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ABSTRACT
Over the last decade a vast number of businesses have devel-
oped online e-shops in the web. These online stores are sup-
ported by sophisticated systems that manage the products
and record the activity of customers. There exist many re-
search works that strive to answer the question ”what items
are the customers going to like” given their historic profiles.
However, most of these works miss to take into account the
time dimension and cannot respond e�ciently when data are
huge. In this paper, we study the problem of recommenda-
tions in the context of multi-relational stream mining. Our
algorithm first separates customers based on their historic
data into clusters. It then employs collaborative filtering
(CF) to recommend new items to the customers based on
their clustering structure. We evaluate our algorithm on two
data sets, MovieLens and a synthetic data set.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Data Mining

Keywords
Stream recommenders, evolving user preferences, streammin-
ing

1. INTRODUCTION
Data mining for recommendation engines is a mature do-

main, and the underpinnings of the core procedure nowadays
constitute public knowledge. In the simplest scenario, the
recommender matches the preferences of a peer user to the
preferences of users similar to her, and then recommends
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items that these similar users have liked. In the most cases
the user preferences are retrieved through the web, recorder
in historical databases and used by the recommendation en-
gines, which are included in internet applications, e-business
systems, e-shops etc. Data mining and Web mining are re-
sponsible for learning a model on user similarity; the sim-
plest case involves o✏ine clustering users on similarity of
preference. However, this traditional view of a recommen-
dation engine oversees the fact that user preferences change
over time: the preferences of a 22-year old girl are not the
same she had when she was a teenager. In this study, we
propose a method that couples data stream mining with a
recommendation engine to learn and exploit the evolution
of user preferences.

The awareness on the importance of time for a recommen-
dation engine gained momentum during the Netflix competi-
tion (an one-million-dollar competition for making a recom-
mender that outperforms the existing system). The compe-
tition’s winner, Yehuda Koren, has demostrated how the in-
corporation of time into an ensemble of learners boosts pre-
dictive performance [8]. Remarkably, the approach of Koren
cannot adapt to the evolving preferences of people: it rather
captures the preferences of the people during the time period
of observation and learns a static model on them. This is not
appropriate for the dynamic environment of a recommenda-
tion engine: the model learned by the miner on the basis
of observed transactions must be adapted as new transac-
tions arrive, because new transactions reflect the evolution
of people’s preferences.

To deal with this issue, we observe the activities of the
users as a stream, and perform stream clustering upon simi-
lar entities. At each timepoint, the recommendation engine
uses the clusters to identify users similar to the peer user
and deliver suggestions to her. However, the task of clus-
tering similar users on their evolving preferences does not
agree with the conventional stream mining paradigm either!
To juxtapose the task of learning the preferences of evolving
users to a conventional stream mining task, consider follow-
ing example of a traditional stream.

Assume an e-shop that records customer purchases. The
purchases constitute a stream, an instance of which contains
the identifiers of the customer and of the purchased prod-



uct, the timepoint of the purchase, and further information
such as the product’s price, payment option, shipment op-
tion, delivery address etc. The shop is interested in detect-
ing fraudulent purchases. To this purpose, transactions are
clustered on similarity and outliers are inspected. As new
purchases arrive, the clusters evolve, some transactions turn
to be similar to earlier outliers (and are thus suspect), while
new outliers show up (and must be inspected, too). In other
words, the stream clustering algorithm adapts the clusters
to arriving data and allows for the detection of new kinds of
fraudulent transactions.

The above example describes (unsupervised) model learn-
ing on a stream of instances - the purchases. The recom-
mendation scenario is a bit di↵erent though.

Assume again the e-shop that records customer purchases
as a stream. The shop is interested to recommend to each
customer X a product that she will like, knowing that her
attitude to some products may have changed. To this pur-
pose, the list of products preferred by X must be extended
whenever she buys a new product, but the timepoint of the
purchase must also be recorded. The miner must now clus-
ter together users who are similar to each other because they
(a) now like the same products and (b) have liked the same
products in the past.

The two examples di↵er, because the first one involves
clustering the instances on similarity, while the second one
requires clustering the users on similarity of the sets of in-
stances associated to them at di↵erent moments. This task
requires multi-relational stream clustering. We build upon
our earlier method [19] for clustering a stream of complex
objects, and extend it to deliver insights on user similarity
on the basis of their past transactions.

The paper is organized as follows. In the next section we
discuss related work on recommendations over dynamic data
and on multi-relational stream learning. Then, we present
our approach for the formulation of recommendations to-
wards users with evolving preferences. We report on our
experiments with historical data for the MovieLens and a
synthetic data set. The last section concludes our work.

2. RELATED WORK
In this Section, we will present the main work in col-

laborative filtering, content-based filtering and hybrid rec-
ommender systems. Moreover, we will discuss the latest
progress on time-aware recommender systems, which is a
rather new research area. Notice that, related work comes
from two di↵erent direction: the domain of (i) temporal min-
ing and (ii) stream mining. The di↵erence between these
research directions is that the latter does assume that all
data are retained in eternity. Thus, data elements must be
discarded or archived at some point and the model should
be able to adapt to drifts in the underlying concept (concept
drift).

2.1 Content-based, Collaborative Filtering and
Hybrid Recommender Systems

Three parallel approaches have emerged in the context of
recommender systems: collaborative filtering (CF), content-
based Filtering (CB) and hybrid methods.

