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Abstract. Nearest-neighbor collaborative filtering (CF) algorithms are
gaining widespread acceptance in recommender systems and e-commerce
applications. These algorithms provide recommendations for products,
based on suggestions of users with similar preferences. One of the most
crucial factors in the effectiveness of nearest-neighbor CF algorithms is
the similarity measure that is used. The most popular measures are the
Pearson correlation and cosine similarity. In this paper, we identify exist-
ing fallacies in the calculation of these measures. We propose a novel ap-
proach, which addresses the problem and substantially improves the ac-
curacy of CF results. Moreover, we propose an evaluation procedure that
produces reliable conclusions about the performance of nearest-neighbor
CF algorithms. Through the proposed evaluation procedure, our experi-
mental results identify the problems of existing approaches (which could
not be revealed with existing evaluation procedures) and illustrate the
superiority of the proposed approach.

1 Introduction

Information Filtering has become a necessary technology to attack the “infor-
mation overload” problem. In our everyday experience, while searching on a
topic (e.g., products, movies, etc.), we often rely on suggestions from others,
more experienced on it. In the Web, however, the plethora of available sugges-
tions renders it difficult to detect the trustworthy ones. The solution is to shift
from individual to collective suggestions. Collaborative Filtering (CF) applies
information retrieval and data mining techniques to provide recommendations
based on suggestions of users with similar preferences. CF is a very popular
method in recommender systems and e-commerce applications. Two types of
CF algorithms have been proposed: (a) nearest-neighbor (a.k.a. memory-based)
algorithms, which rely on finding the most similar ones among the past users,
and (b) model-based algorithms, which develop a model about user ratings. Re-
search results and practical experience have reported that nearest-neighbor algo-
rithms present excellent performance in terms of accuracy, for multi-value rating
data [7].

Nearest-neighbors CF algorithms are influenced by several factors. The sim-
ilarity measure for finding nearest-neighbors, is among the most crucial ones.
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Related research has mainly used as similarity measures the Pearson correlation
and the cosine similarity.1 One issue that impacts the accuracy of CF is the spar-

sity of past users’ ratings, which emanates from the fact that each user usually
rates only a very small percentage of the total items (maybe less than 0.1%).
The measuring of similarity is affected by sparsity, especially due to the choice
that has been followed in related work to compute the similarity between two
users only with respect to the items that have been rated by both of them. This
leads to the finding of spurious neighbors and to inability of providing correct
recommendations. The reason is twofold: (a) similarity is implausibly computed
based on an inadequate number of items, and (b) by ignoring the items rated by
only one of the two users, we do not consider how much their preferences may
differ. Nevertheless, the procedures used so far for the assessment of nearest-
neighbor CF algorithms, are not able to identify the inefficiencies caused by the
aforementioned choice.

In this paper, we first provide a thorough analysis of the factors involved
in the computation of similarity measures and in the evaluation of the nearest-
neighbor CF algorithms. During our examination we identify choices that have
been incorrectly adopted in related work. Next, we propose a new approach,
which addresses the problem and substantially improves the accuracy of CF
results. Our contributions are summarized as follows:

– The revealing of existing fallacies in popular similarity measures.
– A novel method for similarity computation and an evaluation procedure that

produces reliable conclusions about the performance of nearest-neighbor CF
algorithms.

– Experimental results which take into account many factors and demonstrate
the superiority of the proposed method (more than 40% improvements in
terms of precision).

The rest of this paper is organized as follows. Section 2 summarizes the
related work, whereas Section 3 contains the analysis of the examined CF factors.
The proposed approach is described in Section 4. Experimental results are given
in Section 5. Finally, Section 6 concludes this paper.

2 Related work

In 1992, the Tapestry system [3] introduced Collaborative Filtering (CF). In
1994, the GroupLens system [12] implemented a CF algorithm based on common
users preferences. Nowadays, it is known as user-based CF algorithm, because it
employs users’ similarities for the formation of the neighborhood of nearest users.
Since then, many improvements of user-based algorithm have been suggested,
e.g., [5].

