
1 Predictive Location Tracking in
Cellular and in Ad Hoc Wireless
Networks

NIKOS DIMOKAS1, DIMITRIOS KATSAROS1,2,
PANAYIOTIS BOZANIS2 and YANNIS MANOLOPOULOS1

1Department of Informatics, Aristotle University of Thessaloniki, Greece
2Department of Computer & Communication Engineering, University of Thessaly,
Greece

Predicting the future is mostly a matter of managing not to blink as you witness the present.
—William Gibson

1.1 INTRODUCTION

The proliferation of cellular and ad hoc networks and the penetration of Internet
services are changing many aspects of ubiquitous mobile computing. Constantly
increasing mobile client populations utilize diverse mobile devices to access the
wireless medium and various heterogeneous applications (e.g., streaming video,
Web) are being developed to satisfy the eager client requirements. The realization of
such a demanding environment requires addressing many technical issues, related to
radio management, networking, data management and so on.

Most of the challenging issues and problems in this area are due to the fact that
the underlying environment is extremely resource-starving and inherently uncertain.
For instance, the wireless communication channels are bandwidth-limited and error
prone. The uncertainty due to node (user) mobility has fundamental impacts, since
it induces uncertainly in the network topology and hence causes problems in routing
and in data delivery. Additionally, traffic load and resource demands in cellular and in
ad hoc wireless networks are also uncertain, depending a lot on the user trajectories.

In this harsh environment, seamless and ubiquitous connectivity is a fundamental
goal. This goal calls for smart techniques for determining the current and future
location of a mobile. The ability to determine the mobile client’s (future) location
can significantly improve the wireless network’s overall performance. Consider for
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instance the handover procedure in cellular networks, which is directly related to
the design of resource management algorithms in such infrastructured networks;
such resources could be bandwidth, MAC frames, packets. Instead of relying on
reactive approaches, i.e., allocating appropriate resources during the handover, we
could come up with proactive approaches, i.e., allocating resources before needed,
so as to bypass, instead of correct, the negative effect of handover [28]. Additionally,
methods like the Shadow Cluster [31], could benefit from location prediction, by
refraining from allocating resources to all neighboring cells; with the exploitation
of predictions instead, they could allocate resources only to the most probable-to-
move cells. Finally, location prediction could be exploited in sequential paging
schemes [8] to reduce the combined paging cost and also in techniques for call
admission control [60].

Location prediction and tracking is useful not only in cellular networks, but to
other types of wireless networks as well, such as mobile ad hoc networks (MANETs).
A mobile ad hoc network is a wireless network in which a set of mobile nodes with
wireless connectivity form a temporary network without the existence and support of
any infrastructure, e.g., base stations, or centralized administration, e.g., switching
centers. Communication in an ad hoc network between any two nodes that are out
of one another’s transmission range is achieved through intermediate nodes, which
relay messages to set up a communication channel between the two nodes. For a
MANET node v wishing to communicate with another MANET node u not within its
transmission range, knowledge of the future position(s) of node v could help reduce
its energy consumption, by postponing its communication to u until it reaches closer
to it. Such a technique has been investigated in [9].

1.1.1 Preliminaries

The present chapter deals with the issue of predictive location tracking in cellular
and in ad hoc wireless networks, and examines this issue in two different settings.
In section 1.2, we assume a generic symbolic network topology model, like that
introduced in [8], where the existence of “cells” is assumed. The cells need not
be hexagonal, but can be of arbitrary shape. The notion of a wireless cell is well
established in cellular networks; in ad hoc networks can be defined in a similar
manner, if we overlay a grid of any type [9] over the area, inside which the mobile
hosts of the wireless ad hoc network are roaming. In this setting, the positioning of a
mobile is performed at the level of a cell. In section 1.3, we withdraw the assumption
of the existence of cells, and the position of each mobile host is determined by its
geographic coordinates only.

Connectivity in the presence of mobility is a nontrivial task; the network has to
work against the uncertainty created by the mobile’s freedom of movement. Thus, the
management of mobility is of crucial importance. Depending on whether a mobile
terminal is actively communicating or in standby mode, we differentiate between a)
in-session mobility management, and b) out-of-session mobility management. The
former is widely known in cellular networks as handoff management, and it deals
with mechanisms by which calls and sessions are kept alive while the mobile host is
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moving from cell to cell, thus changing its network point of attachment. In general,
the procedure of handoff management is considered easier than the management of
the latter case, which is known as location management or location tracking and
which is responsible for keeping track of mobiles in standby mode.

The location tracking problem in generic wireless networks involves two proce-
dures, namely paging and update. At the one extreme, one can come up with a
proposal for this problem with the aid of paging, which is performed by the system;
on a call arrival, the network initiates a search for the sought mobile, by (simulta-
neously) polling every possible site where the mobile can be found. In the case of
cellular networks, this is performed by the mobile switching center which broadcasts
a page message over a special forward control channel via the base stations. All
the mobiles listen this paging message, but only the target mobile responses over a
reverse channel. In the worst case, the system may have to page each cell of the
whole service area. Clearly, this approach involves excessive signaling traffic and
thus is problematic.

At the other extreme, one can come up with a solution, which demands from the
mobile to report every time it moves from one site (cell) to another. This reporting
is called location registration, and starts with an update message sent by the mobile
over a reverse channel, which is then followed by some traffic that takes care of
related database maintenance operations at the system’s side. Again, this approach
may also generate excessive signaling traffic if the mobile changes cells frequently
and thus it is impractical.

In real situations location tracking is performed as a hybrid between these extreme
approaches [47]. Although a lot of (reactive) location management methods have
been proposed, the issue of predictive (or proactive) location, tracking has lately
received significant attention, due to its potential to reduce or even eliminate the
latency associated to location tracking. Moreover, there are situation where prediction
of mobiles’ movements, that will eventually lead to network disconnection, may force
specific decisions related to routing. Examples of these decisions involve the routing
protocols which are suitable for highly mobile ad hoc networks and for delay-tolerant
networks [62].

In general, predictive location tracking techniques work by constructing a mobility,
model for each mobile host that models the mobility history of the mobile. Clearly,
the two notions are different; the former is probabilistic and extends to the future,
whereas the latter is deterministic and refers to the past. Location prediction is related
to the ability of the underlying network to record, learn and, subsequently predict
the mobile’s movements. The success of the prediction is presupposed and is boost
by the fact that mobile users exhibit some degree of regularity in their movement [8].
A “smart” network can record the movement history and then construct a mobility
model for its clients. The real challenge involved in designing an effective and
efficient predictive location tracking method is to quantify the utility of the past in
predicting the future.
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1.1.2 Chapter Organization

The purpose of this chapter is to provide an overview of techniques suitable for
predicting the future locations of mobile hosts in wireless networks. It concentrates
on two different scenarios; according to the first scenario, the network coverage area
is partitioned in non-overlapping regions (named cells) and the location tracking is
performed at the level of cells; according to the second scenario, there is no such tiling
to the coverage area and location tracking is performed at the level of geographical
coordinates. The first part of the chapter (Section 1.2) deals with the first scenario
and it introduces information-theoretic methods suitable for predicting the future
locations of mobiles. The second part of the chapter (Section 1.3) deals with the
second scenario and presents the issues related to indexing the positions of mobile
hosts in order to support predictive queries. For these two broad and significant
issues, the chapter surveys, classifies, and compares the state-of-the-art solutions, by
discussing the critical issues and challenges of predictive location tracking in wireless
networks.

1.2 PREDICTIVE LOCATION TRACKING TECHNIQUES

Being the uncertainty inherent in the mobile’s movements we can consider them to
be the outcome of an underlying stochastic process, which can be modelled using
established information-theoretic concepts and tools [56, 34]. The cornerstone work
of [17] exhibited the possibility of using methods, which have traditionally been used
for data compression (thus, characterized as “information-theoretic"), in carrying out
prediction. Considering a symbolic network topology model [8], we can model the
respective state space as a finite alphabet comprised of discrete symbols. The alphabet
consists of all possible sites (cells) where the client has ever visited or might visit
(assuming that the number of cells in the coverage area is finite). With this transform,
we can exploit methods, which have traditionally been used for data compression
(thus, characterized as “information-theoretic”), to carry out prediction. In the rest
of this section, we elaborate on these methods.

