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Abstract. Content personalization is identified as a key technology for enabling 

ubiquitous access to social media. Recommender systems implement media 

personalization, by suggesting relevant content and helping users in addressing 

the “information overload” problem. In this paper, our aim is to improve per-

sonalization by increasing the accuracy of recommendations. We propose a 

novel method, called Content Relationships Matrix Factorization (CRMF), 

which exploits additional information in the form of content relationships that 

express relevance between items. We model content relationships based on af-

finity graphs and use them in the context of matrix-factorization, which are cur-

rently the state-of-the-art prediction models for recommender systems. In our 

experimental evaluation with a real data set, we demonstrate the accuracy im-

provement of CRMF compared to matrix factorization models that do not take 

into account content relationships. Our experimental results show that CRMF 

compares favorably to the baseline method, demonstrating the usefulness of 

considering content relationships. 

Keywords: Media; Personalization; Recommender Systems; Matrix Factoriza-

tion; Content. 

1 Introduction 

Recent reports about trends in consumer-technology markets indicate that users, ubiq-

uitously connected to social networks, place an ever increasing quantity of media 

online, thus, posing a challenge to traditional brand relationships and business mod-

els.1 What is, therefore, required to address this challenge, is the development of ser-

vices that will offer personalized access to content. 

                                                           
1 Gartner, April 2012 (http://www.gartner.com/it/page.jsp?id=1984415) 
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Recommender systems, which suggest to users relevant content, are the key-

technology for media personalization. Recommender systems traditionally develop 

models based on machine learning and statistics for predicting items suited to the 

personal preferences of users [1,12]. Such models learn users' preferences through 

either implicit feedback, such as click rates or time spent (e.g., track listening, video 

watching); or explicit feedback, such as ratings (e.g., in a 1-5 star scale). 

The interest of researchers in recommender systems for media applications has in-

creased rapidly in the previous years, mainly due to the Netflix Prize2, an open com-

petition for the best recommender system to predict user ratings for films, based on 

previous ratings, without providing any additional information about the users or 

films. Netflix Prize has clearly demonstrated the superiority of latent-factor models, 

especially matrix factorization [7], compared to classic collaborative-filtering tech-

niques. Nevertheless, the problem of sparsity is still a major obstacle in the case of 

recommender systems for media, due to the appearance of power laws in users’ pref-

erence data; i.e., a larger portion of the preferences data is available only for a very 

small percentage of users and items. 

In this paper, we propose a novel way to address the aforementioned challenge by 

exploiting content relationships that express relevance between items (such items can 

have various media formats).Thus, in contrast to traditional recommender systems, 

our method takes into account not only data about preference of users to items, but 

additionally considers the relationships between items themselves; see Fig. 1.Content 

relationships provide an additional source of information that can be exploited to 

develop more accurate prediction models so as to improve recommendation. 

 

 

 

 

 

 

 

 

 

Fig. 1.User preferences and content relationships. 

 

Our approach models content relationships in the form of an affinity graph between 

items, with higher the affinity between two items the more strong their relationship. 

Nowadays, Web 2.0 content providers offer information about content relationships, 

and thus, enable the development of such affinity graphs. For instance, last.fm Web 

Services3discloses information related to the artists, geography, usage (playlists, pop-

ularity), or social tags [9]. As another example, Flickr4provides information about 

                                                           
2http://www.netflixprize.com/ 
3http://www.lastfm.de/api 
4http://www.flickr.com/services/api/ 
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relationships between collections pertaining to photographs, user comments and tags, 

as well as annotations about geo-location. In our study, we propose to utilize infor-

mation offered by Web 2.0 content providers in order to develop affinity graphs used 

in the context of matrix-factorization, which constitute the state-of-the-art prediction 

models for recommender systems. Based on the premise that items with a strong rela-

tionship should be also related in the latent-factor space that matrix factorization cre-

ates, our proposed method is able to define an effective way of interaction between 

items during the learning process of matrix factorization, by updating the positions of 

items in the latent-factor space according to the position of their related items from 

the affinity graph. This approach is especially beneficial for items in the “long-tail” of 

power laws (i.e., items with sparse feedback data), because information from items 

with abundant feedback propagates to them. Our contributions are summarized as 

follows: 

 We propose a novel and general approach to model content relationships be-

tween items through an affinity graph. 

