
Justified Recommendations based on Content
and Rating Data

Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos

Aristotle University, Department of Informatics, Thessaloniki 54124, Greece
{symeon, alex, manolopo}@csd.auth.gr

Abstract. Providing justification to a recommendation gives credibil-
ity to a recommender system. Some recommender systems (Amazon.com
etc.) try to explain their recommendations, in an effort to regain cus-
tomer acceptance and trust. But their explanations are poor and un-
justified, because they are based solely on rating or navigational data,
ignoring the content data. In this paper, we propose a novel approach
that attains simultaneously accurate and justifiable recommendations.
We construct a feature profile for the users, to reveal their favorite fea-
tures. Moreover, we create biclusters (i.e. group of users which exhibit
highly correlated ratings on groups of items) to exploit partial matching
between the preferences of the test user and each community of users. We
have evaluated the quality of our justifications with an objective metric
in a real data set, showing the superiority of the proposed approach. We
also conducted a user study to measure users’ satisfaction against the
existing and our proposed justification style. The user study shows that
our justification style is users’ favorite choice.

1 Introduction

Collaborative Filtering (CF) is a method that provides personalized recommen-
dations, based on suggestions of users with similar preferences. Up to the present
day, the development of CF algorithms have focused mainly to provide accurate
recommendations [4]. Nevertheless, besides the accuracy of its recommendations,
the acceptance of a recommender system is increased when users can understand
the strengths and limitations of the recommendations [5]. This can be attained
when users receive, along with a recommendation, the reasoning behind it. Such a
combination is denoted as justified recommendation. Justified recommendations
offer credibility to a recommender system [5].

As the need for justified recommendations has started to gain attention,
several recommender systems, like that of Amazon, adopted the following style
of justification: “Customers who bought item X also bought items Y,Z, . . .”.
This is the so called “nearest neighbor” style [3] of justification. In contrast,
with the so called “influence” style, justifications are of the form: “Item Y is
recommended because you rated item X”.1 Thus, the system isolates the item,
1 Amazon offers “influence style” justification through a link named “Why was I rec-

ommended this?” next to the recommended items.



2

X, that influenced most the recommendation of item Y . Bilgic et al. [3] claimed
that the “influence” style is better than the “nearest neighbor” style, because
it allows users to accurately predict their true opinion of an item. Nevertheless,
both styles can not justify adequately their recommendations, because they are
based solely on data about user preferences, i.e., ratings or navigational data (for
simplicity, we henceforth refer to user-preference data as rating data), ignoring
the content data.

Several CF systems have proposed the combination of content data with
rating data. However, they aimed only to improve the accuracy of their recom-
mendations [2, 10]. The combination of content with rating data helps to capture
more effective correlations between users or items, which yields more accurate
recommendations. Besides improving the accuracy of its recommendations, the
combination can provide high quality justifications as well. Nevertheless, all the
aforementioned systems do provide accurate recommendations, but they can not
adequately justify them. The reason is three-fold: (i) They are hybrid (run CF on
the results of CB [2] or vice versa [10]), thus they miss the dependency between
users and features. (ii) They can not detect partial matching of user’s prefer-
ences. (iii) They lack objective metrics to evaluate the quality of justifications.
Up to the present day, the quality of justifications has been evaluated only with
subjective criteria [3, 5].

We propose the following: (i) To capture the interaction between users and
their favorite features we construct a feature profile for the users. (ii) To detect
partial matching of user’s preferences, we propose the generation of biclusters
(i.e. group of users which exhibit highly correlated ratings on groups of items).
(iii) To cover the lack of an objective evaluation method for the quality of justi-
fications, we propose the coverage, which is the percentage between the sum of
features that are favorite to a user and used to justify a recommendation to the
total sum of favorite features of a user. If coverage is high, then the justification
is more effective, as the features that are included in the justification can be
easily recognized and accepted by the user.