Collaborative filtering algorithms recommend those items
to the target user, that have been rated highly by other users
with similar preferences and tastes [16, 18, 6, 10]. In most
CF approaches, only the item and users’ identifiers are ac-

cessible and no additional information over items or users
is provided. Websites that provide recommendations in the
form, “Customers who bought item i also bought item y”,
typically fall under collaborative filtering approaches. Grou-
plens research group [16] introduced a collaborative filter-
ing algorithm, known as user-based CF, because it employs
users’ similarities for the formation of the neighbourhood
of nearest users. Another CF algorithm proposed by [18],
is known as item-based CF algorithm, because it employs
items’ similarities for the formation of the neighbourhood of
nearest users. A pitfall of CF is the cold start problem: new
items have received only few ratings, so they cannot be rec-
ommended; new users have performed only few transactions,
so there are hardly other users similar to them.

Content-based filtering assumes that each user operates
independently. It exploits only information derived from
documents or item features (eg. terms or attributes) [15,
14, 11]. In particular, it exploits a set of attributes which
describes the items and recommend other items similar to
those that exist in the user’s profile. In this way, the cold
start problems for new items and new users are alleviated,
provided that users prefer items that are similar in content to
those they have already chosen. However, the pitfall of CB
is that there is no diversity in the recommendations. That
is, the user gets recommendations that are very familiar to
her, since these recommended items are similar to those in
her item profile.

There have been several hybrid attempts to combine CB
with CF. The Fab System [1], combines CB and CF in its
recommendations, by measuring similarity between users af-
ter first computing a profile for each user. Fab initially cate-
gorizes documents by a CB filter and then recommends them
to the test user based on his relevance feedback. In contrast,
the CinemaScreen System [17] runs CB on the results of CF.
In particular, CinemaScreen system computes predicted rat-
ing values for movies based on CF and then applies CB to
generate the recommendation list. Our approach can be cat-
egorized as a hybrid method, since it combines both content-
based characteristics and collaborative filtering. In contrast
to the aforementioned hybrid methods, we also incorporate
in our model the time dimension.

2.2 Time-aware Recommender Systems
In the last years, there are scholars who proposed meth-

ods that attempt to capture the temporal aspects of user
behaviour, while others investigated the updating of rec-
ommenders to change in the user behaviour. Remarkably,
these two categories of methods are distinct, in the sense
that studies capturing temporal aspects produce static mod-
els, while studies capturing change produce dynamic mod-
els. Our approach belongs to the second category. In this
Section, we will briefly discuss the approaches of Ding and
Li [4] and of Yehuda Koren [7, 8], which belong to the first
category.

Ding and Li [4] proposed a method that assigns time
weights for purchases of items by decreasing the weight to
old purchasing data. They have shown that the users’ pur-
chase habits vary and even the same user has quite di↵erent
preferences towards the same items over time. Yehuda Ko-
ren [7, 8] considers the scenario of item rating by capturing
the influence of time on ratings. It has been identified the
following aspects: (i) user-bias (deviation from the average)
changes over time, i.e. the user’s rating assigned to an item



may vary over time and may exhibit periodicity, (ii) the
item-bias changes over time, and (iii) the ratings submitted
by a given user (i.e. user’s preference) may vary depending
on time of day, day of week or period in the year. Based
on the aforementioned aspects a baseline predictor (which
assigns to each item an average rating µ) can be extended
as shown in Equation 1:

brui = µ+ bu(tui) + bi(tui), (1)

where brui is the predicted rating of a user u for an item
i, µ is the overall average rating, bu and bi are the user and
item bias over µ respectively, and tui denotes the rating of
user u on item i at day t.

The above baseline predictor can be easily integrated into
a factor model [7, 8]. Koren and Bell [9] proposed timeSVD++,
a set of predictors that learn latent factors (as with tradi-
tional matrix factorization) thereby exploiting implicit in-
formation on user preferences (i.e which items users rate,
regardless of their rating) and the impact of time (includ-
ing day e↵ects on a user’s rating attitude). timeSVD++ was
shown to o↵er accuracy superior to SVD++ [9].

Although the above approaches are temporal and of evolu-
tionary nature, they are not appropriate for stream mining,
because stream mining requires that a model is adapted to
new data as they arrive, while the aforementioned methods
learn a model that explains all data seen thus far. An excel-
lent elaboration on this issue has been written down by Ko-
ren and Bell themselves in [9], subsection ’5.3.4.1 Predicting
future days’ (page 160), stating among others that ’. . . for
those future (untrained) dates, the day-specific parameters
should take their default value.’ Although they refer explic-
itly to day-specific parameters, we must keep in mind that
all parameters of the timeSVD++ have been specified with
cross validation upon the whole dataset [9]. Once new un-
trained data arrive, cross validation must be rerun, because,
as Koren and Bell state on the same page 160 ’. . . our tempo-
ral modelling makes no attempt to capture future changes.
All it is trying to do is to capture transient temporal ef-
fects, which had a significant influence on past user feed-
back’, whereby we should like to stress the word ’past’.

Another way of formulating the statements of Koren and
Bell is that timeSVD++ learns a static model over a finite
dataset, and can be applied on future data (on a stream) if
and only if all thinkable concept drift can be captured by
modelling this finite dataset, i.e. if and only if future data
follow exactly the same distribution as past data. Stream
mining research encompasses methods for the analysis of
data for which this assumption does not hold.