1.2.1 The discrete sequence prediction problem

In quantifying the utility of the past in predicting the future, a formal definition
of the problem is needed, which we provide in the following lines. Let Σ be an
alphabet, consisting of a finite number of symbols s1, s2, . . . , s|Σ|, where | · | stands
for the length/cardinality of its argument. A predictor, which is an algorithm used to
generate prediction models, accumulates sequences of the type a i = α1

i , α
2
i , . . . , α

ni

i ,
where αj

i ∈ Σ, ∀i, j and ni denotes the number of symbols comprising a i. Without
loss of generality, we can assume that all the knowledge of the predictor consists of a
single sequence a = α1, α2, . . . , αn. Based on a, the predictor’s goal is to construct
a model that assigns probabilities for any future outcome given “some” past. Using
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the characterization of the mobility model as a stochastic process (X t)t∈N , we can
formulate the aforementioned goal as follows:

Definition 1 (Discrete Sequence Prediction problem). At any given time instance t
(meaning that t symbols xt, xt−1, . . . , x1 have appeared, in reverse order) calculate
the conditional probability

P̃ [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . ],

where xi ∈ Σ, ∀xt+1 ∈ Σ. This model introduces a stationary Markov chain, since
the probabilities are not time-dependent. The outcome of the predictor is a ranking
of the symbols according to their P̃ . The predictors which use such kind of prediction
models are termed Markov predictors.

Depending on the application, the predictor may return only the symbol(s), with
the highest probability, i.e., implementing a “most-probable” prediction policy, or the
symbols with the m highest probabilities, i.e., implementing a “top-m” prediction
policy, where m is an administratively set parameter. In any case, the selection of
the policy is a minor issue and will not be considered in this paper, which is only
concerned with methods for inferring the ranking.

The “history” xt, xt−1, . . . used in the above definition is called the context of
the predictor, and it refers to the portion of the past that influences the next outcome.
The history’s length (also, called the length or memory or order of the Markov
chain/predictor) will be denoted by l. Therefore, a predictor which exploits l past
symbols, will calculate conditional probabilities of the form

P̃ [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , Xt−l+1 = xt−l+1]. (1.1)

Some Markov predictors fix, in advance of the model creation, the value of l,
presetting it in a constant k, in order to reduce the size and complexity of the prediction
model. These predictors, and the respective Markov chains are termed fixed length
Markov chains/predictors of order k. Therefore, they compute probabilities of the
form:

P̃ [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , Xt−k+1 = xt−k+1]. (1.2)

where k is a constant.
Although it is a nice model from a probabilistic point of view, these Markov chains
are not very appropriate from the estimation point of view. Their main limitation is
related to their structural poverty, since there is no means to set an optimized value
for k.

Other Markov predictors deviate from the fixed memory assumption, and allow
the order of the predictor to be of variable length, i.e., to be a function of the values
from the past.

P̃ [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , Xt−l+1 = xt−l+1], (1.3)
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where l = l(xt, xt−1, . . . ).
These predictors are termed variable length Markov chains; the length l might range
from 1 to t. If l = l(xt, xt−1, . . . ) ≡ k for all xt, xt−1, . . . , then we obtain the
fixed length Markov chain. The variable length Markov predictors may or may not
impose an upper bound on the considered length. The concept of variable memory
offers a richness in the prediction model and the ability to adjust itself to the data
distribution. If we can choose in a data-driven way the function l = l(·), then we can
only gain with respect to the ordinary fixed length Markov chains, but this is not a
straightforward problem.

The Markov predictors (fixed or variable length) base their probability calculations
P̃ on counts of the number of appearances of symbols after contexts. They also take
special care to deal with the cases of unobserved symbols (i.e., symbols with zero
appearance counts after contexts), assigning to them some “minimum probability
mass”.

1.2.2 The power of Markov predictors

The issue of prediction in wireless networks, especially location prediction, has re-
ceived attention during the past years, and the most important proposed techniques
focus around the notions of learning automata, Kalman filtering and pattern match-
ing.

Learning automata are finite state adaptive systems that interact continuously
with their environment learning a “behavior”. Learning automata have been used in
location prediction [28], and although they are simple, they are not considered very
efficient learners, because of the need to devise appropriate penatly/reward policies,
which is usually done in an ad hoc way, and due to their slow convergence to the
correct actions.

Kalman filtering is a recursive processing algorithm for producing optimal es-
timates. Kalman filtering-based methods [33] construct a mobile motion equation
relying on specific distributions for its velocity, acceleration and direction of move-
ment. Therefore, they assume relatively accurate geographic position knowledge,
via signal strength measurements. Their performance largely depends on the sta-
bilization time of the Kalman filter and knowledge (or estimation) of the system’s
parameters.

Finally, (approximate) pattern matching techniques have been used for location
prediction [33]. They compile (or assume existence of) aggregate or per-user mobility
profiles, and perform approximate similarity matching between the current and the
stored trajectories. The similarity matching is carried out through the computation
of the edit distance between the current and each stored trajectory in order to derive
predictions. Although edit distance computation can be performed quite fast with
dynamic programming, it is relatively hard to select the meaningful set of edit
operations on the individual symbols (i.e., insert, delete, substitute), to assign weights
on them, deal with unequal sequences of symbols, select as similarity metric the edit
distance instead of string alignment.
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Consequently, a couple of questions arise regarding a) why Markov predictors are
more appropriate for carrying out location prediction from the technical viewpoint,
and b) whether location prediction are amenable to Markovian prediction. Several
technical reasons advocate the use of Markov predictors in these problems, but their
most profound advantage is their generality; they are domain independent without
any coupling to geographic coordinates, or particular assumptions on distributions.
A simple mapping from the “entities” of the investigated domain to an alphabet is all
that is required. Thus, they are able to support location prediction.

Markovian prediction relies on the short memory principle, which, simply stated,
says that the (empirical) probability distribution of the next symbol, given the preced-
ing sequence, can be quite accurately approximated by observing no more than the
last few symbols in that sequence. This principle fits reasonably and intuitively with
how humans are acting when travelling or seeking information. A mobile user usu-
ally travels with a specific destination in mind, designing its travel via specific routes
(roads or preferred pedestrian paths). This “targeted” traveling is far from a random
walk assumption, and it is confirmed by studies with real mobility traces [45]. There-
fore, the power of Markovian prediction stems from its generality and modelling
capability, and also from its natural accordance with the human behavior.

1.2.3 Families of Markov predictors

Markov predictors create probabilistic models for their input sequence(s) and they
use digital search trees (tries) to keep track of the contexts of interest, along with
some counts used in the calculation of the conditional probabilities P̃ . The root node
of the trie corresponds to the “null” event/symbol, whereas every other node of the
tree corresponds to a sequence of events; the sequence is used to label the node. We
will consider a Markov predictor to be equivalent to its respective trie. Each node is
accompanied by a counter, which depicts how many times this event has appeared
after the sequence of events corresponding to the path from the root to the node’s
father has been observed.

For our convenience, we present some definitions useful in the sequel of the
paper. We use the sample sequence of events a = aabacbbabbacbbc. The length
of a is the number of symbols it contains, i.e., |a| = 15. The appearance count of
subsequence s = ab is E(s) = E(ab) = 2 and the normalized appearance count
of s is equal to E(s) divided by the maximum number of (possibly overlapping)
occurrences a subsequence of the same length could have, considering the a’s length,
i.e., En(s) = E(s)

|a|−|s|+1 . The conditional probability of observing a symbol after a
given subsequence, is defined as the number of times that symbol has shown up right
after the given subsequence divided by the total number of times that the subsequence
has shown up a all, followed by any symbol. Therefore, the conditional probability
of observing the symbol b after the subsequence a will be denoted as P̃ (b|a) and it is
equal to P̃ (b|a) = E(ab)

E(a) = 0.4. In the rest of this section, we survey the families of
Markov predictors.
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1.2.3.1 The Prediction by Partial Match scheme The Prediction by Partial Match
scheme, PPM for short, is based on the universal compression algorithm reported
in [14]. For the construction of the prediction model, it assumes a pre-determined
maximal order, say k, for the generated model. Then, for every possible subsequence
of length of 1 up to k+1,creates or updates the appropriate nodes in the trie. Although,
this description implies that the whole input sequence is known in advance, the method
works in an online fashion, by exploiting a “sliding” window of size k + 1 over
the sequence as this grows symbol by symbol. The PPM predictor for the sample
sequence aabacbbabbacbbc is depicted in Figure 1.1. We can compute the conditional
probability of a symbol σ to appear after a context s, by detecting the sequence sσ
as a path in the trie emanating from the root, provided that |sσ| ≤ k. Prediction is
performed in a similar manner. For instance, adopting a “most probable” prediction
policy, the predicted symbol for the test context ab is a or b and its conditional
probability is 0.50 for either of them. (See the gray-shaded nodes in Figure 1.1.)