The contributions of this paper are summarized as follows: (i) We construct
a feature profile for the users, to reveal the real reasons of their rating behavior.
We also apply a feature-weighting scheme, to find those features which better
describe a user, and those which better distinguish him from the others. (ii) We
create biclusters, to be able to detect partial matching of users’ preferences. We
also use a similarity measure based on items and features, which can provide
accurate and simultaneously justifiable recommendations. (iii) Differently from
prior work, we measure the quality of our justifications with an objective metric,
coverage ratio, in a real data set (Movielens), illustrating the superiority of the
proposed approach over existing CB, CF and hybrid approaches.

The rest of this paper is organized as follows. Section 2 summarizes the
related work, whereas Section 3 contains the problem description. The proposed
approach is described in Section 4. Experimental results are given in Section 5.
Finally, Section 6 concludes this paper.



3

2 Related work

In 2000, Herlocker et al. [5] proposed 21 different interfaces of explaining CF
recommendations. They demonstrated that the “nearest neighbor” style is effec-
tive in supporting explanations. To prove this, they conducted a survey with 210
users of the Movielens recommender system, demonstrating that explanations
can improve the acceptance of CF systems.

In 2005, Bilgic et al. [3] claimed that “influence” style and “keyword-based”
style are better than the “nearest neighbor” style explanations, proposed by [5],
because they help users to accurately predict their true opinion of an item. In
contrast, “neighbor style” explanation caused users to overestimate the qual-
ity of an item. To prove their claim, they conducted an online survey on their
book recommender system LIBRA [8], which was initially developed as a purely
content-based system containing a database of 40,000 books. The current ver-
sion employs a hybrid approach called Content-Boosted Collaborative Filtering
(CBCF) [6].

In recent years, in the same direction as CBCF, there have been several hybrid
attempts to combine CB with CF. The Fab System [2], measures similarity
between users after first computing a CB profile for each user. In contrast, the
CinemaScreen System [10] runs CB on the results of CF. Melville et al. [6] used
a content-based predictor to enhance existing user data, and then to provide
personalized suggestions though collaborative filtering.

All these are hybrid systems that mainly aim in advancing the accuracy
of recommendations. Our approach aims also to improve the quality of justifi-
cations, exploiting partial matching between a user and his nearest biclusters.
Moreover, we propose an objective metric to measure the quality of justifica-
tions of our approach with representative algorithms of CB, CF and other hy-
brid approaches. We used in the comparison a pure content-based filtering (CB)
algorithm. From the CF algorithms family, we used the user-based (UB) and
item-based (IB) algorithms [11]. Finally, as representative of the hybrid algo-
rithms, we have implemented a state-of-the-art algorithm, the Cinemascreen
Recommender Agent [10], denoted as CFCB.

3 Problem Description

In this section, we define the basic notions that will be used through out the
paper. Our goal is to make accurate and simultaneously justifiable recommen-
dations, by providing a list of favorites features to a user, that cover a high
percentage of his profile.
Rating and Content data: CF algorithms process the rating data of the
users to provide accurate recommendations. An example of rating data is given
in Figure 1a, where I1−7 are items and U1−8 are users. The null cells (no rating)
are presented with dash.

Definition 1 The rating profile R(Uk) of user Uk is the k row of matrix R.



4

For instance, R(U1) is the rating profile of user U1, and consists of the rated
items I1,I3 and I5. Thus, the rating of a user Uk over an item i is given from
the element R(Uk, i) of matrix R.

I1 I2 I3 I4 I5 I6 I7

U1 5 - 2 - 1 - -
U2 2 - 4 1 4 3 -
U3 4 - 2 - 2 - 5
U4 - 3 1 4 - 5 2
U5 - 2 4 2 5 1 -
U6 5 1 - 1 - - 3
U7 - 2 5 - 4 1 -
U8 1 4 - 5 4 3 -

(a)

f1 f2 f3 f4

I1 1 0 0 0
I2 0 1 1 0
I3 0 0 1 1
I4 0 1 0 1
I5 0 1 1 1
I6 0 0 1 1
I7 1 0 0 0

(b)

f1 f2 f3 f4

U1 1 0 0 0
U2 0 1 3 3
U3 2 0 0 0
U4 0 2 2 2
U5 0 1 2 2
U6 2 0 0 0
U7 0 1 2 2
U8 0 3 3 3

(c)

Fig. 1. Running example: (a) User-Item matrix R (b) Item-Feature matrix F (c) User-
Feature matrix P.