In 2001, another CF algorithm was proposed. It is based on the items’ simi-
larities for a neighborhood generation [14, 8]. Now, it is denoted as item-based or
item-item CF algorithm, because it employs items’ similarities for the formation
of the neighborhood of nearest users.

1
Cosine similarity is related to Pearson correlation which represents the angular separation between
two normalized data vectors measured from the mean, while the cosine similarity measures the
angular separation of two data vectors measured from zero.
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Most recent work followed the two aforementioned directions (i.e., user-based
and item-based). Herlocker et al. [6] weight similarities by the number of com-
mon ratings between users/items, when it is less than some threshold parameter
γ. Deshpande and Karypis [2] apply item-based CF algorithm combined with
conditional-based probability similarity and Cosine Similarity measures. Xue et
al. [15] suggest a hybrid integration of aforementioned algorithms (nearest neigh-
bor CF algorithms) with model-based CF algorithms. Finally, recent extensions
of CF include issues like streaming data [1] or privacy preserving [11]. In the
following section we elaborate further on related work, through the analysis of
the factors we examine.

3 Examined factors
In this section, we provide details for the examined factors that are involved in
measuring similarity and evaluating CF results.
Similarity measure: Related work [6, 9, 10, 14] has mainly used Pearson corre-
lation and cosine similarity. In particular, user-based (UB) CF algorithms use the
Pearson correlation (Equation 1)2, which measures the similarity between two
users, u and v. Item-based (IB) CF algorithms use a variation of adjusted cosine-
similarity (Equation 2)3, which measures the similarity between two items, i and
j, and has been proved more accurate [9, 14], as it normalizes bias from subjective
ratings.

sim(u, v) =

∑

∀i∈S

(ru,i − ru)(rv,i − rv)

√

∑

∀i∈S

(ru,i − ru)2
√

∑

∀i∈S

(rv,i − rv)2
, S = Iu ∩ Iv. (1)

sim(i, j) =

∑

∀u∈T

(ru,i − ru)(ru,j − ru)

√

∑

∀u∈Ui

(ru,i − ru)2
√

∑

∀u∈Uj

(ru,j − ru)2
, T = Ui ∩ Uj . (2)

Herlocker et al. [6] proposed a variation of the previous measures, which
henceforth is denoted as Weighted Similarity (WS). If sim is a similarity measure

(e.g., Pearson or cosine), then WS is equal to max(c,γ)
γ

·sim, where c is the number
of co-rated items and γ is a threshold value used by WS.

Equation 1 takes into account only the set of items, S, that are co-rated by
both users. This, however, ignores the items rated by only one of the two users.
The number of the latter items denotes how much their preferences differ. Espe-
cially for the case of sparse data, by ignoring these items we discard significant
information. Analogous reasoning applies for Equation 2, which considers (in
the numerator) only the set of users, T , that co-rated both the examined pair of
items, and for WS, which is based on Equations 1 or 2. To address the problem,
in Section 4 we examine alternative definitions for S and T .
Neighborhood size: The number, k, of nearest neighbors, used for the neigh-
borhood formation, directly affects accuracy. Related work [5, 13] utilizes a k in

2
ru,i is the rating of u on item i. Iu is the set of items rated by u. ru, rv are the mean ratings of
u and v over their co-rated items.

3
Ui is the set of users that rated i. Means ru, rv are taken over all ratings of u and v.
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the range of values between 10 and 100. The optimum k depends on the data
characteristics. Therefore, CF algorithms should be evaluated against varying
k. Moreover, an issue that has not been precisely clarified in related work, is
whether we include in the neighborhood a user or item with negative similarity.
In order to improve accuracy, we suggest keeping only the positive similarities for
the neighborhood formation, even if less than the specified number k of neighbors
remain. This approach is also followed in several works [10].

Positive rating threshold: Recommendation for a test user is performed by
generating the top-N list of items that appear most frequently in his formed
neighborhood (this method is denoted as Most-Frequent item-recommendation).
Nevertheless, it is evident that recommendations should be “positive”. Recom-
mending an item that will be rated with, e.g., 1 in 1-5 scale should not contribute
to the increase of accuracy. We use a rating-threshold, Pτ , to recommended items
whose rating is not less than this value. If we do not use a Pτ value, then the
results become misleading.