 We exploit affinity graphs to allow matrix-factorization models to propagate 

information between items during the learning process. 

 We conduct experimental results with real data from the Million Song dataset 

and last.fm, which indicate the superiority of the proposed approach com-

pared to the state-of-the-art matrix factorization method that does not utilize 

content relationships. 

The rest of this paper is organized as follows. Section 2 describes the related work. 

In Section 3 we present the proposed method. Experimental results are presented in 

Section 4. Finally, Section 5 concludes this paper. 

2 Related Work 

2.1 Collaborative Filtering (CF) 

Collaborative Filtering (CF) systems [14] generate predictions based on preference 

data (e.g., ratings) of similar users. CF has attracted a lot of interest and researches 

have been improving its performance continually. Users of CF systems receive rec-

ommendations mainly based on memory-based (a.k.a., nearest-neighbor) algorithms, 

which can be either user-based or item-based. 

User-based CF first finds for users a rating pattern similar to the one of the active 

user, and then uses the ratings of these users to perform the predictions about the rat-

ings of the active user for specific items, by calculating the weighted average of the 

ratings of similar users for the same item. In contrast, item-based CF generates predic-

tions by first detecting asset of similar items. CF, due to its simplicity and efficacy, 

has attracted popularity in e-commerce applications. For example, Amazon’s recom-

mendation system has been reported to use item-based CF [8]. 
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2.2 Content-based (CB) Recommender Systems 

Content-based (CB) recommender systems [11] typically perform predictions by uti-

lizing content features of items. In particular, based on content features, similarity 

functions can detect the most related items, following the assumption that items that 

are similar in content will be rated similarly. The main advantage of CB recommender 

systems is that their performance is not based on the existence of preference data, and 

thus they are suitable in the case of the so called “cold-start” problem. However, pure 

CB recommender systems ignore information about user preferences, in case it is 

available, which can lead to overspecialization and low level of personalization. 

CB recommender systems are used in several real-world applications. Pandora Ra-

dio is a popular example that recommends music with similar characteristics to that of 

a song provided by the user as an initial seed. 

2.3 Hybrid Recommender Systems (HS) 

As mentioned previously, CF and CB recommender systems have advantages and 

disadvantages. The important difference between them is that CF systems are based 

mainly on preference data, whereas CB systems are based on the content of items. For 

this reason, recent research has focused on the combination of CF and CB, which led 

to the so called hybrid recommender systems [4]. A prominent hybrid method is the 

Content-Boosted Collaborative Filtering (CBCF) [10], which learns a content-based 

model over the training data to generate ratings for unrated items. This process results 

in a dense rating matrix, because of the predictions made for all empty places in the 

original rating matrix (i.e., cells without any given rating). The derived matrix is then 

used by a CF recommender system. 

2.4 Model-based Recommender Systems (MB) 

Model-based recommender systems differ from the previously mentioned categories, 

because they develop a prediction model based on patterns detected in training data. 

Several techniques have been used for this purpose, such as Bayesian networks, clus-

tering models, probabilistic latent semantic analysis, etc. [15]. 

Matrix factorization is technique that has demonstrated its ability to build accurate 

prediction models for model-based recommender systems [7]. Matrix factorization 

generates recommendations based on latent features that determine users’ preferences. 

A state-of-the-art matrix factorization method is called Probabilistic Matrix Factoriza-

tion (PMF) [13].  

2.5 Comparison of Approaches and Motivation 

Table 1 provides a comparison of the presented approaches in recommender systems, 

by summarizing their advantages and disadvantages. It also reports (last column) 

whether the approaches take into account content relationships. 
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Table 1. Comparison of approaches in recommender systems. 

Approach 

Comparison Content 

Relation-

ships 
Advantages Disadvantages 

CF explainability of results, easy to 

implement; fast execution 

accuracy decreases with 

sparsity and cold-start 
no 

CB addresses cold-start not high accuracy partially 

HS improved accuracy compared to CF 

and CB 

high complexity and 

expensive to implement 
partially 

MB handles sparsity; best reported 

accuracy 

expensive model building 
no 

 

As a main conclusion from Table 1, model-based (MB) approaches present the best 

accuracy of recommendations compared to the rest approaches (CF, CB, and HS). 