As described, content data are provided in the form of features. In our running
example illustrated in Figure 1b, for each item we have four features that describe
its characteristics. We use matrix F , where element F (i, f) is one, if item i
contains feature f and zero otherwise.

Definition 2 The item profile F (Ik) of item Ik is the k row of matrix F .

For instance, F (I2) is the profile of item I2, and consists of features F2 and F3.
Notice that this matrix is not always boolean. Thus, if we process documents,
matrix F would count frequencies of terms.
Construction of the Feature profile: The combination of content with rating
data discloses effective correlations between users and their favorite features. To
capture the interaction between users and their favorite features, we construct
a feature profile composed of the rating profile and the item profile.

For the construction of the feature profile of a user, we use a positive rating
threshold, Pτ , to select items from his rating profile, whose rating is not less
than this value. The reason is that the rating profile of a user consists of ratings
that take values from a scale(in our running example, 1-5 scale). It is evident
that ratings should be “positive”, as it is not favorite an item that is rated with,
e.g., 1 in 1-5 scale.

Definition 3 The feature profile P (Uk) of user Uk is the k row of matrix P
whose elements P (Uk,f) are given by Equation 1.

P (Uk, f) =
∑

∀R(Uk,i)>Pτ

F (i, f) (1)



5

In Figure 1c, element P (Uk,f) denotes the correlation between user Uk and
feature f . In our running example (with Pτ = 2), P(U2) is the feature profile of
user U2, and consists of features f2, f3 and f4. The correlation of a user Uk over
a feature f is given from the element P (Uk, f) of matrix P . As shown, features
f3 and f4 describe him better, than feature f2 does.

Based on the aforementioned problem data, we provide to user Uk two lists.
A top-n list L of items L(Uk)={I1,...,In}, with which we provide our recommen-
dation. Moreover, a list J of ordered pairs J(Uk)={(f1,c1),...,(fm,cm)}, with
which we provide our justification for the recommendation in L. Each ordered
pair contains a feature f with its frequency c inside list L. In particular, the
frequency c of feature f for a user Uk is given from Equation 2:

cf (Uk) =
∑

∀j:Ij∈L(Uk)

F (j, f) (2)

In our running example, assume we recommend a top-2 list of items, to user
U1 L(U1)={I2, I3}. The J(U1) list would be J(U1) = {(f3, 2) , (f2, 1 ) , (f4, 1)
, (f1, 0)}.
Evaluation Metrics: So far, for the evaluation of CF, CB and hybrid algo-
rithms all metrics process only the rating profile of a user. For a test user that
receives a top-N recommendation list L, let M denote the number of relevant
recommended items(the items of the L list that are rated higher than Pτ by the
test user). Precision is the ratio of M to N , while Recall is the ratio of M to the
total number of relevant items for the test user (all items rated higher than Pτ

by him).
However, precision and recall cannot distinguish between a relevant item

from a more relevant item. For instance, different users might have a different
interpretation of which item is more relevant and which is not. To cope with this
problem, we introduce the coverage ratio, which is a user-oriented measure.

In order to be able to focus to the most relevant features in the feature profile
of a user Uk, we use similarly to Pτ threshold, an Fτ threshold, which considers
features whose value is not less than this value in his feature profile. Henceforth,
features that have values higher than Fτ are denoted as relevant features.

Definition 4 We define as coverage ratio of a user Uk the sum of the relevant
features in the J(Uk) list to the total sum of relevant features that exist in his
feature profile.

In particular, the coverage ratio of user Uk is given from Equation 3:

coverage(Uk) =

∑

∀f∈F

cf (Uk)

∑

∀f∈F

P (Uk, f)
(3)

If coverage is high, then the justification is more effective, as the features
that are included in the justification can be easily recognized and accepted by
the user. A relevant feature to a user should be determinative for distinguishing



6

him from the others. These relevant features will be extracted with a feature-
weighting scheme, we will present later.