2.3 Stream Mining for Recommender Systems
The importance of model updating in a recommender has

been demonstrated by Dias et al. [2]. They have experimen-
tally shown that updating the checkout recommender model
files consistently resulted in an increase in the number of new
shoppers using the recommender system.

A truly adaptive recommendation engine for streams has
been proposed by Nasraoui et al. in [13] for the prediction
of the next inspected page in user sessions. The stream un-
der inspection is the clickstream, in which sub-sessions are
observed, matched to already seen (complete) sessions, from
which the top-N recommendations are derived. The recom-
mendations are formulated and evaluated immediately by
reading in the users’ responses (essentially, the next page

click per session) and incorporating them into the model
learned thus far. For model learning and updating, Nas-
raoui et al. consider kNN, which finds the k most similar
sessions to an input sub-session, and their stream cluster-
ing algorithm TECNO-STREAMS [12], which learns and
adapts profiles (as abstractions of sessions) and returns for
each input sub-session the profile most similar to it.

Nasraoui et al. [13] have tested their adaptive recommender
on two Web clickstreams, thereby simulating two evolution
scenarios. In the “induced drastic sequential user profile
evolution” (scenario D), the sessions of the data set are clus-
tered into profiles, and the sessions of each profile are deliv-
ered to the recommender one profile at a time. Hence, once
the session of a given profile are read through, there come
sessions that do not fit to the model learned by the recom-
mender at all - this corresponds to a shift. In the ’natural or
mild chronological order’ (scenario M), the sessions arrive in
chronological order, hence the profiles are mixed. The eval-
uation on moving average of the F-measure shows that kNN
is of slight advantage over TECNO-STREAMS in the sce-
nario D, because the former relies more on model learning,
while the two algorithms behave similarly under Scenario M.

Our approach follows the same philosophy as the recom-
mender of Nasraoui et al. [13]: we anticipate that the rec-
ommender should forget old instances and learn from newly
arriving instances immediately; the recommender uses pro-
files instead of matching individuals; the profiles are adapted
over time to respond to evolving user preferences. Our eval-
uation is also dictated by the idea that the recommender
must deal with both sudden shift (as in scenario D) and
with arbitrary drift (scenario M) 1 In short, we share the
core ideas of proper stream learning under drift.

Yet, the objective of Nasraoui et al. [13] makes their al-
gorithm not comparable to ours. In particular, their recom-
mender predicts the next page of a user session, and adapts
as more and more of the session is observed. Although it
is possible to express the sequence of items ever observed
by a user as a session, this is not desirable: a user session
is a matter of moments or hours, while the interaction of a
user with an e-shop may extend arbitrarily across time; for-
getting the beginning of a session as the session progresses
is unintuitive, while forgetting very old purchases of a user
is a reasonable option; a user revisits pages s/he has stud-
ied before, thus allowing for forms of sub-session matching
that make no sense when comparing the preferences of users.
Most importantly, a session in clickstream mining is a se-
quence of page identifiers, whereby we incorporate into user
similarity and model learning also the properties of the prod-
ucts observed at each moment, allowing the impact of old
products to fade out. A comparison of clustering algorithms
might have been possible, but the experiments of [13] have
shown that kNN is mostly superior and never truly inferior
to TECNO-STREAMS. Hence, we compare our approach to
an adaptive collaborative filtering stream recommender that
essentially uses kNN.

Recently, Diaz-Aviles et al. have proposed Stream Rank-
ing Matrix Factorization (RMFX) [3], an algorithm that is
intended to perform matrix factorization and item ranking
on a stream. The focus of the algorithm is on maintaining an
up-to-date model on the basis of possibly small, intelligently

1We use more elaborate scenarios for concept drift: assum-
ing only one profile at a time and abrupt change, as in sce-
nario D [13] is a bit simplistic.



devised samples. Accordingly, the experimentation was done
on two time slots only (one slot used for learning, the other
for testing) and delivered insights on the e�ciency of the
algorithm but not on its adaptivity. Beyond this, RMFX
must know the sets of users and of items (i.e. the dimen-
sions of the matrix) in advance (similarly to timeSVD++);
then, it can fill it gradually. This makes the algorithm inap-
propriate for our scenario: in a realistic long-term setting,
new customers show up and new items may be put to sale at
any time, hence the matrix dimensions cannot be known in
advance. Note that the previously mentioned algorithm of
Nasraoui et al. [13] has neither caveat: it has been designed
to be adaptive and it does not need to know all users nor
all pages that a user may choose to access. Hence, in our
evaluation we use as baseline an algorithm that satisfies the
same core properties as the one of [13].

3. THE XSTREAMS METHOD
Our stream recommender xStreams consists of two mod-

ules. (i) The back end is an incremental, adaptive learner
that processes the streams of activities (purchases with rat-
ings) and associates it with earlier obtained and updated
information on the entities involved - users/customers and
items/products. (ii) The front end builds on top of the incre-
mental learner to deliver the top-N items as recommenders
to each user. We first describe the process of reading in-
stances from the stream of postings and combining them
with earlier recorded information on the referenced entities
(users, items). This process is called ’incremental propo-
sitionalisation’ and comes from our earlier work [19]. We
use the results of this process to compute the similarity of
a given user to other users, as described next in subsec-
tion 3.2. The back end and the front end algorithms are
presented as pseudo-code in subsection 3.3, where we also
discuss their complexity. As running example we use the
multi-table stream of ratings, users and items in Figure 1.