Amount of sparsity: In many real cases, users rate only a very small percentage
of items, thus rating data become sparse. Due to lack of sufficient information,
sparsity leads to inaccurate recommendations. For this reason, several recent
works concentrate only on sparse data [6, 8, 14] (e.g., Movielens). However, there
exist dense rating data sets (e.g., Jester [4]). To provide complete conclusions,
we have to examine both cases.

Evaluation Metrics: Several metrics have been used for the evaluation of CF
algorithms, for instance the Mean Absolute Error (MAE) or the Receiving Oper-
ating Characteristic (ROC) curve [6, 7]. MAE represents the absolute differences
between the real and the predicted values and is an extensively used metric.
From our experimental study (Section 5) we understood that MAE is able to
characterize the accuracy of prediction, but is not indicative for the accuracy
of recommendation. Since in real-world recommender systems the experience of
users mainly depends on the accuracy of recommendation, MAE may not be
the preferred measure. For this reason we focus on widely accepted metrics from
information retrieval. For a test user that receives a top-N recommendation list,
let R denote the number of relevant recommended items (the items of the top-N
list that are rated higher than Pτ by the test user). We define the following:

– Precision is the ratio of R to N .

– Recall is the ratio of R to the total number of relevant items for the test user
(all items rated higher than Pτ by him).

Notice that with the previous definitions, when an item in the top-N list is
not rated at all by the test user, we consider it as irrelevant and it counts
negatively to precision (as we divide by N). In the following we also use F1 =
2 · recall · precision/(recall + precision). F1 is used because it combines both the
previous metrics.

Setting a baseline method: Existing experimental evaluations lack the com-
parison against a baseline algorithm. A baseline algorithm has to be simple and
to indicate what can be attained with as little effort as possible. Through a
baseline, we can see the actual improvement due to existing CF algorithms.
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4 Proposed methodology

Next, we describe in more detail our proposed method. We first examine the
factor of the similarity measure. Next, we elaborate on the issue of how to assign
ratings to non-rated items, which is required by the proposed similarity measure.
Finally, we describe the development of a baseline algorithm.

4.1 The UNION similarity measures

According to the definition of sets S and T given in Equations 1 and 2, only the
items that are co-rated by both users are considered. For instance, Figure 1a
depicts the ratings of two users, U1 and U2, over five items (dash denotes an
unrated item). When only co-rated items are considered, then the similarity
between U1 and U2 will be computed based on the ratings for I1 and I3.

I1 I2 I3 I4 I5

U1 3 - 5 4 - 

U2 4 2 4 - - 

(a)
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(b)

Fig. 1. Example of: (a) the ratings of two users over five items, (b) a test user compared
against two past users.

In case of sparse data, we have a very small amount of provided ratings to
compute the similarity measure. By additionally constraining S and T with co-
rated items only, we reduce further the effective amount of used information. To
avoid this, we consider alternative definitions for S and T , given in Equation 3:

S = Iu ∪ Iv, T = Ui ∪ Uj (3)

According to Equation 3, S includes items rated by at least one of the users.
In the example of Figure 1a, except the ratings for I1 and I3, the ratings for
I2 and I4 will be considered too (the issue of how to treat items rated by only
one user, will be discussed in the following). Similar reasoning is followed for the
set T , in the case of IB CF. By combining the definitions of S and T given in
Equation 3 with the Pearson correlation and adjusted cosine similarity measures,
we get two reformed measures: UNION Pearson correlation (for UB) and UNION
adjusted cosine (for IB), respectively.4 Notice that in case of UNION Pearson
correlation, user mean ratings correspond to the average user ratings over all
rated items. To further understand why should not base similarity only on co-
rated items, consider the following example.