Fig. 1.1 A PPM Markov predictor for the sequence aabacbbabbacbbc.
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The maximum context that the PPM predictor can exploit is k; though, all
intermediate contexts with length from 1 to k − 1 can be used. This model is also
referred as all-Kth-Order PPM model. The interleaving of various length contexts
does not mean that this scheme is a variable length Markov predictor (although
sometimes it is referred as such), because the decision on the context length is made
beforehand and not in a data-driven way.

Apart from this basic scheme a number of variations have been proposed, which
attempt to reduce the size of the trie by pruning some of its paths, based on statistical
information derived from the input data. They set lower bounds for the normalized
appearance count and for the conditional probabilities of subsequences and then prune
any branch which does not exceed these bounds. Characteristic works adopting such
an approach are reported in [10, 37, 16]. Apparently, these schemes are offline,
making one or multiple passes over the input sequence in order to gather the required
statistical information.

1.2.3.2 The Lempel-Ziv-78 scheme The Lempel-Ziv-78 Markov predictor,LZ78
for short, is the second scheme whose virtues in carrying out predictions was inves-
tigated very early in the literature [56, 8]. The algorithm LZ78 [64] arose from a
need for finding a universal variable to fixed length coding method, and constructs a
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prediction model for an input sequence as follows. It makes no assumptions about
the maximal order for the generated model. Then, it parses the input sequence into
a number of distinct subsequences, say s1, s2, . . . , sx, such that ∀j (1 ≤ j ≤ x),
the maximal prefix of subsequence sj is equal to some si, for some 1 ≤ i < j.
The discovered subsequences, and the associated statistics are inserted into a trie in
a manner identical to that of the PPM scheme. The computation of conditional
probabilities takes place in a manner completely analogous to that of PPM. The
LZ78 predictor for the sample sequence aabacbbabbacbbc is depicted in the left part
of Figure 1.2. Though, LZ78 for this example is not able to produce a prediction for
the test context ab (i.e., there is no subtree under the gray-shaded node).

Fig. 1.2 (Left) A LZ78 Markov predictor for the sequence aabacbbabbacbbc. (Right) A
LZ78 predictor enhanced according to [8].
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Apparently, the LZ78 Markov predictor is an online scheme, it lacks admin-
istratively tuned parameters, like lower bounds on appearance counts, and it is a
characteristic paradigm of a variable length Markov predictor. Although, strong
results do exist which prove its asymptotic optimality and its superiority over any
fixed lengthPPM predictor, in practice, various experimental studies contradict this
result, because of the finite length of the input sequence. Nevertheless, the LZ78
predictor remains a very popular prediction method. The original LZ78 prediction
scheme was enhanced in [8, 34] in a way such that apart from a considered subse-
quence which is going to be inserted into the trie, all its suffixes are inserted, as well
(see right part of Figure 1.2).

1.2.3.3 The Probabilistic Suffix Tree scheme The Probabilistic Suffix Tree Markov
predictor, PST for short, was introduced in [41], and it presents some similarities to
LZ78 and PPM. Although, it specifies a maximum order for the contexts it will
consider, it is actually a variable length Markov predictor and constructs its trie for an
input sequence as follows. The construction procedure uses five administratively set
parameters: k the maximum context length, Pmin minimum normalized appearance
count for any subsequence in order to be considered for insertion into the trie, r
which is a simple measure of the difference between the prediction capability of the
subsequence at hand and its direct father node, γmin and α which together define
the significance threshold for a conditional appearance of a symbol. Then, for every
subsequence of length of 1 up to k, if it has never been encountered before, a new
node is added to the trie labelled by this subsequence, provided that a set of three
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conditions hold. To exhibit the conditions, suppose that the subsequence at hand is
abcd. Then, this subsequence will be inserted into the trie of the PST iff:

a) En(abcd) ≥ Pmin, and

b) There exists some symbol, say x, for which the following relations hold:

b1) E(abcdx)
E(abcd) ≥ (1 + a)γmin, and

b2) P̃ (x|abcd)

P̃ (x|abc)
≥ r or ≤ 1/r ≡ E(abc)

E(abcd) ∗
E(abcdx)
E(abcx) ≥ r or ≤ 1/r

The PST predictor with the following set of parameters k = 3, Pmin = 2
14 , r =

1.05, γmim = 0.001, α = 0 for the sample sequence aabacbbabbacbbc is depicted
in Figure 1.3. Apparently, PST is a subset of the baseline PPM scheme, when k
is the same. PST for this example is not able to produce a prediction for the test
context ab (i.e., there is no subtree under the gray-shaded node).

Fig. 1.3 A PST Markov predictor for the sequence aabacbbabbacbbc.
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Apart from this basic scheme, a number of variations have been developed (e.g.,
[5], most of them providing improved algorithms, i.e., linear, for the procedures of
“learning” the input sequence and for making predictions.

1.2.3.4 The Context Tree Weighting scheme The Context Tree Weighting Markov
predictor [58], CT W for short, is based on the idea of combining exponentially many
Markov chains of bounded order, and the original proposition dealt with binary al-
phabets only. The CT W assumes a pre-determined maximal order, say k, for the
generated model and constructs a complete binary tree T of height k. The left and
right children of a node s are denoted as 0s and 1s, respectively. Each node s main-
tains two counters as and bs, which count the number of zeros and ones, respectively,
that followed context s in the input sequence so far. Additionally, each context (node)
s maintains, apart from the pair (as, bs), two probabilities P s

e and P s
w. The former,

P s
e , is the Krichevsky-Trofimov estimator for a sequence to have exactly a s zeros

and bs ones. The latter probability, P s
w, is the weighted sum of some values of Pe.

The CT W predictor for the sample binary sequence 010|11010100011 is depicted in
the left part of Figure 1.4.

With PR
e and P R

w denoting the Krichevsky-Trofimov estimate and the CT W
estimate of the root, respectively, we can predict the next symbol with the aid of a
CT W as follows. We make the working hypothesis that the next symbol is a one,
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Fig. 1.4 A CT W Markov predictor for the binary sequence 010|11010100011.
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and we update the T accordingly obtaining a new estimate for the root P
′R
w . Then,

the ratio P
′R
w

P R
w

is the conditional probability that the next symbol is a one.
For the case of non-binary alphabets, Volf [57] proposed various extensions;

among them, the Decomposed CT W, De CT W for short, is the best compromise
between method efficiency and simplicity. Firstly, we assume that the symbols
belong to a alphabet Σ with cardinality |Σ|. We consider a full binary tree with |Σ|
leaves. Each leaf is uniquely associated with a symbol in Σ. Each internal node v
defines the binary problem of predicting whether the next symbol is a leaf on v’s left
subtree or a leaf on v’s right subtree. Then, we “attach” a binary CT W predictor
to each internal node. We project the training sequence over the “relevant” symbols
(i.e., corresponding to the subtree rooted by v) and translate the symbols on v’s left
(respectively, right) sub-tree to 0s (respectively, 1s). A diagram of the De CT W is
depicted in Figure 1.5.

1.2.4 Comparison of prediction schemes

In the preceding section we described briefly the mechanics of four families of Markov
predictors. In this section we will perform a qualitative comparison of the families;
initially, we will comment on some generic features/advantages of the families and
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Fig. 1.5 A sketch of the De CT W Markov predictor for the sequence aabacbbabbacbbc.
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then, we will elaborate on the kind of applications which could benefit from the
prediction performance of each family.

Implicitly or explicitly all Markov predictors all based on the short memory
principle, which says that the probability distribution of the next symbol can be
approximated by observing no more than the last k symbols in that sequence. Some
methods fix in advance the value of k (e.g., PPM, CT W). If the selected value
for k is too low, then it will not capture all the dependencies between symbols,
degrading its prediction efficiency. On the other hand, if the value of k is too large,
then the model will overfit the training sequence. Therefore, variable length Markov
predictors (e.g., LZ78, PST ) are in general more appropriate from this point of
view. This was the motivation for subsequent enhancements to PPM and CT W so
as to consider unbounded length contexts, e.g., the PPM � algorithm [13].