In our running example (with Fτ = 0), assume we recommend a top-2 list of
items to user U8. If we recommend I2 and I4 we get 100% in precision and 50%
recall. The same precision and recall we get, when we recommend I5 and I6. But
the coverage ratio is not the same. The former top-2 list results 44% coverage
(4/9 features), while the latter gives 55% (5/9 features). Thus, an algorithm
which attains more coverage ratio can give more justifiable recommendations.

4 The proposed approach

4.1 The creation of biclusters

In this section, we propose the generation of groups of users and items at the same
time. The simultaneous clustering of users and items discovers biclusters, which
correspond to groups of users which exhibit highly correlated ratings on groups
of items. Biclusters allow the computation of similarity between a test user and
a bicluster only on the items or features that are included in the bicluster. Thus,
partial matching of preferences is taken into account.

For this biclustering step, we have adopted another biclustering algorithm,
xMotif, which looks for subsets of rows and subsets of columns with coherent
values [9].

In Figure 2, we apply xMotif to matrix R of our running example, form-
ing communities of users based on their rating profile. Otherwise, we could not
preserve the information about items they have rated, to use it for our recom-
mendations. The feature profile of users will be used for the justification of our
recommendations.

I4 I2 I6 I5 I3 I1 I7

U3 - - - 2 2 4 5

U6 1 1 - - - 5 3

U1 - - - 1 2 5 -

U5 2 2 1 5 4 - -

U7 - 2 1 4 5 - -

U2 1 - 3 4 4 2 -

U8 5 4 3 4 - 1 -

U4 4 3 5 - 1 - 2

Fig. 2. Applying xMotif algorithm to matrix R.

We found four biclusters which consist, at least, of 2 users and 2 items. These
bilcusters are summarized as follows:

Notice that there is overlapping between biclusters. We can allow this over-
lapping or we can forbid it. However, in order not to miss important biclusters,
we allow a percentage of overlapping, modeling the possibility that the user may
have different preferences or an item can belong in many genres.



7

b1: Ub1 = {U3, U6, U1}, Ib1 = {I1, I7}
b2: Ub2 = {U5, U7, U2, U8}, Ib2 = {I5, I3}
b3: Ub3 = {U2, U8}, Ib3 = {I6, I5, I3}
b4: Ub4 = {U8, U4}, Ib4 = {I4, I2, I6, I5}

4.2 The application of a feature-weighting scheme

In this section, we weight the feature profiles, in order to find those features
which better describe a user. Similarly, we apply a feature-weighting scheme to
the features contained in each bicluster.

We will perform a TF/IDF weighting scheme [1] to the features of matrix
P , in order to find (i) those features which better describe user u (describe the
Fu set) and (ii) those features which better distinguish him from the others
(distinguishing him from the remaining users in the U domain).

In our running example, the matrix P of Figure 1c is transformed into the
matrix W of Figure 3. Notice that feature f1 is dominant in the feature profile
of users U3 and U6.

f1 f2 f3 f4

U1 0.43 0 0 0
U2 0 0.20 0.61 0.61
U3 0.85 0 0 0
U4 0 0.41 0.41 0.41
U5 0 0.20 0.41 0.41
U6 0.85 0 0 0
U7 0 0.20 0.41 0.41
U8 0 0.61 0.61 0.61

Fig. 3. Weighted User-Feature matrix W

To be able to compare a user with a bicluster, similarly to the rating profile
of users, we create a rating profile of biclusters. Thus, we define an Rb matrix,
whose elements Rb(b, i) are given from the frequency of item i in a bicluster b.
Figure 4a, shows matrix Rb for our running example.

Similarly to the feature profile of users, we generate a feature profile of each
bicluster. We define Pb matrix whose elements Pb(b, f) are given from the fre-
quency of feature f in a bicluster b. Finally, from Pb matrix we generate the
weighted Wb matrix. The Rb, Pb and Wb matrices concern biclusters, while the
R, P and W matrices concern users. Figures 4b and c, show the Pb and weighted
Wb matrices for our running example.