Example Figure 1b depicts the items rated positively (i.e., higher than Pτ )
by a test user Utest and two users, U1 and U2, belonging in the training set.
Utest and U1 have co-rated items I1 and I2. Assume that Utest and U1 rated I1

4 Henceforth, when it is clearly understood from the context whether we discuss about
UB or IB, we use only the name UNION.
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with 5 in the 1–5 scale, whereas I2 have been rated by both of them with 4.
Nevertheless, items I3 – I9 are rated only by Utest or U1, and not by both. In
this case, the Pearson measure of Equation 1, which is based on co-rated items
only, results to the maximum possible similarity value (i.e., equal to 1) between
Utest and U1. However, this is based only on the 2 co-rated items and ignores the
7 items that are rated only by one of them. On the other hand, assume that U2

rated I1 and I2 with 5 and 4, respectively. As previously, the Pearson measure
of Equation 1 results to the maximum possible similarity between Utest and U2,
whereas Utest and U2 differ in 3 items rated by only one of them. This example
reflects the impotence of Equation 1 to capture the actual notion of similarity:
despite the fact that Utest and U1 differ at 7 items (which are rated by only one
of them) and Utest and U1 differ at 3, it assigns the same similarity value in both
cases. ¤

In the previous example, if we designate U1 as neighbor of Utest, we ignore
two issues: (i) Items I3 and I4, will not be recommended to Utest by U1, as U1 has
not rated them; this fact harms recall. (ii) Items I5 – I9 will be recommended
by U1, but as they have not been rated by Utest, this will harm precision. It
follows that a desirable property from a similarity measure is to maximize the
number, x, of items that are co-rated by the test user and each of his neighbors,
relatively to the number, y, of items that are rated only by one of them (in the
example of Figure 1b, for Utest and U1, x = 2 and y = 7). In the best case, the
ratio x/(x + y) has value equal to 1 and in the worst 0.

To evaluate the previously described argument, we compared Pearson corre-
lation against UNION UB by performing the following measurement. We used
the MovieLens 100K data set and for each test user we computed its k nearest
neighbors (k was set to 10) from the training set. Next, we measured x and y
between each test user and each of his k neighbors. Figure 2a illustrates for each
x, the resulting ratio x/(x+ y). Figure 2a clearly presents that Pearson measure
results to significantly lower ratios than UNION UB. This explains why UNION
UB compares favorably to Pearson correlation in terms of precision and recall,
as will be presented experimentally in Section 5. (Due to lack of space we do not
present the analogous comparison between adjusted cosine and UNION IB.)
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Fig. 2. (a) Measuring the ratio x/(x + y). (b) Impact of assigned value for unrated
items.
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4.2 Assigning a value to unrated items

To calculate the UNION Pearson correlation between two users U1 and U2, we
have to assign a rating by U1 to an item that is rated only by U2 (e.g., I2

in the example of Figure 1a) and vice-versa. The same requirement holds for
the UNION adjusted cosine measure in the IB case. Notice that this problem
cannot be effectively solved with existing techniques for filling missing values,
because the sparsity of user-item matrices severely hinders this task (more than
99.9% missing values). For this reason we assign the same rating value to all the
required cases. There could be several options for this value. For instance, in a
1–5 scale, we can assign the 0 value, to reflect that user is not interested at all
to rate the item. Assuming that user u did not rate item i, another option is
to assign the average value of the provided ratings on other items by u, or the
average of the provided ratings on i by all users.

To examine the impact of the selected value, we measured F1 versus the
assigned value, which is depicted in Figure 2b for the MovieLens 100K data
set (it uses 1–5 scale). The dashed line in Figure 2b corresponds to F1 of the
Pearson correlation (it is independent from the assigned value). As shown, values
between the positive threshold (in this case Pτ was set to 3) and the maximum
rating of the scale, result to reduced F1 (notice that this range also includes the
user average rating value). The reason is that these values impinge the ability
to distinguish the assigned values from the actual positive ratings. However,
when we assign values smaller than Pτ or outside the rating scale, F1 is not
affected. The reason is that with such assigned values we do not miss the ability
to distinguish the assigned values from the actual positive ratings (as the latter
are always within the provided scale). Thus, we conclude that UNION is not
significantly affected by the selection for the assigned ratings, as all values outside
the rating scale or below Pτ result to about the same F1. Even more, the values
between Pτ and the upper limit of the scale result to significantly higher F1 than
Pearson measure. Henceforth, we assume that the assigned value is equal to 0.