3.1 Incrementally combining information on
users, items and ratings

The core source of information for the recommendation
engines is the stream of activities performed by the users.
In the classical stream mining scenario, stream instances
are observed, processed and forgotten. In the context of
learning, a stream record is used to adapt the model (here:
a model of the ratings) and is then forgotten. However, for
the recommendation scenario we study, we want to learn
and adapt a model of the users, so that the recommender
can respond to changes in a user’s attitude towards items.

3.1.1 Learning Task on Multiple Streams

In Figure 1(a), we depict users and their ratings for movies
by means of three tables. Model learning and updating by
the recommender’s back end will be performed on the ta-
ble User, which is linked to the table Rating, which is in
turn linked to the table Movie. The stationary information
on users, such as name and gender, is stored in the table
User, but learning must also exploit each user’s ratings for
movies, as well as the properties of the movies themselves,
e.g. genre. Since ratings arrive at any time, Rating is a
stream, the records of which are seen and forgotten. In
contrast, users and movies are perennial entities: they are
stored in the database and retrieved from it to be linked to
new information (new ratings). Nonetheless, new users and

new movies may also arrive at any time, hence User and
Movie are also streams - streams of perennial entities [21].
For perennial entities, we use the terms ’table’ and ’stream’
interchangeably hereafter, while for a ephemeral records like
the ratings we use solely the term ’stream’.

The back-end of our method, xStreams backend, is an
adaptive stream mining algorithm that learns a model over
the table User - as it is extended with information from the
streams Rating and Movie. However, the natural join of
entities of these entity types is not appropriate for learning:
as can be seen in Figure 1(b), this join result contains as
many user entities as ratings - user David (a single person)
appears as four independent entities. For model learning, we
rather need an expansion of table User with the data from
the other tables. To this purpose, we use the incremental
propositionalisation algorithm proposed in [19]: it expands
the so-called ’target stream’ (here: User) with information
from the other streams, and produces one entry per entity of
the target, as can be seen in the first two rows of the propo-
sitionalised table in Figure1(c). When new stream records
arrive, the vectors of the entities are updated; in Figure 1(c),
we see the entries/vectors of David and Tom for June 2012
and then for July 2012 2.

3.1.2 Incremental Propositionalisation for Learning

More formally, let T the target stream, i.e. the stream, on
which we want to perform the learning: in our recommenda-
tion scenario, T is the stream of users (cf. User in Figure 1).
It is a stream, because new users arrive at any time. It is the
target stream, because we want to learn the user profiles and
exploit them to compute user similarity. For this learning
task, we combine T with information from further streams
T1, . . . , TJ referencing it 3; in our recommendation scenario,
these further streams are the stream of ratings and the items
(also a stream) - cf. Rating, Movie in Figure 1. We slide
a window of length W timepoints over the streams, so that
the data observed at timepoint t are the entities from all
streams observed in the interval (t�W, t]. Entities outside
this interval are forgotten.

Let schema(X) be the schema of any of these streams
X 2 A := {T , T1, . . . , TJ}. At each timepoint t, our incre-
mental propositionalisation method [19] expands each entity
u 2 T with the contents of the entities that reference u - they
constitute the set matches(u), the elements of which belong
to di↵erent streams from A. For this expansion operation,
our method extends schema(T ) by turning the values of the
elements in matches(u) into new columns/features for eu.
The set of features thus generated can change at each time-
point, we therefore denote it as Features(t). In particular,
at timepoint 0:

• For each numerical attribute A in [X2Aschema(X)
that appears in the schema of some element y 2 matches(u),
we add to Features(0) four features: themin, max, av-

2In Figure 1(b), we show each user twice to demonstrate
the di↵erences in the aggregated ratings between June and
July. The learner will see only one entry/vector per user: in
June 2012 it uses the June vector, in the next month this
old vector is replaced by the July vector.
3Any of Tx may be a static table, but we consider the general
case where all of them are streams. For example, if movie
genre were not an attribute but rather an entity type Genre,
then we could assume that all possible genres are known in
advance, hence Genre would be a table rather than a stream.



(a) Original Schema

MovieID UserID Actor Class Rating Time UserID Name Age Gender MovieID Title Genre Director
1 1 A 10 7/6/2012 1 David 50 M 1 John Carter of Mars Science-Fiction Andrew Stanton
2 1 B 6 15/6/2012 2 Tom 24 F 2 Friends with Kids Comedy Jennifer Westfeldt
3 2 C 5 18/6/2012 3 Hunger Games Drama Gary Ross
4 2 C 10 24/6/2012 4 Lucky One Drama Scott Hicks
1 1 B 8 17/7/2012
2 1 C 4 20/7/2012
3 2 C 3 22/7/2012
4 2 B 7 25/7/2012

(b) Natural Join
MovieID Title Genre Director UserID Name Age Gender Actor Class Rating Time

1 John Carter of Mars Science-Fiction Andrew Stanton 1 David 50 M A 10 7/6/2012
2 Friends with Kids Comedy Jennifer Westfeldt 1 David 50 M B 6 15/6/2012
3 Hunger Games Drama Gary Ross 2 Tom 24 F C 5 18/6/2012
4 Lucky One Drama Scott Hicks 2 Tom 24 F C 10 24/6/2012
1 John Carter of Mars Science-Fiction Andrew Stanton 1 David 50 M B 8 17/7/2012

