finding at each iteration only the closest pair
of clusters that will be merged, instead of finding for
each cluster the one closest to it.
When two clusters are merged, the r points (among

all their points) which are closest to the center are se-
lected (modification a.) and used as representatives
of the new cluster. This way, variations in the shape

2Since the graph has n edges, it always contains a cycle of
length larger than or equal to two.

and size of the clusters are captured more effectively
[GRS98]3. The finding of the closest pair of clusters
is done with Self-CPQ (modification b.). The original
Self-CPQ is modified slightly to find pairs belonging to
different clusters. The second phase terminates when
the required number of clusters is reached and the rep-
resentative points are found for each cluster (the final
assignment of original points to clusters is described
in the next section). From the above description it
follows that the second phase operates in a manner
analogous to hierarchical agglomerative clustering.
An example of the two-phase procedure of C2P is

illustrated in Figure 2.

Figure 2: Left: An example dataset (4 clusters) Center:
First phase. The set of center points of the sub-clusters.
Right: Second phase. The set of representatives for each
cluster (depicted with different colours).

4 The C2P clustering algorithm

First, the basic version of C2P is presented, consisting
of the algorithms for the two phases. The first phase is
implemented with the C2P-C algorithm(denoting the
representation with the center point) and the second
with the C2P-R algorithm (denoting the use of r rep-
resentative points). In the sequel, extensions are given
for the handling of outliers and for clustering very large
spatial databases.

4.1 C2P-C

Figure 3 illustrates the C2P-C algorithm, based on the
description of the previous section.

Algorithm C^2P-C(D, m) {

1) c = |D|, P=D

2) while(c > m) {
3) CP = Self-Semi-CPQ(P)

4) G = AdjListsGraph (CP)

5) P = ConnectedComponents_DFS(G, m)

6) c = |P|
7) }

8) return P

}

Figure 3: Basic algorithm: first phase

The inputs to C2P-C are the database of points D
and the number of required sub-clusters m. Variable c
denotes the current number of clusters (initially set to

3Representation with scattered points that are shrink to-
wards the center can be easily used as in [GRS98], but it requires
the specification of the shrinking factor.



|D|). P denotes the current set of points to be cluster
(initially set to D). C2P-C iterates until the current
number of clusters, c, is equal to m. At each itera-
tion, Self-Semi-CPQ finds the set of all closest pairs,
denoted as CP (step 3). The AdjListsGraph proce-
dure forms the graph G from the pairs CP (step 4).
ConnectedComponents DFS finds the connected com-
ponents of G (step 5). It also finds for each component
its center point. The set of all center points is returned
in variable P (the points to be clustered next). Vari-
able c is updated to the current number of clusters
(step 6). At the last iteration, if less than m clus-
ters are going to be produced (within step 5), then
edges with the largest weights are removed and split
the corresponding components, until exactly m clus-
ters are produced. The result of C2P-C is contained
in variable P , consisting of the centers of the m sub-
clusters.

Proposition 1 For n points, C 2P-C has O(n log n)
time complexity and O(n) space complexity.

Proof. For n points, step 3 has O(n log n) time com-
plexity (Section 3.1). The formation of the adjacency
lists at step 4 has O(n) time complexity, since each
point is appended at the end of the corresponding list
and there are n edges. The DFS traversal and the de-
termination of the connected components at step 5 has
time complexity O(n) for graphs that are represented
with adjacency lists [Sedg83]. Also, the centers of the
clusters are found in O(n) time. It follows that the
time complexity is dominated by step 3.
At the best case, the first iteration producesm clus-

ters and C2P-C terminates. Thus, in this case, the
time complexity of the algorithm is O(n logn). At the
worst case, the maximum number of clusters than can
occur after step 5 for the n points is n

2 . This happens
when only parallel edges are formed. In this case, the
following iteration has to cluster n

2 points and thus, the
time complexity Cn for the n points can be expressed
as Cn = O(n logn) + Cn/2. This recursive equation
has solution Cn = O(n log n) [SF96]. Thus, the overall
time complexity of C2P-C is O(n log n).
As mentioned in Section 3.1, the space complexity

of step 3 is O(n). The adjacency lists of the graph
at step 4 have also O(n) time complexity, because the
graph has n edges. After each iteration, only the clus-
ter centers are maintained. Therefore, the space com-
plexity of C2P-C is O(n). ✷

4.2 C2P-R

Figure 4 illustrates C2P-R. The inputs are: SC, the
set of sub-clusters produced by C2P -C (|SC| = m),
and k, the required number of clusters. P denotes the
points that are clustered at each step (initially equal
to SC). Variable c denotes the number of clusters
(initially is set to m). C2P-R finds the clusters, C1, C2

that contain the closest pair of representative points

(step 3). C1 and C2 are merged with procedure Merge
and the set RP of the representative points of the new
cluster is found (the old ones are removed step 5). The
current number of clusters is reduced by one (step 7).