Recent advances in the field of recommender system have demonstrated the superiori-

ty of model-based approaches, which are nowadays considered as state-of-the-art 

methods [7]. For this reason, in contrast to CF, CB, and HS approaches, our proposed 

method is model-based. 

However, existing MB approaches, in contrast to CB and HS approaches, do not 

take into account content relationships. This fact forms the motivation behind our 

study. Our proposed method opts for combining the superior accuracy of state-of-the-

art model-based approaches with the ability of CB and HS approaches to take into 

account content relationships. 

Additionally, compared to CB and HS, our proposed method opts for generalizing 

content relationships, which are only partially considered by CB and HS, because 

they are based solely on the similarity between items. Our proposed method uses the 

concept of affinity graphs to model potentially more general relationships. Moreover, 

compared to CB, our proposed method does not use only relationships between items, 

since it considers preference data, too. Finally, compared to HS, our proposed method 

combines content relationships and preference data, but this is performed in a princi-

pled, model-based way, and thus it does not make arbitrary combinations of CF and 

CB, in contrast to most of the variations of hybrid techniques. 

Recently, Jamali and Ester [5] proposed an extension to PMF, which takes into ac-

count social relationships between users. Our proposed method shares with this work 

the principle of considering relationships between users or items, but is complemen-

tary to [5], because it considers relationships between items instead of users. Moreo-

ver, our proposed method considers affinity graphs with varying degrees. 

3 Content Relationships Matrix Factorization 

In this section we describe our proposed method, denoted as Content Relationships 

Matrix Factorization (CRMF). We first describe the problem definition and notation, 
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then we provide the necessary background information about generic matrix factori-

zation models, and finally we explain how CRMF extends matrix factorization 

through the use of affinity graphs that represent content relationships. 

3.1 Problem Definition 

Assume that UD is a domain of N users and ID  is a domain of M items. As described 

in Section 1, users can express their preference to items either implicitly or explicitly. 

In this paper, we focus on explicit information in the form of an  N M rating matrix 

,u iR R    , where each element ,u iR  denotes the rating of the u-th user of UD  on the 

i-th item of ID . If such rating is not available, then element ,u iR  is assumed to be 

unknown (i.e., null). Matrix R is usually very sparse, since most of its elements are 

expected to be missing. 

An affinity graph is represented with an  M M matrix ,i jA A    , which ex-

presses the content relationships between items. Each element ,i jA  is set to one, if the 

i-th item of   ID is related to the j-th item of   ID ; otherwise is set to zero. Matrix A can 

be in general non-symmetric, but in our experimental study we will use a symmetric 

one. 

The recommendation problem that we study is described in technical terms as fol-

lows: Given a matrix R  with existing ratings of users from domain  UD on items from 

domain ID , as well as an affinity matrix A, the goal is to predict the rating ,u iR , in 

case ,u iR  is unknown. Our aim is to improve the accuracy of predicted ratings. 

3.2 Matrix Factorization Models 

Matrix factorization techniques create a latent-feature D-dimensional space in which 

they represent each user and item. Let D NU R  be a D N  matrix whose u-th col-

umn vector, denoted as uU , represents the coordinates of the u-th user of domain UD  

in this D-dimensional space.5Similarly, let D MV R  be a D M  matrix whose i-th 

column vector, denoted as iV , represents the coordinates of the i-th item of domain 

ID  in the same D-dimensional space. 

Using a N M  rating matrix R  as training data, matrix factorization techniques 

learn (i.e., compute the elements of) matrices U and V so that they can approximate 

matrix R  with matrix R


 such that: 

TR R U V


      (1) 

                                                           
5 R denotes the set of real numbers. 
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Having learned matrices U and V, and computed matrix R


 based on Equation 1, each 

element ,u iR


 comprises the prediction for the rating of the corresponding u-th user of 

 UD on the corresponding i-th item of ID . 