On the other hand, variable length predictors face the problem of which sequences
and of what length should be considered. PST attempts to estimate the predictive
capability of each subsequence in order to store it in the trie,which results in deploying
many tunable parameters. LZ78 employs a prefix-based decorrelation process,which
results in some recurrent structures to be excluded from the trie, at least at the first
stages. This characteristic is not very important for infinite-length sequences, but may
incur performance penalty for short sequences; for instance, the pattern bba is missing
in both variants of LZ78 of Figure 1.2. Although this example is by no means a kind
of proof that LZ78 is inferior to the other algorithms, it is an indication of how an
individual algorithm’s particularities may affect its prediction performance,especially
in short sequences. Despite their superior prediction performance, PPM schemes
are far less commonly applied than algorithms like LZ78, which is favored over
PPM algorithms for its relative efficiency in memory and computational complexity.

In Table 1.1 we summarize the Markov predictor families, their main members
and their main qualitative characteristics.

From Table 1.1 we can gain some insights regarding which method is more ap-
propriate for which type of application. Although, we emphasize that the choice and
performance of a specific model largely depends on the application characteristics,
it is the case that some results in the relevant literature show relative gains in the
performance of one method w.r.t. the others for specific applications. To the best
of our knowledge, we found no study which compares all families mentioned in this
article for the location prediction issue with both synthetic and real data. In general,



PREDICTIVE LOCATION TRACKING TECHNIQUES xiii

Table 1.1 Qualitative comparison of discrete sequence prediction models.

Prediction method Overheads Particularity
Family Variant Markov class Train Parame/tion Storage

LZ78
[8] Variable on-line moderate moderate

May miss patterns
[64] Variable on-line moderate moderate

PPM
[10] Fixed off-line heavy large Fixed length.
[14] Fixed on-line moderate large High
[16] Fixed off-line heavy large complexity

PST [5] Variable off-line heavy low
Parameterization

[41] Variable off-line heavy low

CT W [57] Fixed on-line moderate large
Binary nature

[58] Fixed on-line moderate large

the number of such studies is limited, and the real data they use (when they use
such) come from limited settings (e.g., university campuses) and not from users of
commercial wireless systems, e.g., cellular networks. Thus, it is not possible to draw
safe conclusions from these works. Worthwhile studies containing comprehensive
experiments with real data are reported in [37, 45, 11, 21].

Although alternative approaches could be possible, we prefer to present our sug-
gestions for policy selection along two primary dimensions; the first dimension
reflects the type of the problem (i.e., location prediction) and the second dimension
reflects the “network part”, where the prediction is carried out (i.e., fixed, resource-
rich network servers or resource-starving mobile hosts).

For mobile applications, some very important intuitive results, which have also
been confirmed experimentally[25], can be stated: a) user interests vary significantly
with time (not “strong” stationarity), b) many alternative paths exist which lead to
the same target location, thus the regularity patterns are “blurred” by noise. Due to
the first observation, the possibility of using LZ78 types of predictors is rather small.
Due to the variance in the length of the individual client’s trajectories, the rest of
the variable-order Markov predictors are more appropriate; PST would be a perfect
choice under the assumptions that the procedure is performed offline and it runs on
a resource-rich server, or a relatively powerful laptop.

If energy conservation is the main issue in these applications (small portable
devices like PDAs, mobile phones), then the choice of PPM style predictors seems
more appropriate since they are online,but they sacrifice some prediction performance
(due to the relatively small and fixed order model employed) for reduced model
complexity. The second observation may turn all prediction methods inefficient,
since it violates the “consecutiveness” property of appearance of the symbols in
the patterns, upon which property all described Markov predictors rely. In cases
where “noise symbols” are interleaved in pattern subsequences, the modified Markov
predictors described in [37, 16] can be employed, but these algorithms are offline
and require substantial resources (memory, power) to be executed. Therefore they
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could only be used by fixed network servers, which collect huge amounts of user
trajectories.

Location prediction is considered a relatively manageable problem, because of the
few alternatives in possible contexts (i.e., hexagonal architecture of cellular systems,
few fixed access points in wireless LANs and smart home applications) and because
of the “strong” stationarity (i.e., few habitual routes in campuses/cities, few travel
paths in urban regions – road network).

For location, prediction applications, several families of Markov predictors could
be used in some specific scenarios each. For dynamic tracking of mobile hosts
(with the tracking application running either in the network server or the mobile
host) PPM and LZ78 methods are appropriate. The small order PPM model
and the enhanced LZ78 [8] are expected to achieve the best performance, because
of the undoubted validity of the stationarity assumption. Indeed, the study in [45]
confirmed that intuitive results. These variants are perfect fit for dynamic resource
allocation before handovers, as well. For location area design applications, where
we are interested in discovering “long-standing” repetitive user routes, the process is
offline and therefore methods likePST or [37, 16] are appropriate and less vulnerable
to statistical deviation.

1.3 PREDICTIVE LOCATION INDEXING TECHNIQUES

In the previous section, we presented the dominant approaches for predictive location
tracking for the case of a symbolic topology model. In many cases though, we are
interested in tracking the location of mobiles at a finer granularity of space and time.
Consider, for instance, our interest in tracking the trajectories of birds, airplanes or
satellites, which are considered as points, or our interest in tracking the movement of
a tropical storm, of fires. This interests stems from our need to answer queries like,
“When two satellites are going to meet?”, “Is the fire threatening village Thetidio?”,
and so on.

This leads to the idea of storing in a database for each moving object not the
current position but rather a motion vector, which amounts to describing the position
as a function of time. That is, if we record for an object its position at time t 0

together with its speed and direction at that time, we can derive expected positions
for all times after t0. Of course, motion vectors also need to be updated from time to
time, but much less frequently than positions. Hence, from the location management
perspective, we are interested in maintaining dynamically the locations of a set of
currently moving objects and in being able to ask queries about the current positions,
the positions in the near future, or any relationships that may develop between the
moving entities and static geometries over time.

To support such functionality the database must build indexes; the main task if
an index is to ensure fast access to single or several records in the database on the
basis of a search key and thus avoid an otherwise necessary naive scan. Numerous
indexes able to support continuous movement have appeared in the literature [18].
The indexes capable of accommodating moving objects can be generally categorized
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into those optimizing queries about past states of movement and those tailored to
serving queries about future positions of the moving objects; the first type of queries
are called historical, while the second one are termed predictive. In the following,
we will address the predictive location indexing techniques.

1.3.1 Assumptions and terminology

In the majority of the applications, the size and the shape of the moving objects are
insignificant. Consequently, every object is modelled as a geometric point whose
position consists a time function x(t) of the particular motion parameters. Based on
x(t), the applications evaluate the future object locations. Furthermore, it is expected
that the involved objects have the capacity and the obligation of periodically reporting
any alteration occurring inx parameters. As an example, in most cases,x(t) is a linear
function of timex(t) = x(tref)+v(t−tref), where the two parameters are the position
x(tref) at the reference time tref and the velocity vector v. Generally speaking, the
equation parameters specify a dual to the time-location space framework.

As far as the type of queries is concerned, they can be classified as range queries
and proximity or nearest neighbor (NN) ones. A range query is termed: (i) time-slice
or snapshot (r, t) when, given a region r, usually a hyper-rectangle, located at time t,
it asks for all moving objects contained in r at that time; (ii) window (r, [t1, t2]) when
it asks for all objects crossing a hyper-rectangle r during a time interval [t 1, t2]; (iii)
moving (r1, r2, [t1, t2]) when it inquires all objects crossing the trapezoid formed by
connecting the hyper-rectangle r1 at time t1 and the hyper-rectangle r2 at time t2;
and (iv) selectivity or aggregate (r, [t1, t2]) when, given a region r and a time interval
[t1, t2], it requests an estimation about the number of the objects that will pass through
r during [t1, t2]. Types (i)-(iii) are also known as range reporting whereas type (iv)
is well tailored to the case of limited memory and strict real-time processing demand.

On the other hand, a proximity query inquires for the k nearest moving objects
to a given location at a time instance t or during a time interval [t 1, t2], with k ≥ 1.
Sometimes, all objects having a given location as their nearest neighbor are asked
for; this kind of searching is termed reversed nearest neighbor searching (RNN).

In the above definitions, two variations are possible: Firstly, the query range/point
also moves which makes the query continuous. And secondly, the answer set may
be returned with temporal or spatial validity information, informing thus the user
about the future time t the result expires or the validity region r containing the query
position within which the answer remains valid.