User MovieRating Stream

2 Friends with Kids Comedy Jennifer Westfeldt 1 David 50 M C 4 20/7/2012
3 Hunger Games Drama Gary Ross 2 Tom 24 F C 3 22/7/2012
4 Lucky One Drama Scott Hicks 2 Tom 24 F B 7 25/7/2012

(c) Propositionalised Table

UserID Name Birth Date Gender A B C Min Max Avg Count Time Period
1 David 12/1/1957 M 1 1 0 6 10 8 2 June 2012
2 Tom 14/7/1965 F 0 0 2 5 10 7.5 4 June 2012
1 David 13/8/1974 M 0 1 1 4 8 6 2 July 2012
2 Tom 22/8/1981 F 0 1 1 3 7 5 2 July 2012

Actor Class Ratings

Figure 1: User and Movie entities linked to Rating entities: (a) the original schema consists of three tables, all
of which are actually streams; (b) the natural join over them results in one entry/vector per rating, while (c)
the propositionalisation operation produces one vector per user. We perform incremental propositionalisation
to learn over the User entities, as they grow with information on ratings and movies.

erage and count for A, and we store in them the cor-
responding values seen in y. In our running example,
we have calculated the min, max, average and count of
ratings for each user id per month – see Figure 1(c).

• For each nominal attribute A in [X2Aschema(X), we
create rA features, one per distinct value of A observed
at timepoint 0 for all entities in the target stream.
For an entity x, each of those features takes the value
1(one) if the original attribute value was in an entity
in matches(x) and 0 (zero) otherwise.

At a later timepoint t, we update the numerical features by
adding values for the arriving entities in matches(x) and
by subtracting values for the entities that exit the sliding
window, i.e. have been seen earlier than t � W . For the
nominal attributes, we can extend Features(t) as new, pre-
viously unseen, nominal values arrive. However, it is not
feasible to expand Features(t) to unlimited values. Rather,
we set an upper threshold size ⌧ to the number of generated
features per attribute and encode the values observed thus
far for this attribute into ⌧ derived features. This encoding
is based on grouping values that appear in otherwise similar
entities together into ⌧ clusters. Details on this encoding
are provided in [19].

As can be seen in the two entries per user of Figure 1(c),
the propositionalisation algorithm delivers at each timepoint
the vector of each active user, i.e. for each user who has per-
formed some rating inside the sliding window. The user’s
vector contains the information obtained on this user from
the data in the window; these data are summarized, while
data that have slide outside the window are forgotten. De-

tails on window sliding and memory management can be
found in [20].

3.2 Computing the Similarity of Evolving Users
The vectors of the active users form the basis for comput-

ing user-user similarity. We consider two aspects of simi-
larity between users: similarity on the basis of summarized
past preferences and similarity on the basis of current rat-
ings. We describe these two types of similarity below, and
then explain how we combine them into a single similar-
ity function. It must be stressed that the similarity values
change as new ratings arrive, hence we need to update the
similarity matrix in an incremental way or replace it with
some surrogate that can be computed e�ciently.

3.2.1 Similarity on the basis of past preferences

Let u, v be two users that are active at timepoint t, i.e.
have performed ratings in the interval (t �W, t], where W

is the window size. Let e

t
u, respectively e

t
v be the updated

vectors of these two users after propositionalisation on all
information within the interval. We define the similarity
between these users with the function:

simCB(t, u, v) =
e

t
u.v

t
v

|etu|.|etv|
(2)

The postfix CB in the name of simCB() stands for ’Content-
Based’ and reflects the fact that attributes of the users are
also taken into consideration by the similarity measure.

For the e�cient computation of similarity on the basis of
past preferences, we couple incremental propositionalisation
with stream clustering of the users’ entries. In particular,



at each timepoint t, we retrieve from secondary storage all
users who performed ratings within the interval (t � W, t]
(W is the window size), i.e. all active users. We expand
the entries of these users with incremental propositionalisa-
tion, place them into K clusters and then adapt the clusters
through centroid re-computation [20]. Then, for each user u
we can return the k most similar users by assigning u to the
cluster/profile with the closest centroid and then depicting
the k nearest neighbours to u from this cluster.

It is thinkable that the cosine similarity used in Equa-
tion 2 is extended to consider only co-inspected items, in a
similar way that only co-rated items are used in Collabora-
tive Filtering to compute user similarity. In particular, for
the similarity between two users in CF, items not rated by
one of the users are ignored. By this, it is avoided that user
similarity takes into account items that one user has never
inspected. In simCB(), we could similarly restrict the sim-
ilarity computation to skip features (derived attributes, cf.
subsection 3.1) that have not perceived by one of the users
being compared. For example, if a user has never seen a
movie of a specific producer, we could ignore the attribute
referring to this producer, when comparing this user with
others. This extension has not been considered in the fol-
lowing; it is left as future work.

3.2.2 Similarity on the basis of ratings

Using the underpinnings of [6, 10], let the rating of a user
u over an item i be denoted as ru,i. If the user has not
rated the item i we set ru,i to NULL. Since we perform
collaborative filtering on a stream, we slide a window of
length W over the stream of ratings and consider at each
time point t only the set of ratings Rt inside the window
(t�W, t]. At timepoint t, let It,u be the set of items rated by
u within Rt and It,v the corresponding dataset for another
user v. Then, the ratings-based similarity between u and v

is computed as:

simCF (u, v) =

P
i2It,u\It,v

(ru,i · rv,i)
qP

i2It,u
(ru,i)2

qP
i2It,v

(rv,i)2
(3)

where It,u and It,v are computed anew at each time point
t and may have an empty intersection inside some window,
although they were overlapping before that window.