The process of learning matrices U and V can be expressed in a probabilistic 

framework developed by Salakhutdinov and Mnih [13]. According to this framework, 

the likelihood of observing a specific set of ratings represented with a given rating 

matrix R , can be expressed as: 

   
1 ( , )

2 2
,

1 1

  | , ;   | ; 
R u iN M

T
R u i u i R

u i

p R U V R U V 
 

  
 

     (2) 

where 2  ( , )   denotes the normal distribution with mean   and variance 2 ; and 

1 ( , )R u i  denotes the indicator function with value 1 when element ,u iR  is known (i.e., 

not null), or 0 otherwise. More precisely, Equation 2 makes the premise that each 

known rating, represented with the element ,u iR , is an independent and identically 

distributed (iid) random variable that follows a normal distribution whose mean value 

is equal to the element ,
T

u i u iR U V


   (see Equation 1) and whose variance 2
R  is treat-

ed as a hyper-parameter6. 

Based on Bayes theorem, from the likelihood function of Equation 2 we can obtain 

the posterior probability of U and V: 

 
   

 

   

1 ,
2 2 2 2

,
1 1

2 2

1 1

, | ; ,  , | ;

|0;    |0;

R u iN M
T

R U V u i u i R
u i

N M

u U i V
u i

p U V R R U V

U I V I

   

 

 

 

   
 

     
   



 

  (3) 

where Equation 3 makes the premise that the coordinates uU of each user u, as well as 

the coordinates iV of each item i in the D-dimensional latent space, are also iid ran-

dom variables following normal distribution with zero mean and variances 2  U  and 

2
V , respectively (both variances are treated as hyper-parameters). 

In this section we presented the representation of the original rating matrix R  by 

an approximation matrix R


 that is a product of matrices U and V. Matrix R


 is not 

sparse and its elements give the predicted ratings. To compute R


 we have to find 

those U and V matrices that maximize the probability of observing the given ratings in 

matrix R , i.e., we pose the computation of U and V as a problem of maximizing the 

posterior probability in Equation  3. The procedure for this maximization is explained 

in the following. 

                                                           
6 A hyper-parameter is a parameter that is not automatically tuned by the learning algorithm 

and, thus, left to be tuned “manually” using a cross-validated grid search. 
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3.3 Exploiting Content Relationships 

The proposed method, denoted as Content Relationships Matrix Factorization 

(CRMF), extends the matrix factorization models presented in Section 3.2. CRMF 

exploits an affinity graph, A, between items, as they it has been defined in 

Section 3.1. 

Dependence on Affinity Graph. Given an affinity graph, A, CRMF has the following 

principle: Consider the i-th and the j-th item of domain ID . Let iV  and jV  denote the 

coordinate vectors of the i-th and the j-th item, respectively, in the D-dimensional 

latent-feature space. If the i-th item is related to the j-th item, i.e., ,i jA =1, then the 

learning process of matrix factorization should compute iV  by taking into account   jV . 

This should hold for all items related to the i-th item through the affinity graph A. 

Equation 4 expresses this dependency of matrix V on the affinity graph A: 

 2 2 2 2  | ; , ( | ; ) ( | )V A A Vp V T p V T p V                          (4) 

The second factor  2|  Vp V  in Equation 4 is the prior probability of V, for which 

we make the same assumption as in Equation 3, i.e., that V is an iid random variable 

following normal distribution with zero mean and variances 2
V . The first factor 

2( | ; )Ap V T   expresses the dependence of V on A. We make the same assumption for 

normal distribution, thus: 

  2 2
,

1 ( )

  | ; | ;  
M

A i i j j A
i j N i

p V T V A V I 
 

  
   

   
    (5) 

where N(i) denotes the neighborhood of the i-th item, i.e., all items j for which 

, 1i jA  . More specifically, Equation 5 assumes that the coordinate vector of the i-th 

item, denoted as iV , follows normal distribution with mean equal to the average of 

the coordinates of the items that belong to its neighborhood N(i). 