Concluding this subsection, we briefly discuss the R-tree [19], a general purpose
practical indexing structure, since the majority of the solutions to be presented are
built upon it. So, an R-tree is a height-balanced tree which can be considered as
an extension of the B+-tree for multi-dimensional data. The minimum bounding
rectangle (MBR) of each geometric object, along with a pointer to the disk address
where the object actually resides, are stored into the leaves. Each internal node entry
consists of a pair (pointer to a subtree T , MBR of T ), with the MBR of a tree T
defined as the MBR enclosing all the MBRs stored in T . Like in B+-trees, each
node contains at least m and at most M entries, where m ≥ M/2. On the other
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hand, unlike B+-trees, a search query may activate several search paths from the root
to the R-tree leaves, resulting, in the worst case, in a linear to the size of data set
performance just to retrieve a few objects.

Figure 1.6 illustrates an R-tree instance on a set S of rectangles. Since its
introduction, several variants of the R-tree have been proposed, each one aiming at
improving the performance by tuning some parameters. Among the members of the
“R-tree family”, the most prominent one is the R∗-tree of Beckmann et al. [6].

Fig. 1.6 An R-tree instance: (a) A set S of rectangles A–H, (b) The corresponding R-tree
T

S

T

A B C D GF E H

P RQ

C

B

G

EA

H

F

Q

P
R

D

1.3.2 Indexing structures for range queries

1.3.2.1 Range reporting. Tayeb et al. [55] presented one of the first works on
indexing mobile objects for snapshot and window queries, by reducing the problem
to indexing lines in a periodically rebuilded bucket PR Quadtree [44] with high space
requirements. Subsequently, Kollios et al. [27] presented solutions for one- and
two-dimensional range searching which index objects either in xt-plane using R-
trees [19] or in the two-dimensional dual space deploying dynamic external partition
trees [2]; the last proposal is mainly of theoretical interest due to the employed index
structures.

In [43] a time-parameterized version of R�-trees [6], called TPR-tree, was intro-
duced, because none of the memebers of the R-tree family of indexes is efficient in
indexing mobile objects. Let us explain this with the aid of Figure 1.7. The leftmost
digram shows the positions and velocity vectors of 7 point objects at time 0. Assume
we create an R-tree at time 0. The second diagram shows one possible assignment
of the objects to minimum bounding rectangles (MBRs) assuming a maximum of
three objects per node. Previous work has shown that attempting to minimize the
quantities known as overlap, dead space, and perimeter leads to an index with good
query performance [6], and so the chosen assignment appears to be well chosen.
However, although it is good for queries at the present time, the movement of the
objects may adversely affect this assignment. The third diagram shows the locations
of the objects and the MBRs at time 3, assuming that MBRs grow to stay valid. The
grown MBRs adversely affect query performance; and as time increases, the MBRs
will continue to grow, leading to further deterioration. Even though the objects be-
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longing to the same MBR (e.g., objects 4 and 5) were originally close, the different
directions of their movement cause their positions to diverge rapidly and hence the
MBRs to grow. From the perspective of queries at time 3, it would have been better to
assign objects to MBRs as illustrated by the rightmost diagram. Note that at time 0,
this assignment will yield worse query performance than the original assignment.
Thus, the assignment of objects to MBRs must take into consideration when most
queries will arrive.

Fig. 1.7 Mobile objects and resulting leaf-level MBRs.
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The TPR-tree is capable of accommodating moving objects with constant veloc-
ities in one-, two- and three-dimensional space, and is the de facto spatial index for
future queries. The MBRs in this example illustrate the kind of time-parameterized
bounding rectangles supported by the TPRtree. The novelty of the approach are the
time-parameterized bounding rectangles (TPBRs) being employed, associated with a
velocity vector (see Figure 1.8): for each coordinate x i, the lower bound is set to be
the minimum observed xi-coordinate value at time tref , moving with the minimum
observed velocity, and the upper bound is defined to be the maximum x i-coordinate
value at time tref , moving with the maximum observed velocity. Since the TPBRs
never shrink and are conservatively bounded, the index is tuned for H time units;
after that, a global rebuilding of the structure is conducted. TPBRs also impose
the generalization of the update and rebuilding algorithms of the R ∗-trees so that
their respective objective functions are time parameterized. In summary, TPR-trees
support all types of range queries (time-slice queries, window queries and moving)
while proven to be a very practical solution.

Fig. 1.8 An example of forming Time-Parameterized Bounding Rectangles.

B

A

xxxxxx

B

A

C

D
C

D

TRBR1

TPBR2

TRBR1
TPBR2

Agarwal et al. [3] provided solutions of theoretical interest for answering window
and moving window queries for one- and two-dimensional moving points with time
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complexities that depend on the number of events — i.e., alteration of the relative
w.r.t. an axis location order between objects or insert/deletion of a moving object—
that occurred between the current time and the query time. Their approach is based
on a careful segmentation of the plane/space into a logarithmic number of strips
(slabs), each one containing a bounded number of events. The arrangements of every
slab are then stored in persistent versions of B-trees. As a result, moving window
queries have a time complexity of O(logB n+k/B+Bi−1) and O(

√
n/Bi(Bi−1 +

logB n) + k/B), for one- and two-dimensional movements, respectively, B being
the page capacity and i the slab number.

REXP-trees [42] use also TPBRs for bounding moving objects. However, capi-
talizing on the assumption that objects expire after a time period t exp, within which
they have not reported their position, the author derived analytical formulas which
produce tighter TPBRs. This fact in conjunction with the lazy removal of expired
objects only after an update operation discovers an expired entry make R EXP-trees to
exhibit better experimental performance with respect to TPR-trees. STAR-trees [39]
were also introduced as an improvement over TPR-trees for the two-dimensional
case. The main feature of this proposal is self-adjustment: based upon user speci-
fications concerning space overhead and performance quality, the index self-adjusts
without any user interference. Towards this end, the extends of the points are con-
stantly approximated, with the aid of a priority queue, and the children of a node are
redistributed whenever they overlap too much. The authors reported the following
improvements: a speed-up of 2.3 with respect to TPR-tree was achieved and the
deterioration of the scheme over time is quite small.

TPR∗-trees [52] improved TPR-trees by introducing more elaborated decision
making processes for insertion path selection, node re-insertion and children node
redistribution which pay-off a lot in terms of search performance. Additionally, the
authors suggested a cost model for the original TPR-tree which emphasizes the
factors that influence its performance and shows the superiority of TPR ∗-tree over
TPR-trees. This fact was also confirmed by an extensive experimental investigation
which demonstrated that with the TPR∗-tree the average query cost is almost five
times less, whereas the average update cost is nearly constant.

In [1] three theoretical indexing schemes for moving points in the plane were
introduced. The first one improves upon the approach of [27] by using a two-level
external partition tree and has time complexity of O(n1/2+ε + k), k the output size.
The other two support one- and two-dimensional queries referring to the present time
or arriving in a strictly chronological order and have logarithmic complexity. The
one-dimensional index employs kinetic B-trees while the two-dimensional kinetic
range trees.

Patel et al. [38] introduced the STRIPE index, which basically is a multidi-
mensional external PR bucket quadtree supporting all three types of range queries
(time slice, window and moving). Each moving object is represented in dual 2d-
dimensional parametric space. The parametric space is indexed by applying a disjoint
regular partitioning mainly imposed by the underlying quadtree. The authors tested
the performance of STRIPE against the TPR∗-tree thoroughly and found that their
proposal is faster in both update and query time; namely, queries are faster by a
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factor of four while the update operations complete by an order of magnitude quicker
since TPR*-trees have the disadvantages of poor cache locality and multiple path
traversals.

[48] coped with the case of circular static range query during a time interval
for moving objects with unknown moving patterns. In order to support arbitrarily
movements, Tao et al. suggested a monitor-and-index framework: Each moving
object individually and constantly computes the recursive function that best describes
its movement using motion matrices introduced by the authors. On the other hand,
the server adopts the same coarse polynomial function m for every object. The
latter fact introduces imprecision which is dealt with a two step process. During
the filtering phase, all objects that either definitely or possibly satisfy the query
are determined using STP-tree. STP-tree can be considered as a generalization
of both TPR and TPR∗-trees to arbitrary polynomial functions m. In a second
refinement step, the server communicates with the doubtful objects which evaluate
the query according to their own accurate moving function and send back the result
if necessary along with the corrected parameters of m. The applicability of the
proposal is thoroughly investigated through a series of experiments that concern both
the movement approximation method and the new index.