4.3 The neighborhood formation of a user

In this section, we find biclusters containing features that have strong partial
similarity with the test user. These features can be used for justifying our rec-



8

I1 I2 I3 I4 I5 I6 I7

b1 3 0 0 0 0 0 2
b2 0 0 3 0 4 0 0
b3 0 0 2 0 2 2 0
b4 0 2 0 2 1 2 0

(a)

f1 f2 f3 f4

b1 5 0 0 0
b2 0 4 7 7
b3 0 2 6 6
b4 0 5 5 5

(b)

f1 f2 f3 f4

b1 3.01 0 0 0
b2 0 0.50 0.87 0.87
b3 0 0.25 0.74 0.74
b4 0 0.62 0.62 0.62

(c)

Fig. 4. (a) Bicluster-Item matrix Rb. (b) Bicluster-Feature matrix Pb. (c) Weighted
Bicluster-Feature matrix Wb.

ommendations. The neighborhood formation of a user, i.e., to find the k nearest
biclusters, requires to measure the similarity of the test user and each of the
biclusters. There are two different ways to measure similarity:

(i) To consider the similarity of test user and a bicluster only on the items
that are included in the bicluster and not on all items that he has rated. As
described, this allows for the detection of partial similarities. In Equation 4, we
calculate the cosine similarity between a user u and bicluster b for the items he
rated positively (R(u, i) > Pτ ) as follows:

sim1(u, b) =

∑

∀i∈X

R(u, i)Rb(b, i)

√ ∑

∀i∈X

R(u, i)2
√ ∑

∀i∈X

Rb(b, i)
2
, X = Iu ∩ Ib. (4)

(ii) To consider the similarity of test user and a bicluster only on the fea-
tures that are included in the bicluster. In our approach, as it is expressed by
Equation 5, we calculate the cosine similarity between a test user and a bicluster.

sim2(u, b) =

∑

∀f∈X

W (u, f)Wb(b, f)

√ ∑

∀f∈X

W (u, f)2
√ ∑

∀f∈X

Wb(b, f)2
, X = Fu ∩ Fb. (5)

In our running example, the nearest bicluster (k = 1)of user U1, considering
only one of Equations 4 or Equation 5, respectively, gives the same bicluster b1.

When the two similarity measures converge to close results, this means that
the features confirm the user’s rating behavior. But they do not always converge
due to many reasons. For instance, the selected item features maybe a small
fraction of a wider set of features, and can not describe well the user’s rating
behavior, giving less accurate recommendations. On the other hand, features
can give more precise recommendations than items do, when they solve spar-
sity problems in the rating profile of a user, resulted from his unwillingness to
rate items. For these reasons, we choose a mixed similarity measure that builds
into the two aforementioned measures. In Equation 6, we calculate the cosine
similarity between a user u and bicluster b as follows:



9

sim(u, b) = (1− a) · sim1(u, b) + a · sim2(u, b) (6)

Parameter a takes values between [0,1]. As we increase a, we demand from the
system to give more justifiable recommendations, concentrating on the dominant
features.

4.4 The extraction of the dominant features

In this section, we extract the dominant features inside the nearest biclusters of
a test user u. Thus, items that contain those dominant features are favored and
used in our recommendations. To extract the dominant features in the nearest
biclusters of a user, we define matrix Fb, whose elements Fb(i, f) are given from
Equation 7:

Fb(i, f) = R′b(b, i) ·Wb(b, f),∀b ∈ Bu (7)

Element Fb(i, f) of matrix Fb denotes the influence of feature f of item i in
the biclusters’ neighborhood of a user u, while Bu is the set of nearest biclusters
of user u.

In our running example, the two nearest biclusters (k = 2) of user U1, con-
sidering only Equation 4 are first, b1 and follows, one of b2, b3, b4 with the
same probability. To ease our discussion, let’s assume that the system chooses,
as second nearest bicluster, b4. Then, the calculations for the extraction of the
dominant items and features in the user’s neighborhood are shown in Figures 5a,
b, and c.