Based on Equation 5, we reformulate the posterior probability of U and V (see 

Equation 3) as follows: 

   
 

 

 
 

1 ,
2 2 2 2 2 2

,
1 1 1

2 2
,

1 1

, | ; ,  , , | ; |0;   

| ; |0;

R u iN M N
T

R U V A u i u i R u U
u i u

M M

i i j j A i V
i j N i i

p U V R R U V U I

V A V I V I

     

 

  

  

       
   

  
    

      

 

  

  (6) 

Objective Function and Gradient Descent. Equation 6 provides the basis for learn-

ing U and V by exploiting the existence of the affinity graph A. The learning proce-

dure is performed by finding those U and V variables that maximize the posterior 

probability of Equation 6. Since the natural logarithm function 
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  2 2 2 2ln , | ; ,  , ,R U V Ap U V R      is monotonically increasing, we proceed by minimiz-

ing its arithmetic-negation function     2 2 2 2  , ln , | ; ,  , ,R U V AL U V p U V R       in-

stead of maximizing directly Equation 6. This gives the following objective function 

 ,L U V  for which we seek the values of variables U and V that minimize it7: 

   
2

,
1 1 1 1

, ,
1 ( ) ( )

1
, 1 ( , )

2 2 2

2

N M N M
T T TU v

R u i u i u u i i
u i u u

T
M

A
i i j j i i j j

i j N i j N i

L U V u i R U V U U V V

V A V V A V

 



   

  

    

    
     
     

  

  

  (7) 

where   ,  , U V A    are the regularization hyper-parameters that are equal to 

2 2 2 2 2 2
,  ,  , / / /R U R V R A       respectively, which help in avoiding model overfitting. 

To minimize  ,L U V , which is a convex function, we can use the gradient de-

scent on uL U  and iL V  for each coordinate pair uU  and iV , and repeatedly up-

date their values. In each repetition, called epoch, updating is performed according to 

the following rules: 

                       u u
u

L
U U

U



                      i i
i

L
V V

V



                                      (8) 

where   is the learning rate, which controls the speed of convergence. 

In summary, this section presents a way to take into account the information in the 

affinity matrix A, by relating with Equation 5 the latent features of each item, given in 

matrix V, with the latent features of all its related items, given in matrix A. This al-

lows to extend the problem of finding the matrices U and V that maximize Equation 

3, by additionally incorporating in Equation 6 the connections between related items 

are given through Equation 5. Finally, by equivalently restating the problem as mini-

mization in Equation 7, we presented its solution based on the gradient descent meth-

od, a fast and effective way to solve optimization problems. These characteristics of 

the gradient descend method are suitable in the examined case due to the large size of 

the data. The performance of the aforementioned procedure is examined experimen-

tally in the next section. 

4 Experimental Evaluation 

In this section, we present the experimental evaluation of the proposed method 

(CRMF) based on a real dataset. We consider as baseline the state-of-the-art PMF 

matrix factorization of [13], which does not utilize any content relationships. This 

way, we can demonstrate the superiority of CRMF against PMF due to the utilization 

                                                           
7 Please note that in  ,L U V  we keep only the terms that depend on the variables U and V. 
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of content relationships. In the rest of this section, we first describe in Section 4.1 the 

formation of the real data set, in Section 4.2 we explain the experimental set up, 

whereas Section 4.3 gives the experimental results. Finally, in Section 4.4 we present 

the discussion of these results. 

4.1 Data Set 

Experimental evaluation of the proposed method was performed based on the Million 

Song dataset8 and last.fm. To the best of our knowledge, this is the only publicly 

available dataset containing observations expressed through users’ preferences, along 

with information about relationships between items. In our future work, we intend to 

examine cases with different types of content, when such data sets become publically 

available. 

The items in the examined case are songs of various genres and their relationships 

are expressed through similarities provided by last.fm. For each user, the data set 

contains the number of playcounts, which denotes the number of times the user has 

listened to a song, where the case of zero playcount is not explicitly provided and 

represents missing preference (corresponding to null, as described in Section 3.1). 

In our experiments, playcounts are considered as a measure of preference of users 

to songs, since the more times a user listens to a song, the more it is assumed that the 

user prefers this song. To clean noise from this data set, we filtered out as spurious 

observations with playcounts lower than 2 and greater than 15, since the former can 

happen unintentionally and the latter are outliers of the dataset, comprising 2.25% of 

the total observed ratings, which may have resulted by automatic crawlers. This filter-

ing process resulted into 11,190,628 playcounts for 892,237 users and 296,604 songs. 

In addition, to map the playcounts into a 5-stars rating scale, which is popular in e-

commerce sites, we performed equal-frequency binning of playcounts, using 5 bins as 

presented in Table 2. Bins in this case correspond to stars, e.g., playcounts that belong 

to the second bin corresponds to 2 stars. 