1.3.2.2 Range aggregate. In 2002, Choi and Chung [12] presented the first work
on rectangular range selectivity for static queries. Their solution for the one-
dimensional case is based on the simple observation that a point satisfies the query
range r if and only if the segment formed by its (tentative) position at the start and the
end of the query time interval intersects r. The authors proposed a histogram based
counting solution so that the spatial universe is partitioned into a number of time
evolving buckets. This method was also extended to the two-dimensional case by
projecting objects and queries on each spatial dimension and evaluating the selectivity
as the product of the one-dimensional results.

The previous method suffers from overestimated results since the projection over-
looks necessary temporal conditions. Tao et al. [54] achieved better estimation results
by dropping the projection step; their solution tackles directly the problem with the
deployment of a spatio-temporal histogram which considers both locations and ve-
locities. The authors report significant improvements in selectivity precision and
manipulation of updates. In [20] one- and two-dimensional movements were also
coped with. As a matter of fact, two solutions were introduced: One is also based on
multidimensional histograms which, none the less, are defined on dual space. The
accommodation of the moving objects into an index is prerequisite for the second
solution. Namely, the summaries of each leaf entry, in the form of number of objects
and their bounded rectangular spatial extent, are stored in a hash table which is used
for output extrapolation.

In contrast to the previous three solutions, in [53] random sampling was chosen for
selectivity estimation in order to spare space and processing overhead. Particularly,
the introduced method of Venn sampling employs a set S of m pivot queries which
represent the actual distribution and are perfectly estimated. The most interesting
part is that, based on S, a weighted sample of m moving objects, non necessarily
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belonging to the underlying data set, is formed and communicated to the moving
objects. This sample is queried against any incoming query and the sum of weights of
qualifying objects is returned to the user. The system constantly monitors the quality
of the sample set in collaboration with the moving objects; in case the estimation
error surpluses a threshold, the sample weights but not the respective sample objects
are adjusted. The authors present experimental results rendering the proposal quite
appealing.

1.3.3 Indexing structures for nearest neighbor queries

Kollios et al. [26] introduced practical yet preliminary solutions for locating the
nearest moving neighbor of a static query in the plane permitting either arbitrarily or
restricted in fixed line segments object movement. They consider both the cases of
indexing in the xt-plane and in the dual plane. The first case allows indexing with
standard spatial indexes, like, for example, R-trees [19] while the second one utilizes
B+-trees [15] and dual plane segmentation in horizontal stripes.

Song and Roussopoulos [46] studied the continuous kNN problem, which inquires
for the k nearest static neighbors of a moving query point. Their approach is based on
the observation that as the query point is moving to new locations, some previously
reported neighbors are still among the k closest ones. This fact is formally expressed
by a series of conditions which allow the employment of standard indexing structures
like R-trees.

In [63] Zheng and Lee considered enhancing NN queries with validity information.
The approach is quite simple: The nearest neighbor of a moving point is calculated
using the Voronoi diagram of the static data set. Since the Voronoi cell c of the
nearest neighbor is available, the maximum circle around the query point which does
not cross any boundary edge of c consists a safe lower bound for the validity of the
query result.

In [7] two-dimensional nearest neighbor and reverse nearest neighbor queries for
a query point q during a time interval t were treated by properly extending TPR-
tree algorithms. NN queries apply a depth-first search technique which constantly
prunes TPBRs with no chance enclosing closest points. The RNN queries are more
elaborate: the space around the query point q is divided into six equal sectors s i by
straight lines intersected at q, since there must exist at most six RNN points, at most
one in each si. Therefore, sectors containing two or more nearest points of q are
discarded and the search is restricted among the nearest neighbors of the rest.

Continuous NN queries for static data sets were also treated, albeit from a different
perspective, in [22]. This solution is built upon ellipsoid areas around the moving
query point which are generated utilizing current, past and future trajectory positions
and carefully selected metrics. The static data set, on the other hand, is indexed with
a “spatial” structure, like, for example, R-trees. Since the previous answers are not
reused as the query point changes position, this method needs involved tuning to be
effective.

Tao et al. [51] considered continuous kNN search when the static input data set is
accommodated in an R-tree T and the query point is linearly moving. When k = 1,
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these assumptions guarantee that the output set consists a sequence of points p i, which
partition the movement line segment into a sequence of disjoint segments s i. Every
point in si has pi as its nearest neighbor. These facts suggest a branch-and-bound
investigation of T employing heuristic node pruning. Tao et al. also generalized
the pruning rules for the continuous kNN case, providing an extensive experimental
evaluation of their proposal.

Aggarwal and Agrawal [4] introduced NN solutions for objects moving in nonlin-
ear trajectories of arbitrary dimensionality whose parametric representation satisfy
the so called convex hull property. d-dimensional trajectories with constant velocity,
d-dimensional parabolic trajectories, elliptic orbits, and trajectories that accept ap-
proximate Tailor expansion belong to this category. Due to the convex hull property,
the locality in parametric space corresponds to the locality in the positions of objects,
and, thus NN search can be accomplished by a branch-and-bound,best-first algorithm
conducted in a classical spatial index. The authors demonstrated their method for
linear and parabolic trajectories in three- and two-dimensional space respectively.

TPR-trees algorithms were enhanced in [40], so that continuous kNN queries on
moving points during a time interval [t1, t2] can be served. The suggested solution
capitalizes on the following geometric fact: the kNN points can be determined by
the k levels of the arrangement of the squared distance functions of the moving
points with respect to the moving query during [t1, t2]. Therefore, after collecting
at least k points by a depth-first traversal of the underlining TPR-tree according to
the minimum squared distance metric between the moving query and the bounding
rectangles at t1, the kNN points of [t1, t2] are determined. Then, in a second stage,
the TPR-tree is once more traversed, in order to refine and finalize the output set.

Iwerks et al. [23] also presented algorithms for answering continuous kNN queries
on a constantly moving point set with respect to either a static or a moving query
point. Their approach runs also in two phases. During first phase, input set is filtered
with a continuous query which asks about objects within a distance bound d. Then,
the qualified points are ranked with a priority queue, which tracks the time instances
when points change their distance to the query point or when points change their
order with respect to a current kNN point.

Nearest neighbor queries, among others, were also treated in [1]. Specifically,
Agarwal et al. suggested an algorithm which offers approximate results to NN search-
ing by replacing the Euclidean metric with a polyhedral one. The input set is ac-
commodated into a three level composite index of O(n 1/2+ε/

√
δ) time complexity,

0 < δ, ε < 1. The first two levels are external partition trees on dual space. The last
level stores the lower envelope of the trajectories in linear lists.

The Conceptual Partitioning method (CPM) was introduced in [35] for constantly
monitoring of multiple continuous NN queries in highly dynamic environments. In
brief, the space is partitioned by a regular grid and indexed in main memory. Every
cell of this grid maintains the list of objects residing therein and every posed query
along with its current result set is stored in a table. Additionally, CPM imposes a
total order on the cells around every query based on proximity criterion. In that way,
every update in both the data and the query set is tackled with minimal computational
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costs without any assumptions about the occurring moving patterns; this is depicted
by both qualitative and thoroughly experimental analysis.

Afterwards the previous work, Mouratidis et al. [36] presented a main memory
solution for incremental monitoring of continuous kNN queries when the query
and the data objects move in road networks. Their approach basically is based on
network expansion about the query until k nearest neighbors are collected. The
formed shortest path tree is stored along with the query so that any updates are
smoothly incorporated. Moreover, the authors proposed a method for computation
sharing among queries whose shortest paths are crossed. All suggested solutions are
experimentally evaluated.

Finally, [30] treated continuous nearest surrounder (NS) queries which asks for the
nearest neighbors at individual distinct angles from the query point. NS queries, thus,
monitor the nearest neighbors around the queries by considering both the distance
and the angular attributes. The system registers the objects’ locations in an R-tree
and the queries, along with their current results, in a hash table so that any update
of either data or query objects can be incrementally evaluated, capitalizing on the
notion of ‘safe regions’ firstly introduced in [29].