To find the total influence of an item in the user’s neighborhood, we add
Fb(i, f) elements of matrix Fb for each individual item i, as it is shown in Equa-
tion 8 and Figure 5d.

Influence(i) =
∑

∀f∈F

Fb(i, f) (8)

Thus, we reveal the items that contain the most dominant features. We keep
the j (j>N) number of items with the highest aggregated values creating the
Bb set of items. Then, we exclude those items from Bb that are rated already
from the test user.

In our running example, we set j=5 and N=1. Thus, the items of Bb set are
{I1, I7, I2, I4, I6}. Then, we exclude item I1 which is already rated by U1 and
the remaining in Bb items are {I7, I2, I4, I6}.

4.5 The generation of the recommendation and justification lists

As we described in section 3, our recommendations consist of a top-N list L of
items, which is followed by a justification J list of features. The J list aims to
contains features that maximize the coverage on the favorite features of a user.
To be able to create this J list for a user u, we define a new matrix D whose
elements D(u, i) are given from Equation 9:



10

b1 b2

I1 3 0
I2 0 2
I3 0 0
I4 0 2
I5 0 1
I6 0 2
I7 2 0

(a)

f1 f2 f3 f4

b1 3.01 0 0 0
b2 0 0.62 0.62 0.62

(b)

f1 f2 f3 f4

I1 9.03 0 0 0
I2 0 1.24 1.24 1.24
I3 0 0 0 0
I4 0 1.24 1.24 1.24
I5 0 0.62 0.62 0.62
I6 0 1.24 1.24 1.24
I7 6.02 0 0 0

(c)

Influence

I1 9.03
I2 3.72
I3 0
I4 3.72
I5 1.86
I6 3.72
I7 6.02

(d)

Fig. 5. Matrices (a) R′b(b, i) (b) Wb(b, f) (c) Fb(i, f) (d) Influence(i)

D(u, i) = W (u, f) · F ′(i, f),∀i ∈ Bb (9)

Element D(u, i) of matrix D denotes the total influence of item i in the
feature profile of a user u, while Bb is the set of items extracted from the user’s
neighborhood. We recommend first those items that are the most influential in
the feature profile of the test user.

In our running example, we take the extracted items from the previous phase
(i.e. I2, I4, I6, I7) and generate the D matrix as it is shown in Figure 6. It is
obvious that only I7 will be our recommendation. Item I7 is recommended be-
cause it contains feature f1, which covers 100% percentage the user’s U1 feature
profile, due to item I1 he has already rated.

f1 f2 f3 f4

U1 0.43 0 0 0

(a)

I2 I4 I6 I7

f1 0 0 0 1
f2 1 1 0 0
f3 1 0 1 0
f4 0 1 1 0

(b)

I2 I4 I6 I7

U1 0 0 0 0.43

(c)

Fig. 6. Matrices W (u, f), F ′(i, f) and D(u, i)

5 Experimental Configuration

In this section, we study the performance of our approach against well-known
CF, CB and hybrid approaches, by means of a thorough experimental evalua-
tion. Henceforth, our feature-weighted nearest biclusters algorithm is denoted
as FWNB. We use in the comparison a pure content-based filtering (CB) algo-
rithm, denoted as CB. From the CF algorithms family, we used the user-based
and item-based algorithms [11] denoted as UB and IB, respectively. Finally, as



11

representative of the hybrid algorithms, we have implemented a state-of-the-art
algorithm, the Cinemascreen Recommender Agent [10], denoted as CFCB. The
metrics we use are recall, precision and coverage ratio. We perform experiments
with a real data set that has been used as benchmarks in prior work. In partic-
ular, we examined the 100K MovieLens data set. The extraction of the content
features has been done through the internet movie database (imdb). The join
process lead to 23 different genres, 9847 keywords, 1050 directors and 2640 dif-
ferent actors and actresses. We performed 4-fold cross validation and the default
size of the training set is set to 75%.