4.3 Baseline algorithm

Considering the factors described in Section 3 regarding the evaluation proce-
dure, we detail a baseline algorithm. We propose the one that recommends the
N items that are most frequently rated positively in the entire training set.
This algorithm is denoted as BL. BL is very simple and, as will be shown in
our experimental results, it is quite effective. For instance, our experiments with
Movielens-100K data set have shown that, with BL, when we simply propose the
N = 20 most positively rated movies (20 most popular movies), precision reaches
40%. Therefore, the most frequently rated items are very probable to be selected
by the majority of the users. For the aforementioned reasons, BL is a tool to
clearly evaluate the actual improvement of existing CF algorithms. We will see
in our experiments that asymptotically, as k (neighborhood size) increases, the
performance of Pearson correlation and adjusted cosine tend to become equal
with that of BL. In the extreme case where k is equal to the number of all
users in the training set, the result of the Most-Frequent item-recommendation
procedure, for the generation of the top-N list, becomes equivalent to BL.
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5 Performance study

In the sequel, we study the performance of the proposed approach against Pear-
son correlation and adjusted cosine. Both the UB and IB cases are examined.
Regarding the parameters, the following default values are assumed: for the
neighborhood size the default k value is 10, for the recommendation list the
default N value is 20, and for the size of training set the default value is 75%.
Regarding WS, the γ value was set to 5. Evaluation is performed with the preci-
sion and recall metrics (given as percentages). We also use F1 metric and MAE.

We perform experiments with three real data sets that have been used as
benchmarks in prior work. In particular, we examined two MovieLens data sets:
(i) the first one with 100,000 ratings assigned by 943 users on 1,682 movies, and
(ii) the second one with about 1 million ratings for 3,592 movies by 6,040 users.
The range of ratings is between 1(bad)-5(excellent) of the numerical scale. More-
over, we ran our experiments on the Jester data set, which contains 4.1 million
ratings of 100 jokes from 73,496 users. Due to lack of space, we present results
only for the first MovieLens and the Jester data sets, because they correspond
to a sparse and a dense data set, respectively. The performance of the former
has been verified with the results of the 1M real data set. Finally, in all data
sets, we normalized the rating scale in the range 1–5, whereas Pτ is set to 3.

5.1 Results for user-based CF

First, we examine the UB CF case and compare the existing Pearson similarity
and WS measures against UNION. We also include the baseline (BL) algorithm.
The results for precision and recall vs. k are displayed in Figure 3a and b,
respectively.
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Fig. 3. Performance of user-based CF vs. k: (a) precision, (b) recall.

As shown, the existing Pearson measure, which is based on co-rated items,
performs worst than BL. This result is surprising, as BL is very simple. WS im-
proves Pearson, because the disadvantage of Pearson, due to co-rated items, is
downsized by the weighting with the number of common items. UNION clearly
outperforms all other measures for the reason that have been described in Sec-
tion 4. Outside the examined k range (not displayed), Pearson stabilizes and
never exceeds BL. As we already described, with increasing k, Pearson measure
practically becomes equivalent to BL.
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We now examine the MAE metric. Results are illustrated in Figure 4a (BL is
only for recommendation, not prediction, thus omitted). As expected, Pearson
yields the lowest MAE values, whereas WS is second best. This fact supports
our explanation that MAE is indicative only for the evaluation of prediction and
not of recommendation, as these measures did not attain the best performance
in terms of precision and recall.
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Fig. 4. Performance of user-based CF vs. k: (a) MAE, (b) F1 for dense data.

To consider the impact of density, we also examine the Jester data set. The
results for the F1 metric are depicted in Figure 4b. In this case, the relative
differences are smaller than for the case of sparse data. The reason is that dense
data have a sufficient amount of information, thus there is less need to exploit
information in the way UNION does. Nevertheless, UNION still presents the
best performance.