1.3.4 Indexing structures for both window and nearest neighbor queries

In [50] time-parameterized window and kNN queries (TP) were introduced which,
along with the objects that satisfy the spatial conditions, also return the expiration
time of the validity of the answer and the change that invalidates the answer at that
time. The key concept of this approach is the influence time which is associated with
every moving object o and indicates the time o influences the validity of the answer.
By definition, the expiration time of the answer equals to the minimum influence
time of all objects which, in turn, can be evaluated with a NN search where the
distance metric is the influence time. This observation is valid for both window and
kNN queries. The authors proved analytical formulas for evaluating the influence
times of an object. As a result, standard branch-and-bound traversal of the index
accommodating the object set can be employed. Their solution also treats continuous
spatio-temporal queries by posing a TP query every time the current result expires.
Finally, TP queries can also serve earliest event queries which ask for the earliest time
in the future a certain event could take place; for example, one may need to figure out
the first time a moving query point q meets another moving object. By surrounding q
with a time-varying radius cycle, this query reduces to TP by evaluating the earliest
time the circle contains a point, which, in turn, equals to determining the smallest
radius of such a circle.

Building upon [50], Zhang et al. [61] dealt also with validity kNN and window
queries. In the first case, order-k Voronoi cells comprise the validity regions. These
can be found implicitly by, firstly, generating the nearest neighbors and then issuing
time-parameterized kNN queries for locating which points define their border. In the
second case, the maximal rectangle r around the center of the window, within which
the result remains unchanged, is firstly evaluated. Then, r is refined by subtracting
the parts that would force the query to mistakenly contain points not in the reported
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answer. These two steps involve one standard window query, one “holey” window
query and few main memory TP window queries.

Tao et al. [49] proved a number of theoretical bounds on validity range and
NN queries. Specifically, when the query’s length and movement are chosen from
a constant number of combinations and the point set is static, the query cost
is logarithmic and the space is linear. When the point set is static, the query
length is arbitrarily, and the movement is axis-parallel, then the time complex-
ity is O(log2

B(n/B)/ logB logB(n/B)) and the space cost is O(n/B logB(n/B)/
logB logB(n/B)). On the other hand, in the case of static input point set and queries
with arbitrary length and movement the space complexity is O(n/B) while the query
costs O((n/B)1/2+ε). When the data points are dynamic and the query is static, the
query has logarithmic complexity and space is bounded by O(n 2/B logB(n/B)).
The case of both dynamic data points and query point is only considered in one-
dimensional space, proving a linear space and logarithmic time complexity. As far
as the NN search query is concerned, when the input point set is static lying in the
plane or comprised of moving points on the line, the solution is of linear space and
logarithmic query cost.

The Bx-trees were introduced in [24], that are capable of serving range, and kNN
queries as well as their continuous counterparts. The main ingredient of this method
is movement linearization: The time axis is partitioned into intervals of ∆ time units,
and each interval is further subdivided into n subintervals of equal length. Every
object, according to its tref , is assigned to one subinterval. Within each subinterval,
the positions of the objects fallen in are linearized according to a space filling curve
and then stored into a B+-tree. Therefore, the Bx-tree is actually a sequence of
B+-trees evolving as time goes by. The authors conducted extensive experiments
which show the superiority of Bx-trees over TPR-trees for all kinds of queries. Here
we must note that BBx-trees [32] were introduced as a natural extension of B x ones,
able of answering both predictive and historical queries.

After observing that the linearization process of [24], in [59] only object’s locations
were considered, leading thus to excessive false hits, proposed B dual -trees. Bdual -
trees also deploy B+-trees indexing, non the less, a space filling curve which is based
on both object locations and velocities. The authors demonstrated the superiority of
their method over Bx-trees both analytically (that is, using derived formulas) and
experimentally—the experimental study also gives data for STRIPES and TPR ∗-
trees. In a nutshell, Bdual -trees can be considered as the state of the art solution in
its category.

1.3.5 Evaluation of predictive indexing

In overall, TPR-trees [43] and its descendant variations, like TPR ∗-trees [52], can
be considered the most appropriate and practical choice for serving range queries. In
case of limited resources, the Venn sampling technique of [53] is deemed a natural
option. As far as nearest neighbor queries is concerned, the TPR-tree variation
of [40] and the conceptual partitioning method (CPM) of [35] are both competent
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candidates. Finally, Bx-trees [24] and Bdual -trees [59] proved to be apt solutions
when one wants to treat equally well range and nearest neighbor queries.

Regarding future steps toward developing more indexing mobiles, it would be
very helpful the indexes to provide results that capture the uncertainty associated to
the location of moving objects due to network delays and the continuous character of
motion. It would be also very interesting to efficiently cope with non-linear trajecto-
ries since the scope and the range of indexable moving objects will be significantly
extended. Another appealing subject, especially for extending mobile application
capabilities, is the design of indexing structures capable of serving mixed queries
concerning the past and the future of movement The incremental valuation of valid-
ity queries is very intriguing, as well. Finally, from an engineering perspective, it
would be very helpful: (i) to test all indexes with real datasets, as, until now, every
experimental investigation is conducted with semi-real ones, where the movement
component is actually generated; and (ii) to design efficient updating algorithms for
the indexes, different from the usual ‘deletion and re-insertion’ practice, accepting
perhaps a tradeoff between either the query time or the accuracy of the result and the
update time.

1.4 CONCLUSION

This chapter identified the inherent uncertainty in the movement of mobiles in areas
covered by wireless networks, and the problems caused to resource allocation due
to this uncertainty. Starting from this fundamental observation, it subsequently
recognized the benefits of being able to forecast the future locations of the mobile
hosts. This ability could be used to act proactively, instead of reactively, to many
situations. For instance, having estimates of future positions of mobile hosts, the
network could take appropriate decisions regarding the bandwidth that will allocate
to the cells containing these locations. In addition, in wireless ad hoc networks,
where communication between nodes is performed on a store-and-forward basis for
nodes not in close proximity, the communication could be deferred until the nodes
come closer to each other, thus saving network resources, like precious bandwidth
and storage space in the intermediate nodes, reducing packet collisions and so on.

Though, predictive location tracking can be performed only if the mobiles’ move-
ments exhibit some degree of regularity, thus making the construction of mobility
models feasible. The generic principle governing location prediction can be summa-
rized in a short sentence: study the present and project to the future. Exploiting this
principle, the issue of location prediction turned out to be a matter of recording the
present mobile trajectories, and developing mobility models from these. The storage
of the trajectories should be of the kind to allow compact representation and at the
same time efficient generation of predictions.

Subsequently, we investigated two different scenarios for predictive location pre-
diction. According to the first scenario, the roaming area of the mobiles can be
considered as a union of non-overlapping cells of arbitrary geometry, and according
to the second scenario, the location tracking is performed at the granularity of geo-
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graphical coordinates. For the first scenario, we modelled the problem of predictive
location tracking in terms of the discrete sequence prediction problem. For this
latter problem, we presented Markov predictors as a practical and high performance
solution, categorized them into four families giving their qualitative characteris-
tics, their strengths and their weaknesses. For the second scenario, which is more
tightly coupled with location databases, we surveyed the state-of-the-art techniques
for constructing indexes capable of answering queries which mainly concern various
complex future predicates.

Undoubtedly, predictive location tracking is very important for reducing the la-
tency and the resource consumption in any wireless network or for prolonging the
lifetime of wireless ad hoc networks. Though, the problem is not easily manageable
due to the difficulty of constructing models representing the actual mobile trajecto-
ries. Although very significant steps have been taken towards achieving this target,
work is still needed to characterize the predictability of mobile trajectories, to analyze
collections of real mobile trajectories, to develop more effective prediction models
and mainly to develop distributed models of prediction through cooperation, which
will be suitable for the emerged area of wireless sensor networks.
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18. R. H. Güting and M. Schneider. Moving Objects Databases. Series in Data
Management Systems. Morgan-Kaufmann, 2005.

19. A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pages 47–57, 1984.



CONCLUSION xxvii

20. M. Hadjieleftheriou, G. Kollios, and V. J. Tsotras. Performance evaluation of
spatio-temporal selectivity estimation techniques. In Proceedings of the IEEE
International Conference on Statistical and Scientific Database Management
(SSDBM), pages 202–211, 2003.

21. M. Halvey, M. Keane, and B. Smyth. Mobile Web surfing is the same as Web
surfing. Communications of the ACM, 49(3):76–81, 2006.

22. Y. Ishikawa, H. Kitagawa, and T. Kawashima. Continual neighborhood tracking
for moving objects using adaptive distances. In Proceedings of the IEEE In-
ternational Database Engineering and Applications Symposium (IDEAS), pages
54–63, 2002.