Table 2. Equal-frequency binning of playcounts into 5 bins/stars 

Bin/Stars Playcounts Num. of observed ratings Percentage 

1  =3 3,214,271 28.72% 

2  =4 1,805,081 16.13% 

3  =5 2,250,999 20.12% 

4  =6 1,680,384 15.02% 

5  ≥7 2,239,893 20.02%  

 

Finally, we focused on the more dense part of the dataset, in order to examine the 

collaborative effects between users. Thus, we applied the commonly used technique 

                                                           
8 Retrieved from http://labrosa.ee.columbia.edu/millionsong/ 
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of p-core filtering [2]. The p-core of level p has the property, that each user and song 

has/occurs in at least p observations (in our experiments we set p to be 0.001% of the 

total number of playcounts). 

The distributions of users and songs in the evaluation dataset are illustrated in 

Fig.2(a) and (b), respectively. In Fig.2(a) we notice that only few users (below 0.05%) 

have many observed ratings; moreover Fig.2(b) shows that the number of observed 

ratings of the majority of songs is rather low. Therefore, the problem of cold-start for 

users and songs appears in the examined dataset, as also appears in real-world rec-

ommender systems. As we experimentally show, this impacts negatively the perfor-

mance of the state-of-the-art PFM method [13], which does not consider content rela-

tionships. 

 

    

(a)                                                                         (b) 

Fig. 2.Distribution of users (a) and songs (b) in the evaluation dataset. 

For each song s, up to k related songs (called neighbors of s) are provided by 

last.fm as those songs that are more similar to s (last.fm determines similarity between 

songs based on user listening criteria). In our experiments, we set k equal to 5. How-

ever, for each song s, the actual number of related songs (denoted as neighborhood 

degree) varies, as depicted in Fig.3, which indicates that the majority of songs has 

neighborhood degree lower than 4. 

 
Fig. 3.Neighborhood degree distribution (the vertical axis is in the range [0, 1]). 
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4.2 Experiment Setup 

To measure performance, we split the data set as follows: 50% of data are used each 

time as the training set and the remaining 50% as the test data. Our reported results 

are the averages out of 5 executions with different 50%-50% splits. In our experiment 

we use the evaluation metric of Root Mean Squared Error (RMSE), defined as: 

2
, ,( , )|

ˆ( )
test u s u su s R

test

r r
RMSE

R





 

where Rtest is the set of all pairs (u,s) in the test data.  

In all our experiments, we set hyper-parameters   1U V   , since we found that 

for these settings the lowest RMSE for the PMF and CRMF methods are achieved. 

We tuned hyper-parameters A  based on grid searching over the training set. 

4.3 Experiment Results 

First, we evaluate the convergence of PMF and CRMF in terms of RMSE as function 

of the number of epochs. Fig. 4 presents the results, where D=20 was the number of 

dimensions of the latent-feature space. CRMF has lower RMSE than the original 

PMF. The improved accuracy of CRMF can be explained by the positive effect of the 

content relationships that bring additional information about items with fewer ratings, 

a problem which appears in our evaluation dataset, as presented in Section 4.1. 

Additionally, CRMF converges after a smaller number of epochs (in this case, in 

40 epochs) compared to PMF (in this case, at least 80 epochs are required). This 

means that CRMF requires less run time for building the prediction model. 

 

Fig. 4.RMSE of CRMF and PMF for D=20 dimensions of the latent feature vectors, by varying 

the number of epochs. 

Next, in Fig. 5 we compare CRMF with PMF in terms of RMSE, by varying the 

dimensionality D of the latent-feature space. We can observe that CRMF has lower 
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RMSE than PMF for all different number of examined dimensions. By considering 

the high impact of the dimensionality of the latent-feature space on the model com-

plexity, as described in [13], the lower D value for the proposed method results into 

lower computational complexity compared to the original PMF method. 

 

Fig. 5.RMSE of PMF and CRMF by varying dimensionality of the latent feature vectors (D). 