Algorithm C^2P-R(SC, k) {
1) c = |SC|, P=SC

2) while(c > k) {

3) Self-CPQ(P, &C1, &C2)

4) RP = Merge(C1, C2, r)
5) P -= representatives of C1, C2

6) P += RP

7) c--;

8) }
9) return P

}

Procedure Merge(C1, C2, r) {

1) R1 = representatives of C1

2) R2 = representatives of C2
3) m = Center(R1, R2)

4) RP = r-NearestNeighgbor(m)

5) return RP

}

Figure 4: Basic algorithm: second phase

C2P-R operates in a manner analogous to hierar-
chical clustering algorithms, therefore, its time com-
plexity is equivalent to theirs.

Corollary 1 Let m be the number of center points of
the sub-clusters produced by the first phase. C 2P-R
has O(m2 logm) time complexity.

Proof: The Self-CPQ at each step of C2P -R requires
time O(m logm). This determines the time complexity
of the step (since only the representatives are stored
for each cluster, the complexity of the Merge procedure
is constant, i.e., it does not depend on m). Each step
is executed at most m − 1 times. It follows that the
overall time complexity is O(m2 logm). ✷

The number, m, of sub-clusters produced by the
first phase determines the “switching” point between
the two phases. It has to be considered that at the
second phase each of the k clusters will be represented
with r points at most. Therefore, m can be set to r ·k
(i.e., it does not depend on the number, n, of input
points of the first phase). The value of r depends on
the shape of clusters and can be specified following the
approaches in [GRS98, MSD83].
From Proposition 1 and Corollary 1, it follows that

the overall time complexity of C2P is O(n log n +
m2 logm). For large sample sizes, since m << n and
m does not depend on n, it follows that the complexity
of C2P is determined from the O(n logn) complexity
of the first phase. Hence, C2P is scalable to inputs of
large sizes.

4.3 Elimination of outliers

Outliers are called the points that do no belong to any
particular cluster. They tend to belong to isolated por-



tions of the space, thus forming small neighborhoods
of points that are far apart from existing clusters.
The basic version of C2P is extended by following a

simple heuristic for the elimination of outliers, which
is applied during the first phase. At step 3 of C2P-C,
the mean distance D̄ of points to their closest point
is found. Then, in step 5, points with distance larger
than a cut-off distance are considered as outliers and
are removed. The cut-off distance is determined as a
multiple of D̄ (e.g., 3 · D̄). Additionally, if a compo-
nent that is found at step 5 of C2P-C has a very small
number of points (e.g., 2), then it is removed. How-
ever, C2P-C does not apply the latter heuristic during
its early iterations because, initially, points tend to
form small clusters.

4.4 Clustering large databases

C2P uses sampling for the reduction of the databases
size (Section 2). The results of [J-HS98] indicate that:
a) with an increase in the database size, the cluster-
ing quality is preserved for constant sample size, b) an
increase in random sample size does not pay off be-
yond a point, i.e. the quality in the result does not
increase, whereas the execution time is increased sig-
nificantly. In [GRS98] it is proven that the size of
the random sample does not dependent on the size of
the database. This way, as verified in [GRS98], the
quality of result is comparable to the case of applying
clustering on the complete database, whereas the ef-
ficiency is significantly improved (sampling may also
reduce the impact of outliers). Similar to [GRS98],
and for fair comparison (c.f., Section 5), C2P uses the
reservoir random sampling algorithm [Vitt85]. How-
ever, [PF00, KGKB01] present algorithms for density-
biased sampling for the case of skewed distribution in
cluster sizes. We point out the examination of density-
biased sampling as a direction of future work. For
the determination of random sample sizes we refer to
[GRS98, J-HS98]. It should be mentioned that when
C2P is applied to a sample, the time complexity of
O(n log n) refers to the size of sample, n. Regarding
the total number of points, N , in the database, reser-
voir sampling examines only a small fraction of them
[Vitt85].

4.4.1 Divide-and-conquer method

For large random samples that cannot fit entirely in
main memory (Section 2) we next present a divide-
and-conquer procedure, C2P-P (denoting partitions),
as an extension to C2P-C. C2P-P (illustrated in Fig-
ure 5) divides the sample into a number of partitions
and clusters them separately. In a second phase, the
final clustering is produced. The contents of each par-
tition can be stored entirely in main memory.
The inputs of C2P-P are the set S of points to be

clustered (i.e., the sample), the required number of
sub-clusters m and the number of partitions p. C de-

C^2P-P(S, m, p) {

1) create partitions Pi of S, i in [1,p]

2) C = {} /*the empty set*/

3) foreach Pi {

4) C += C^2P-C(Pi, m’)
5) }

6) C^2P-C(C, m)

}

Figure 5: Divide-and-conquer algorithm

notes the set of partial clusters (initially is empty).
For each partition Pi, C2P-C is applied (step 4) for a
required number of clusters m′ > m. The result con-
sists of the center points of the partial clusters found
in partition, and it is added to set C. Then (step 6),
C2P-C is applied to the points of C (|C| = p · m′)
and m clusters are produced. It is assumed that out-
lier elimination is applied only during the execution of
C2P-C (steps 4 and 6). The value of m′ is set so as:
a) wrong cluster merging will not occur during partial
clustering, b) the |C| points can be held in main mem-
ory. Section 5 will elaborate further on these issues.