5.1 Tuning of a parameter

In Section 4.3, we introduced parameter a, which builds into, the item and feature
similarity measures. As described, when both similarity measures converge to
close results, this means that the feature profile of a user confirms his rating
profile, revealing his rating behavior. Thus, we can attain high accuracy in our
recommendations and simultaneously high coverage in our justifications.

65.19 62.86 62.17 61.56 61.16 60.95

18.22 19.28 20.53 20.76 21.19

12.56
0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1
a

precision coverage

(a)

0

10

20

30

40

50

60

1 2 3 4 5
N

UB IB CB CFCB FWNB

C
o
v
e
r
a
g
e

(b)

Fig. 7. (a) Precision and Coverage of FWNB vs. a (b) Comparison between UB, IB,
CB, CFCB and FWNB in terms of coverage vs. N .

In Figure 7a, we present the precision and coverage ratio of FWNB vs. differ-
ent values of a parameter. When a equals to 0, our measure is based exclusively
on the item similarity measure. In contrast, when a equals to 1, it is based only
on the feature similarity measure. As shown, as we increase a, precision ratio
is almost stable(from 65,19% to 60,95%). This means that the feature similar-
ity measure confirms the results of the item similarity measure. However, as
we increase a the coverage ratio is raised drastically(from 12,56% to 21,19%).
Having a high coverage ratio, we can get more justifiable recommendations. The
best combination of precision and coverage is attained when a is set to 0.4 with



12

62,17% precision and 19,28% coverage ratio. In the following, we keep this as
the default value.

5.2 Measuring the quality of justifications

The justification of our recommendations can be done easily, if we manage to
reveal the dominant features in the feature profile of the users. Thus, users can
receive, along with a recommendation, the reasoning behind it. In the following,
we test the ability of the five algorithms to reveal the dominant features of the
feature profile of the test user.

In Figure 7b, we present the coverage ratio of FWNB, with the UB, IB,
CB and CFCB algorithms vs. different sizes of the recommendation list. As
expected, FWNB outperforms all four algorithms(19,28% coverage ratio). In
contrast, CFCB covers only a 16% of the user’s features, when we recommend
20 items. The reason is that FWNB is able to extract collective features from
the nearest biclusters. FWNB also uses a similarity measure based on both items
and features, which can provide more justifiable recommendations.

5.3 Measuring the accuracy of recommendations

In this section, we proceed with the comparison of FWNB with UB, IB, CB
and CFCB, in terms of precision and recall. This reveals the robustness of each
algorithm in attaining high recall with minimal losses in terms of precision. We
examine the top-N ranked list L, which is recommended to a test user, starting
from the top item. In this situation, the recall and precision vary as we proceed
with the examination of the top-N list.

In Figure 8a, we plot a precision versus recall curve for all five algorithms. As
shown, all algorithms’ precision falls as N increases. In contrast, as N increases,
recall for all five algorithms is increases too. FWNB attains 70% precision, when
we recommend a top-20 list of items. In contrast, CFCB gets a precision of 42%.
Moreover, FWNB is more effective than CFCB getting a maximum recall of
27%, while the latter’s is 20,5%. This experiment shows that FWNB is more
robust in finding relevant items from the rating profile of the test user. The
reason is that FWNB similarity measure is based on nearest-biclusters, and
thus, being able to detect partial matching of users’ preferences, can provide
accurate recommendations.

5.4 User Study

As described, our justification style combines the “keyword-based” and the “in-
fluence” styles, having the following form: “Item X is recommended, because it
contains features a, b, . . ., which are included in items Z, W, . . . that you have
already rated”. In this section, we present some justifications that are obtained
by our method for a real data set, the Movielens.

We selected a user at random (among the 943 users of the set), and recom-
mended two movies. Table 1 depicts these recommended movies along with their



13

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9 12 15 18 21 24 27

Recall

UB IB CB CFCB FWNB

p
r
e
c
i
s
i
o
n

Top-1

Top-2
Top-3

Top-20

Top-4

Top-19
Top-18

(a)

Expl. Styles µp σp

KSE 1.86 1.02
ISE 2.26 1.20

KISE 3.71 1.08

(b)

Fig. 8. Comparison between UB, IB, CB, CFCB and FWNB in terms of precision vs.
recall. (b) Results of the user survey.

justifications. Notice that the second column of Table 1 concerns the “keyword-
based” explanation style, whereas the third column of Table 1 concerns the
“influence” explanation style. The combination of those two columns is our pro-
posed justification style.