4.4 Discussion 

Assessment of experimental results. Our experimental results showed that CRMF 

compares favorably to PMF in terms of achieving a lower RMSE. Based on the com-

parison of approaches in Section 2.4, PMF is a state-of-the-art model-based method, 

which has been demonstrated to be more accurate (i.e., offering lower RMSE) than 

the rest approaches. Therefore, CRMF provides a clear advancement of the state-of-

the-art. The source of this advancement by CRMF, in comparison to PMF, is the ex-

tension of the optimization problem considered by PFM (see Equation 3) in order to 

take into account content relationships that are described in Section 3.3 (see Equation 

5). The reason that content relationships provide an improvement is the fact that they 

comprise an additional source of information that is exploited to overcome the prob-

lem of sparsity which incurs in ratings data. Since sparsity exists in all real-world 

recommender systems, our results demonstrate that exploiting additional sources of 

information, such as the content relationships, can be beneficial. 

Application in real-world recommender systems. The presented experimental 

results demonstrate the suitability of the proposed CRMF method for a wide range of 

real-world applications, including media personalization for mobile devices (e.g., 

formation of playlists), home entertainment (e.g., suggestions about movies or music), 

or e-commerce involving media (e.g., sales of DVDs), as well as other types of goods 

when relationships can be determined between them. CRMF can be easily integrated 

in existing recommender systems for the aforementioned applications, as it does not 

add significant complexity in terms of its implementation and due to its run-time per-

formance, compared to state-of-the-art model-based approaches that are becoming 

increasingly popular in real-world recommender systems. Regarding the additional 



14 

 

 

 

source of information, i.e., content relationships, that is exploited by CRMF, a large 

number of databases already exists for this purpose. Our experimental investigation 

showed this for publically available data of prominent media provider in the music 

domain. A similar approach can be followed for other media types, too; for instance, 

movies or images. In all these cases, content relationships can be formed based on 

several options (see also the related discussion in Introduction), such as the similarity 

between items computed based on the content or/and on other features, such as textual 

annotations; their usage data (e.g., how often are items consumed together); or user-

provided social input about them (e.g., social tags, geo-tags, etc.). These kind of data 

needed to form content relationships, are nowadays available in most applications of 

online media and, therefore, they can be easily integrated in the proposed method. 

Economic value. Regarding the economic value due to the improvement in rec-

ommendation accuracy achieved by the proposed method, experience in applications 

of recommender systems has shown that even small improvement in RMSE translates 

into improvement that is very important for the quality of recommendations. The 

reason is that such improvement can make a big positive difference in the identity of 

the most recommended items for a user [6]. Based on additional studies about online 

consumer-generated reviews, improvement in accuracy of recommendations has been 

shown to have a positive impact on purchase behavior, since consumers report being 

willing to pay from 20% to 99% more for a 5-star-rated item than a 4-star-rated item.9 

Therefore, the application of the proposed CRFM in real-world recommender systems 

has the potential of improving customer attraction, satisfaction and retention. Finally, 

although we focused our investigation on personalization of media, it is possible to 

extend the use of CRMF for other types of goods, e.g., in the case of e-commerce. In 

such cases, content relationships can be formed based on available information 

sources, e.g., information about co-purchase of items in the same basket, which are 

commonly maintained in such settings. This fact shows the wide range of possible 

applications that the proposed method can find. 

5 Conclusions 

Personalized access to content has been identified as a key consumer technology for 

users that ubiquitously access media through social networks. Recommender systems 

enable media personalization, by suggesting relevant content to such users and help-

ing them to address the “information overload” problem. 

In this paper, our aim was to improve personalization by increasing the accuracy of 

recommendations. We proposed a novel method, called Content Relationships Matrix 

Factorization (CRMF), which exploits an additional source of information in the form 

of content relationships that express relevance between items. We performed an ex-

perimental evaluation of the accuracy of CRMF compared to a state-of-the-art matrix 

                                                           
9
www.comscore.com/Press_Events/Press_Releases/2007/11/Online_Consumer_Reviews_Impact_Offline_Purchasing_Be

havior 

http://www.comscore.com/Press_Events/Press_Releases/2007/11/Online_Consumer_Reviews_Impact_Offline_Purchasing_
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factorization that does not take into account content relationships. Our experimental 

results with a real data set showed that CRMF compares favorably to the baseline 

method, demonstrating the usefulness of considering content relationships. 

In our future work, we will extend our approach in order to examine both content 

and social relationships (i.e., relationships between users), whenever they are both 

concurrently available. 
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