5.2 Results for item-based CF

We perform similar measurements for the case of IB CF. Thus, we first examine
the precision and recall for the adjusted cosine (considers co-rated items) against
UNION. The results are depicted in Figure 5 and are analogous to those of
the UB case. UNION clearly outperforms adjusted cosine and WS. Again, it is
surprising to find that the adjusted cosine looses out by BL.
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Fig. 5. Performance of item-based CF vs. k: (a) precision, (b) recall.
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Next, we compare adjusted cosine, UNION, and WS against MAE. The re-
sults are illustrated in Figure 6a. Differently to UB, all measures have similar
MAE, and for larger k values they converge to the optimum MAE. Adjusted
cosine does not present better MAE, because in its denominator it considers
all items and not just the co-rated ones (see Equation 2). This improves its
performance for the task of recommendation and worsens the performance of
prediction.5
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Fig. 6. Performance of item-based CF vs. k: (a) MAE, (b) F1 for dense data.

Regarding the examination of the dense data set (Jester), the results for
the F1 metric are illustrated in Figure 6b. Since IB CF has been designed to
suit the needs of sparse data, we find out that for dense data all item-based
algorithms are outperformed by BL. This is the case even for UNION, although
it performs better than adjusted cosine. This result clarifies the need to examine
CF algorithms for all the involved factors, in this case the amount of sparsity,
in order to draw more complete conclusions.

5.3 Comparative results

In this section, we compare UNION for the UB and IB cases, as the correspond-
ing UNION measures were shown to have the best performance in each case
separately. The results for precision are depicted in Figure 7a, whereas those for
recall are depicted in Figure 7b.

These results demonstrate that UB CF compares favorably against IB CF
when UNION is used. The difference in precision is larger than 10%, whereas
with respect to recall, it exceeds 5% (we refer to the optimum values resulting
from the tuning of k). This conclusion contrasts the existing one, that IB is more
preferable than UB, for the case of sparse data. The reason is that UB CF is
more focused towards the preferences of the target user. In contrast, with IB CF,
the recommended items may have been found similar by transactions of users
with much different preferences than the ones of the target user. Thus, they may
not directly reflect the preferences of the latter. However, this property could
not be revealed with the existing similarity measures and evaluation procedures.

5
We have examined a variation of adjusted cosine that uses only the co-rated items in the denom-
inator. As expected, it resulted to worse precision and recall, but to better MAE.
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Fig. 7. Comparison between UB and IB: (a) precision, (b) recall.

The previous conclusion is in accordance with the one resulting from the
comparison for the dense data set (Jester). Due to lack of space we do not
present a graph for this case. However, from Figure 4b and Figure 6b it is easy
to see that UB performs much better than IB when UNION is used, as the
former is better than BL and the latter is worse.

6 Conclusions

In this paper, we performed a thorough study of neighborhood-based CF, which
brought out several factors that have not been examined carefully in the past.
We proposed a novel approach (UNION) for measuring similarity in nearest-
neighbor CF applications. UNION successfully exploits more information in case
of sparse data and considers how much the ratings of two users differ in order to
provide accurate recommendations. We carried out extensive experimentation
which reforms several existing beliefs and provides new insights. In particular,
we highlight the following conclusions from our examination:

– In contrast to what is reported in majority of related work, MAE is not
indicative for the accuracy of the recommendation process. It is, though,
useful to characterize the quality of the similarity measure (as reflected in
the process of prediction).

– Constraining similarity measures with co-rated items, weaknesses the mea-
sure. Though it is somewhat useful to consider the number of co-rated items
(as WS does), the strict constraining inside the formulae for similarity mea-
sures is not suitable.

– The proposed approach, which does not use co-rated items only, substantially
improves the performance of CF in terms of precision and recall, especially
for sparse data. This conclusion was also explained through the measurement
of ratio x/(x + y) in Section 4. This measurement demonstrated the need to
minimize the number, y, of items that are rated only by one of the users, a
fact that is attained by UNION and not by existing similarity measures.

– Our results showed that, user-based compares favorably to item-based CF,
and that item-based CF is not appropriate for dense data.
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– Finally, the proposed baseline (BL) algorithm can better characterize the
performance of existing CF algorithms. Its comparison against widely-accepted
algorithms has produced surprising results.

We have to notice that item-based algorithms employ off-line computation,
which is an advantage over user-based algorithms in terms of execution time.
For this reason, in our future work we will consider the issue of scalability and
compare the two approaches for this factor as well. Moreover, we will examine
new algorithms for the generation of the top-N recommendation list.
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