Combining di↵erent aspects of user similarity: The
conventional similarity function simCF () exploits similarity
of ratings between two users. Knowledge about each user’s
profile and expressed past preferences is captured by our
new similarity function simCB(), which exploits accumu-
lated past information from the aggregated feature profile
of the users. As in conventional collaborative filtering, the
expected rating is computed as the weighted average of the
ratings made by users similar to u, but xStreams combines
the two similarity functions when it computes the expected
rating of user u for item j, r̂u,j . For rating prediction, we
use Equation 4, which is explained in subsection 3.3.2.

3.3 xStreams BackEnd and FrontEnd
The xStreams BackEnd adaptive learner and FrontEnd

recommendation interface are decoupled, indirectly interact-
ing modules. The back end slides a window of width W over
the stream and maintains the perennial entities of seen users
and products in a database. It maintains the learned user

Algorithm 1: xStreams BackEnd

Input : stream of ratings R,
database of perennial entities D,
window length W in timepoints

1 Uact  ;
2 foreach timepoint t do
3 Rt  ratings arrived in (t� w, t]
4 foreach user u who performed ratings in Rt do

5 Retrieve the state of the user’s vector et
0
u from D

6 Expand e

t0
u with the ratings of Rt that were

performed by u into e

t
u

7 if user u is already in Uact then
8 replace the old vector of u in Ut with e

t
u

9 end

10 else insert (u, etu) to Uact

11 end
12 Remove all users that are inactive in Rt from Uact

13 Write (t, Uact) to Output
14 end

profiles up to date. These are used by the front end for the
identification of the k most similar users to a given user u,
for whom the algorithm formulates n recommendations.

3.3.1 xStreams_BackEnd

The pseudo-code of our adaptive learner is depicted in
Algorithm 1. At each timepoint t, the algorithm processes
all ratings arrived in (t�w, t]. These ratings constitute a set
Rt (line 3), from which the active users Uact in the interval
are extracted. For a user u that has performed ratings in
Rt, her vector is fetched from the database D (line 5). The
vector is modified to accommodate the current ratings (line
6), as described in Sec 3.1. For a user that already exist in
Uact, the algorithm replaces the old vector with the newer
one (line 8). The vectors of new users are simply inserted
it into the list (line 9). All the users that have become
inactive, i.e., they have no ratings in Rt, are removed from
the list of active users (line 10). Since BackEnd processes a
continuous stream, hence it contains no return operation.
It rather writes the updated list of users to the Output (line
11) before processing the new timepoint (line 2).

3.3.2 xStreams_FrontEnd

The interactive FrontEnd of our recommender predicts the
items and their ratings for a specific user u. The pseudo-
code is given in Algorithm 2. Note that the timepoint t is the
timepoint ’now’, the moment at which user u is observed.
It must be passed as parameter to the interface between
FrontEnd and BackEnd, so that the correct similarity val-
ues are computed on the basis of the stream chunk Rt (cf.
Algorithm 1).

To build the set TopUsersku (line 1), we compute the sim-
ilarity between u and all other active users by using both
simCB() and simCF (). We use simCB() of Equation 2
to compute the similarity of u to each user u

0 2 Uact (line
11, Algorithm 1), where similarity refers to aggregated in-
formation on these users. We use simCF () of Equation 3
to compute the similarity of u to active users on the non-
aggregated individual ratings in Rt. We then compute for



r̂u,j = avgu +

X

v2TopUsers

k
u^rv,jNOTNULL

simTotal(t, u, v) ⇤ |rv,j � rj |

X

v2TopUsers

k
u

simTotal(t, u, v)
(4)

Algorithm 2: xStreams FrontEnd

Input : user u,
k neighbours,
n recommendations, timepoint t, and
corresponding set of ratings Rt

Output: list of recommended items RIu for user u

1 Compute TopUsersku, the set of k most similar users to
u at timepoint t, using simCF () and simCB()

2 avgu  average rating value of u in Rt

3 RIu  ;
4 foreach item j in Rt so that ru,j is NULL do
5 compute the average rating for j within Rt, rj
6 compute r̂u,j using Equation 4
7 add (j, r̂u,j) to RIu

8 end
9 Sort RIu on r̂u,j and retain only the top-n positions

10 return RIu

each of the users in CBu(t) [ CFu(t) the value4

simTotal(t, u, v) =

weight ⇤ simCB(t, u, v) + (1� weight) ⇤ simCF (u, v) (5)

Thereafter, we sort the users on decreasing similarity and
depict the top-k users, forming the set TopUsersku.

If the weight of simCB() is set to 1, then we ignore
simCF (). This makes sense if the current data are so volatile
that we cannot draw safe conclusions from the current be-
haviour of the users, and should concentrate on their past
profiles. If the weight is less than 1, then we use simCF () to
exploit also the current user behaviour, as reflected in their
ratings in Rt. Using this we estimate the rating r̂u,j that u
would have given to item j within the current time window.
Let rj be the avg. rating for item j in Rt, considering only
items not yet rated by u (line 4). Further, let rv,j be the
rating that user v 2 TopUsersku has given to item j within
Rt. Then, the predicted r̂u,j (line 6) is computed as shown
in Equation 4. The items with the estimated rating values
are accommodated in a list (line 7), and the top-n rated
items are returned for recommendation (lines 9-10).