4.4.2 Labeling the database contents

After having found the clusters in a given random sam-
ple, C2P has to determine the cluster that each point
of the initial database belongs to. Points are assigned
to the closest cluster. The distance of a point p from a
cluster C is equal to the minimum distance of p from
the representative points of C. As it is illustrated in
Figure 4, C2P-R returns the representative points of
the discovered clusters. These points can be organized
in an R-tree data structure to facilitate the searching
of the nearest representative point.

5 Performance results

This section contains the experimental results on the
performance of C2P. We examine both the quality
of the clustering result and the efficiency. We com-
pare C2P with CURE and graph-theoretic algorithm.
Based on the experimental results of [GRS98], CURE
is an efficient hierarchical agglomerative clustering al-
gorithm, scalable to large databases and, at the same
time, outperforms existing algorithms (e.g., BIRCH)
with respect to the clustering quality. As used in
[GRS98], we derive the MST based graph-theoretic al-
gorithm from CURE, by setting as representatives all
the points in a cluster and shrinking factor to 0.
C2P and CURE were developed in C, using the

same components. For CURE we used the improved
procedure for merging clusters, described in [GRS98].
Since we are interested in the relative comparison
of the algorithms, we used a main-memory R-tree
data structure for both algorithms and the method
in [KF93] for its bulk-loading. In [GRS98], points are
stored in a k-d-tree. However, the clustering result is



Figure 6: DS1: Left: Result of C2P. Center: Result of CURE. Right: Result of graph-theoretic algorithm

not affected by the type of the data structure (see Sec-
tion 3.1) and from our results it was realized that the
time performance of R-tree is not inferior to that of
k-d-tree. The experiments were run using a Pentium
II computer at 500 MHz with 256 MB of RAM under
Windows NT.
The datasets that were used (due to space restric-

tions we present only two characteristic ones), are de-
noted as DS1 (100,000 two dimensional points in 5
clusters – see Figure 6) and DS2 (100,000 points in
100 clusters placed on a grid – see Figure 7). DS1 was
used in [GRS98]. Its characteristics can test the qual-
ity of clustering result with respect to the “chaining-
effect”, the outliers and clusters with different sizes
and shapes. DS2 was used both in [ZRL96, GRS98].
Next, we present the results regarding the three algo-
rithms on the clustering quality and in the sequel we
present the results on efficiency. The depicted images
were produced in color (available in [NTM01]).

Figure 7: DS2: 100 spherical clusters placed on a grid.

5.1 Clustering Quality

First, we examined the quality of the result for DS1.
The random sample contained 2,500 points (the same
size that was used in [GRS98]) and no partitioning was
applied. We used the default values for the parame-
ters of CURE as given in [GRS98], i.e., 10 represen-
tative points per cluster and 0.3 shrinking factor. For
C2P, the first phase produced 100 sub-clusters (i.e.,
m = 100) and 20 points were used as representatives
(i.e., r = 20). The outlier cut-off distance was set to
three times the average (set as default value). Fig-
ure 6 presents the clustering results. As it is illus-
trated, both C2P and CURE can correctly discover
the clusters in DS1 (the different coloring is due to

the different order that clusters were identified). This
shows that C2P is not affected by the “chaining-effect”,
the differences in the cluster sizes and the existence of
outliers. On the other hand, the graph theoretic algo-
rithm is affected by the “chaining-effect” and merges
the two elongated clusters. Also, it splits the large
spherical cluster. Analogous results were obtained for
DS2, and are presented in [NTM01].

5.2 Tuning the parameters of C2P

The main parameters of C2P are the number, m, of
the sub-clusters of the first phase (the “switching”
point) and the number, r, of representatives of the
second phase. As described, the size of the random
sample can be determined following the approaches in
[GRS98, J-HS98], thus we do not perform a separate
examination here. Partitioning is examined in the fol-
lowing section. We use the DS1 data set that contains
5 clusters (i.e., k = 5) and the size of the random
samples was set to 5,000 points.