Recommended Movie title The reason is who appears in
the participant

Indiana Jones and the Last Crusade (1989) Ford, Harrison 5 movies you have rated
Die Hard 2 (1990) Willis, Bruce 2 movies you have rated

Table 1. Justification example.

We also conducted a survey to measure user satisfaction against the three
styles of explanations: “keyword-based” style (denoted as KSE), “influence” style
(denoted as ISE), and our style of explanation (denoted as KISE), which com-
bines the two aforementioned ones. We designed the user study with 42 pre- and
post-graduate students of Aristotle University, who filled out an on-line survey.
In particular, we asked each target user to provide us with ratings for at least
five movies that exist in the Movielens data set. Then, we recommended to each
target user a movie, justifying our recommendation by using the three justifi-
cation styles (a different style each time). Finally, we asked target users to rate
(in 1-5 rating scale) each explanation style separately to explicitly express their
actual preference among the three styles.

In Figure 8b, we present the mean µp and standard deviation σp of ratings
provided by the users to explicitly express their preference for each explanation



14

style. KISE attained a µp value equal to 3.71, which is the largest among all
styles. We run paired t-test, and found out that the difference of KISE from
KSE and ISE is statistically significant at the 0.01 level.

Our measurements show that KISE will be the users’ favorite choice, because
it can be more informative and combines the other two explanation styles. Thus,
our proposed justification style can be suitable for real-world recommender sys-
tems.

6 Conclusions

We propose an approach to attain both accurate and justifiable recommenda-
tions. We perform experimental comparison of our method against well-known
CF and a hybrid algorithm with two real data sets. Our approach builds a fea-
ture profile for the users, that reveals the real reasons of their rating behavior.
Moreover, we group users into biclusters to exploit partial matching between the
preferences of the target user and each group of users. Finally, the coverage ratio
is an objective metric to measure the quality of justifications, which illustrates
the superiority of our approach over the existing CF and hybrid approaches.
We also conducted a survey with real users in order to verify that the proposed
justification style is suitable for real-world recommender systems.

References

1. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999.

2. M. Balabanovic and S. Y. Fab: Content-based, collaborative recommendation.
ACM Communications, 40(3):66–72, 1997.

3. M. Bilgic and R. Mooney. Explaining recommendations: Satisfaction vs. promotion.
In Proc. Recommender Systems Workshop (IUI Conf.), 2005.

4. D. Goldberg, D. Nichols, M. Brian, and D. Terry. Using collaborative filtering to
weave an information tapestry. ACM Communications, 35(12):61–70, 1992.

5. J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recom-
mendations. In Computer Supported Cooperative Work, pages 241–250, 2000.

6. P. Melville, R. J. Mooney, and N. R. Proc. aaai conf. In Content-Boosted Collab-
orative Filtering for improved Recommendations, pages 187–192, 2002.

7. B. Mobasher, R. Burke, R. Bhaumic, and C. Williams. Towards trustworthy rec-
ommender systems: An analysis of attack models and algorithm robustness. ACM
Internet Technology, 7(2):to appear, 2007.

8. R. Mooney and L. Roy. Content-based book recommending using learning for text
categorization. In Proc. ACM DL Conf., pages 195–204, 2000.

9. T. Murali and S. Kasif. Extracting conserved gene expression motifs from gene
expression data. In Proceedings of the Pacific Symposim on Biocompomputing
Conference, volume 8, pages 77–88, 2003.

10. J. Salter and N. Antonopoulos. Cinemascreen recommender agent: Combining
collaborative and content-based filtering. Intelligent Systems Magazine, 21(1):35–
41, 2006.

11. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proc. WWW Conf., pages 285–295, 2001.