The items and their estimated ratings are added to setRIu

(line 6), which is then sorted on rating value, retaining only
the top-n positions (line 8). The items at these positions are
recommended to the user u (line 9).

4. EVALUATION PLAN
Evaluation for recommenders on timestamped data is a

challenging issue. Diaz-Aviles et al. [3] define a timepoint
4This value might be perceived as the result of a similarity
function sim(). However, this operation can be computed
only over the set CBu(t) [ CFu(t) for some user u, since
these sets are computed independently.

tsplit and use all objects arriving prior to this timepoint for
learning and all objects arriving afterwards for testing. This
approach is based on the implicit assumption that past data
are adequate to predict the whole future, i.e. no concept
changes occur. However, stream mining is based on the
assertion that changes do occur.

In contrast to [3], Nasraoui et al. [13] partition the data
into batches, where each batch stores the data from a single
user-profile: the batches are presented to the recommender
one after the other, thus enforcing a concept shift at the
end of each batch. However, the evaluation of [13] caters for
concept change, but only for one particular change. For a
proper evaluation, we need a less heuristic approach.

In this section we discuss some issues that are critical
in order to successfully evaluate a recommender over data
streams. We discuss the conventional stream evaluation,
some works on streaming evaluation for recommenders and
juxtapose them with the challenges that arise in evaluating
a recommenders on streams.

Item recommendation can be modelled as classification
problem. Stream classifiers are evaluated using hold-out
evaluation or prequential evaluation [5]. In hold-out eval-
uation, a subset of the newly arriving objects is reserved
for evaluation. This approach has the disadvantage of com-
pletely wasting the information carried by the held-out ob-
jects. In prequential evaluation, new objects are first la-
belled by the model, so that the quality of the model is
evaluated; the objects with their true labels are then used
for model learning. We study whether prequential evalua-
tion can be used for stream recommenders and devise an
appropriate evaluation plan.

4.1 Prequential Evaluation?
In Fig. 2, we depict the interplay of learning and eval-

uation for a stream recommender. At each timepoint, the
recommender’s model is updated by incorporating the new
batch of active ratings, while the batch of old ratings is
forgotten. Prequential evaluation is done on future ratings.
The evaluation is subject to following challenges.

t
i

t
i−1t

i−2t
i−3t

i−4t
i−5t

i−6t
i−7 t

i4t
i3t

i2t
i1

Active Ratings Future RatingsOld Ratings

Concept Drift

Figure 2: Data exploitation in a stream recom-
mender: learning is done on the active ratings (those
in the window), evaluation on the future ratings,
which are gradually incorporated to the sliding win-
dow and used for learning.

Challenge 1 – the span of the future: In conventional pre-
quential evaluation, all objects to be labelled appear in the
very next batch, i.e., at timepoint ti+1. In recommenders,
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Figure 3: Statistics for MovieLens, recorded at each timepoint: from top: l-to-r, (a) #ratings per user, (b)
#ratings per movie, and for each timepoint (c) #ratings, (d) avg. rating, (e) # cold start items and (f) #
rated items.

the users in the current batch may not appear in the batch of
ti+1. For example, assume that the recommender suggests
item x to user u. u indeed rates x favourably, but does so at
t

0 � ti+1. Prequential evaluation will count a miss. A naive
way to alleviate this caveat is to consider all future ratings
for evaluation. This leads to the second challenge.

Challenge 2 – the drift in the future: Assume that we
evaluate on all future ratings. At timepoint ti+1, let item x

be recommended to user u, who rates it negatively at ti+4

(a miss). At ti+2 the model adapts to drift and learns that
u would dislike everything like x. So, after ti+2, the model
would not recommend x to u, yet the recommendation is
already done and counted. Hence, we must limit the horizon
of the prequential evaluation to a window of predefined size.

Challenge 3 – the one-time users: In social and commer-
cial sites, many users appear rarely or even only once. In
the MovieLens dataset (Section 5.1), 300 users (ca. 14% of
all users) appear only once. Prequential evaluation demands
a recommendation for each user seen at ti, but the outcome
cannot be verified since some users might not show up again.

Challenge 4 – the casual users: Many users re-appear ir-
regularly at timepoints that are far apart. When we dis-
cretized the MovieLens dataset into 140 months, we identi-
fied 400 users (ca. 19%) who appear at less than 5 timepoints
that are very far apart. If we use an evaluation horizon that
ends before the user’s next re-appearance, then prequen-
tial evaluation cannot categorize the outcome as hit or miss
(similarly to Challenge 3 ). If we specify a huge evaluation
horizon to capture the next re-appearance of such users, then
we would provoke again Challenge 2.

4.2 Prequential Evaluation with Hold-Outs
In the light of the above challenges, we propose a hybrid

method that sets apart a splittest portion of the ratings in
each incoming batch for hold-out evaluation, and performs
prequential evaluation on the remaining ratings. In partic-
ular, if splittest > 0, then we use 1� splittest of the ratings
first for evaluation and then for learning (i.e. for prequential
evaluation), and splittest only for evaluation. If splittest = 0,
we use all data for prequential evaluation only. Based on
preliminary experiments, we have used splittest = 0.5.