Number of representatives r

We set m to 100 and varied the number of represen-
tatives, r, in the range from 1 (equivalent to the case
where only the center is used for representation) to
30. For values less than 20, C2P did not always pro-
duce the correct result (especially for very small values
of r). The left part of Figure 8 illustrates the repre-
sentatives per cluster when r was set to 5. As it is
shown, the large cluster, in the lower left corner, is
split. More precisely, the representative points were
assigned to different clusters, thus the cluster, after
the labeling phase, is finally split (the final result is
not shown here). Additionally, the two small clus-
ters on the right were merged, since the corresponding
representatives were assigned to the same cluster. For
larger values of r, the correct result is produced. The
right part of Figure 8 illustrates the result when r was
set to 20. As it is shown, the representative points
were correctly assigned to clusters and the result after
labeling (not shown here) was correct. Generally, the
value of r is determined by the shape of the clusters,



with larger clusters requiring more representatives to
capture their shape.

Figure 8: Number, r, of the representatives in the second
phase. Left: r = 5. Right: r = 20.

Number of sub-clusters m

Based on the previously described results, we selected
r equal to 20. Since k is 5, from the description of
Section 4.1.2, the number of sub-clusters of the first
phase has to be set to 100 (i.e., 20 · 5). We varied the
values of m in the range from 5 to 200. The left part
of Figure 9 illustrates the result for m = 10, where it
can be noticed that an incorrect clustering is produced
(the large cluster was split and the two small clusters,
on the right, were merged). Similar results were ob-
tained for values less than 100. For larger values, C2P
produced the correct result. The right part of Figure 9
illustrates the result for m = 100. Thus, although m
is much smaller than the size, n, of the sample (in this
case n = 5, 000), the sub-clusters of the first phase can
effectively capture the shape of the final clusters.

Figure 9: Number, m, of the sub-clusters of the first phase.
Left: m = 10. Right: m = 100.

5.3 Efficiency

First, we measured the execution time with respect
to the sample size. We did not consider the graph-
theoretic algorithm for the measurement of efficiency
since, as presented previously, it did not produce the
correct clustering result. The result for DS1 is depicted
in Figure 10. CURE used the default parameters given
in [GRS98] (10 representatives, 0.3 shrinking factor).
For C2P,m was set to 100 and r to 20. No partitioning

was used. The result for DS2 is depicted in Figure 11,
where for both algorithms one representative per clus-
ter is used [GRS98]. As it is illustrated, C2P clearly
outperforms CURE both for small and large sample
sizes. Also, these results verify the analytical time
complexity described in Section 4 and indicate that
C2P is scalable to inputs with large number of points,
in the case of data sets that require large samples (see
Section 2).
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Figure 10: DS1: Exec. time (in seconds) w.r.t. sample
size.

0

20

40

60

80

100

120

1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e 

(s
)

number of sample points

DS2, 100000 points, 100 clusters

C2P
CURE

Figure 11: DS2: Exec. time (in seconds) w.r.t. sample
size.

Next we examined the impact of the divide-and-
conquer technique on the performance of both algo-
rithms. More precisely, we applied C2P-P and the
partitioning algorithm described in [GRS98]. We used
DS1, with C2P and CURE having the same param-
eter setting as in the previous experiment. For both
algorithms, the clustering in each partition stopped
when the number of sub-clusters was 1/3 of the num-
ber of points in the partition (this fraction specifies
parameter m′ of C2P-P). This criterion is indicated in
[GRS98] and we use it here for the shake of fair com-
parison. The left part of Figure 12 presents the ex-
ecution times with respect to the sample size for five
partitions. The right part of Figure 12 presents the ex-
ecution times with respect to the number of partitions,
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Figure 12: Left: Execution time (in seconds) w.r.t. sample size, for 5 partitions. Right Execution time (in seconds)
w.r.t. number of partitions.

for a sample size of 5,000 points. As it is illustrated,
both algorithms present a performance improvement,
compared to the previous case where the divide-and-
conquer method was not used. However, CURE is
clearly outperformed by C2P, both for small and large
numbers of partitions.

6 Conclusions

We considered the problem of scalable clustering in
large databases, which at the same time maintains the
quality of the result.
We have proposed a new clustering algorithm, C2P,

which exploits index structures and the processing of
closest pair queries in spatial databases. It combines
the advantages of the hierarchical agglomerative and
graph-theoretic clustering algorithms. Extensions are
provided for large spatial databases and for outlier
handling. We showed that the time complexity of C2P
for large datasets is O(n log n), thus it scales well to
large inputs. Experimental results indicate its effi-
ciency. The main findings of this paper are summa-
rized as follows:

• The development of a new clustering algorithm,
which is scalable to large input sizes and main-
tains the quality of the clustering result.

• Extensions to the basic algorithm for handling
outliers, clusters of various shapes and sizes, and
large databases.

• Analytical and experimental results, which illus-
trate the superiority of C2P.

In future work will consider the density-based sam-
pling [PF00, KGKB01] for cluster sizes that follow
skew distribution.
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