23. G. S. Iwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor queries for
continuously moving points with updates. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 512–523, 2003.

24. C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient B +-tree based
indexing of moving objects. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 768–779, 2004.

25. D. Katsaros and Y. Manolopoulos. Prediction in wireless networks by Markov
chains. IEEE Wireless Communications magazine, 2007. to appear.

26. G. Kollios, D. Gunopoulos, and V. J. Tsotras. Nearest neighbor queries in a
mobile environment. In Proceedings of the International Workshop on Spatio-
Temporal Database Management (STDBM), volume 1678 of Lecture Notes in
Computer Science, pages 119–134, 1999.

27. G. Kollios, D. Gunopoulos, and V. J. Tsotras. On indexing mobile objects. In
Proceedings of the ACM Symposium on Principles Of Database Systems (PODS),
pages 261–272, 1999.

28. M. Kyriakakos, N. Frangiadakis, L. Merakos, and S. Hadjiefthymiades. En-
hanced path prediction for network resource management in wireless LANs.
IEEE Wireless Communications, 10(6):62–69, 2003.

29. K. C. K. Lee, W.-C. Lee, and H. V. Leong. Nearest surrounder queries. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE),
2006.

30. K. C. K. Lee, J. Schiffman, W.-C. Zheng, B. Lee, and H. V. Leong. Tracking
nearest surrounders in moving object environments. In Proceedings of the IEEE
International Conference on Pervasive Services (ICPS), pages 3–12, 2006.

31. D. A. Levine, I. F. Akyildiz, and M. Naghshineh. A resource estimation and call
admission algorithm for wireless multimedia networks using the shadow cluster
concept. IEEE/ACM Transactions on Networking, 5(1):1–12, 1997.



xxviii PREDICTIVE LOCATION TRACKING IN WIRELESS NETWORKS

32. D. Lin, C. S. Jensen, B. C. Ooi, and S. Saltenis. Efficient indexing of the
historical, present, and future positions of moving objects. In Proceedings of
the IEEE International Conference on Mobile Data Management (MDM), pages
59–66, 2005.

33. T. Liu, P. Bahl, and I. Chlamtac. Mobility modeling, location tracking, and
trajectory prediction in wireless ATM networks. IEEE Journal on Selected
Areas in Communications, 16(6):922–936, 1998.

34. A. Misra, A. Roy, and S. K. Das. An information-theoretic framework for optimal
location tracking in multi-system 4G wireless networks. In Proceedings of the
IEEE International Conference on Computer Communications (INFOCOM),
volume 1, pages 286–297, 2004.

35. K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring. In Proceedings
of the ACM International Conference on Management of Data (SIGMOD), pages
634–645, 2005.

36. K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis. Continuous nearest
neighbor monitoring in road networks. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 43–54, 2006.

37. A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data mining algorithm
for generalized Web prefetching. IEEE Transactions on Knowledge and Data
Engineering, 15(5):1155–1169, 2003.

38. J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An efficient index for
predicted trajectories. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 637–646, 2004.

39. C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. STAR-tree: An efficient
self-adjusting index for moving objects. In Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX), volume 2409 of Lecture
Notes in Computer Science, pages 178–193, 2002.

40. K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos. Fast nearest-neighbor
query processing in moving-objects databases. GeoInformatica, 7(2):113–137,
2003.

41. D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic
automata with variable memory length. Machine Learning, 25(2–3):117–149,
1996.

42. S. Saltenis and C. S. Jensen. Indexing of moving objects for location-based ser-
vices. In Proceedings of the IEEE InternationalConference on Data Engineering
(ICDE), 2002. 463–472.



CONCLUSION xxix

43. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the posi-
tions of continuously moving objects. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pages 331–342, 2000.

44. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

45. L. Song, D Kotz, R. Jain, and X. He. Evaluating location predictors with extensive
Wi-Fi mobility data. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), volume 2, pages 1414–1424, 2004.

46. Z. Song and N. Roussopoulos. k-nearest neighbor for moving query point. In
Proceedings of the International Symposium on Advances in Spatial and Tem-
poral Databases (SSTD), volume 2121 of Lecture Notes in Computer Science,
pages 79–96, 2001.

47. S. Tabbane. Location management methods for third-generation mobile systems.
IEEE Communications magazine, 35(8):72–78 & 83–84, 1997.

48. Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving
objects with unknown motion patterns. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pages 611–622, 2004.

49. Y. Tao, N. Mamoulis, and D Papadias. Validity information retrieval for spatio-
temporal queries: Theoretical performance bounds. In Proceedings of the Inter-
national Symposium on Advances in Spatial and Temporal Databases (SSTD),
volume 2750 of Lecture Notes in Computer Science, pages 159–178, 2003.

50. Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databases.
In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pages 334–345, 2002.

51. Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 287–298, 2002.

52. Y. Tao, D. Papadias, and Q. Sun. The TPR∗-tree: An optimized spatio-temporal
access method for predictive queries. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 790–801, 2003.

53. Y. Tao, D. Papadias, J. Zhai, and Q. Li. Venn sampling: A novel prediction tech-
nique for moving objects. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), pages 680–691, 2005.

54. Y. Tao, J. Sun, and D. Papadias. Selectivity estimation for predictive spatio-
temporal queries. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pages 417–428, 2003.

55. J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-based dynamic attribute
indexing method. The Computer Journal, 41(3):185–200, 1998.



xxx

56. J. S. Vitter and P. Krishnan. Optimal prefetching via data compression. Journal
of the ACM, 43(5):771–793, 1996.

57. P. Volf. Weighting techniques in data compression: Theory and algorithms. PhD
thesis, Technische Universiteit Eindhoven, 2002.

58. F. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context-tree weight-
ing method: Basic properties. IEEE Transactions on Information Theory,
41(3):653–664, 1995.

59. M. Yiu, Y. Tao, and N. Mamoulis. The B dual -tree: Indexing moving objects by
space-filling curves in the dual space. Very Large Data Bases Journal, 2007. to
appear.

60. F. Yu and V. Leung. Mobility-based predictive call admission control and band-
width reservation in wireless cellular networks. Computer Networks, 38(5):577–
589, 2002.

61. J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based spatial
queries. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD), pages 443–454, 2003.

62. Z. Zhang. Routing in intermittently connected mobile ad hoc networks and delay
tolerant networks: Overview and challenges. IEEE Communications Surveys &
Tutorials, 8(1):24–37, 2006.

63. B. Zheng and D. L. Lee. Semantic caching in location-dependent query pro-
cessing. In Proceedings of the International Symposium on Advances in Spatial
and Temporal Databases (SSTD), volume 2121 of Lecture Notes in Computer
Science, pages 97–113, 2001.

64. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.



Index

Ad hoc networks, i
mobile, ii–iii

Coverage area, iv
Delay-tolerant networks, iii
Finite alphabet, iv
Fixed memory assumption, v
Forward control channel, iii
Handover, ii
Indexes, xiv

continuous queries, xv
mixed queries, xxii
predictive location, xv
proximity queries, xx
proximity query types, xv
range queries, xvi
range query types, xv
validity queries, xv

Kalman filtering, vi
Krichevsky-Trofimov, x
Learning automata, vi
Location, i

future, i
prediction, ii, vi–vii, xii, xiv
registration, iii
tracking, iii–iv

Markov chain, v
Markov predictors, v, vii, xi

CTW, x
LZ78, viii
PPM, vii
PST, ix
variable length, vi

Mobility, i, v
model, iii

Network, i
cellular, ii
topology, i, xiv
topology

symbolic, ii
Paging, iii

message, iii
Pattern matching, vi
Predictor, v
Queries, xiv
Query, xv

continuous, xv
nearest-neighbor, xv, xxi–xxii
predictive, xxiii
proximity, xv
range, xv, xix
snapshot, xvi
two-dimensional, xviii
window, xvi, xxii

Shadow Cluster, ii
Tracking, iv

predictive, iii
Tree, vii

B+, xv
B, xviii
B+, xxiii
binary, xi
Bx, xxiii
context, x
digital search, vii
probabilistic suffix, ix
quadtree, xvi, xviii
R, xv, xx
range, xviii
TPR, xviii–xix, xix, xxi, xxiii

Ubiquitous, i
mobile computing, i

Uncertainty, ii
Update, iii, viii, xvii–xviii
Voronoi, xx

cell, xx
order k, xxii
diagram, xx

xxxi



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