5. EXPERIMENTAL EVALUATION
We use the evaluation plan proposed in 4.2 to study the

performance of our method. We compare xStreams to a
stream-based extension of the collaborative filtering (CF)
algorithm of [23], which we call CFstream. Since we evaluate
on recommendations to users, we adjust the conventional
evaluation measures for recommenders as follows: for a test
user who receives a list of n recommended items, Precision
is the ratio of the hits (favourably rated items) among the
n ones; Recall is the ratio of hits from the top-n list to the
complete set of items rated favourably by the user; RMSE
is the Root Mean Square Error between predicted and true
rating for the test user.

5.1 Real and Synthetic Datasets

5.1.1 Real Dataset

We have used MovieLens5 dataset. It contains 2113 users,
10,197 movies and approximately 0.85 million ratings. Addi-
tionally to the user-item rating matrix, the dataset includes
information on each movie’s genre, directors, actors and user

5GroupLens website: http://grouplens.org/datasets/hetrec-
2011/; Dataset: hetrec2011-movielens-2k.zip
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Figure 4: Statistics for synthetic dataset: (a) number of ratings vs. user, (b) number of ratings vs. movies,
(c) average rating value vs. timepoint.

tags. This auxiliary information is provided as separate
streams/tables. We have created a multi-stream by using
the schema of Figure 5(a), whereby we grouped actors into
6 categories, by ranking them on importance of their role
in a movie multiplied by the average rating of those movie.
Summing up these values over all the movies an actor was
involved gives us an AScore for an actor:

AScore(a) =
X

m2movies(a)

(250�Rank(a,m)) ⇤MScore(m)

The six categories are based on AScore where, C1 accom-
modates first 18 actors, C2 the next 50, C3 the next 200,
C4 the next 500, C5 the next 5000 and C6 all the rest.

In Figure 3 we show statistics on MovieLens. Movielens
dataset follows zipf distribution for both the number of rat-
ings provided by users and the number of ratings given to
a particular movie, i.e., there is a small number of users
who have rated many items (short head) and many users
that have only rated a small number of items (long tail).
There are only few ratings before t30 (Figure 3c). The bulk
of rating starts arriving after t70. The average rating value
increases continuously with a sharp increase (concept shift)
at t80 (Figure 3d). Around t80, there also is a large influx
of new cold-start items (Figure 3e). We show later that
the concept shifts and the cold-start items a↵ect the per-
formance negatively, while the increase in #ratings and of
rated items have a positive e↵ect.

MoviesRatings

User

TagsActors

Genre

Items

Ratings

User

(a) (b)

Figure 5: Schema of (a) MovieLens Dataset, and (b)
Synthetic Dataset.

5.1.2 Synthetic Dataset

To study how xStreams responds to concept changes, we
build a synthetic dataset with predefined moments of drift.

We use the data generator of [22] that creates streams of
users, items and ratings. The schema of the generated rela-
tional data is shown in Figure 5(b). First, item descriptors
and user profiles are generated as vectors. They are cluster
centroids, so that items and users are generated as vectors
proximal to some centroid. A user profile u p is far or prox-
imal to an item descriptor i d, and thus dictates (with some
variance) the rating generated by some user who adheres to
u d for some item that adheres to i d. A user may change
from one profile to another with some likelihood, since peo-
ple’s preferences change with time.

In our experiments with the synthetic dataset we incor-
porated concept drift into data. Our generator is capable of
simulating the properties of real world datasets as shown in
Figures 4(a) and 4(b), which they both follow the Zipf distri-
bution similar to the results shown in Figures 3(a) and 3(b),
respectively. Moreover, in Figure 4(c) we have incorporated
explicit concept drift into our synthetic data. It is a shift
of average rating that happens around timepoint 8, where
the mean rating value jumps from around 2,25 stars to 2.55
stars. This concept drift forces the users to change their
rating behaviour abruptly around timepoint 8. As will be
later experimentally shown, our xStreams algorithms is able
to adapt fast to the concept drift.

This generator simulates the properties of datasets like
MovieLens: users, items and ratings follow power law distri-
butions and overtime, users change their rating preferences.

5.2 Experiments on Synthetic Data
We first study the performance of xStreams for various

sizes of the sliding window: w = 2, 4, 8. We set xStreams to
return the top-n recommendations for n = 7 and to consider
the k = 7 nearest neighbors (cf. Algorithm 2). We use only
simCB(), i.e. set weight = 1.0 in Eq. 4 and splittest = 0.0.

In Figure 6(a) & (b), we see that the smallest window
size w = 2 achieves the best RMSE curve: the values are
low and the recovery after the concept shift at t8 is fast.
This indicates that forgetting old data soon is best if the
data exhibit drifts. We have also run this experiment for
Precision, Recall and F-Measure and also for k = 30; we
observed the same trend.

In Figure 6(c) & (d), we compare xStreams to CFstream.
For xStreams, settings are same except the window is set
to w=2 and varying the weight of simCB() in Equation 4,
assigning the values 1.0, 0.67, 0.34. xStreams outperforms
CFstream and exhibits lowest RMSE when the weight of
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Figure 6: RMSE values for xStreams (a-b) under di↵erent windows sizes w = 2, 4, 8 (simCB() = 1.0) and
(c-d) when Comparing xStreams to CFstream (w = 2), for k = 7 nearest neighbours and returning n = 7
recommendations; lower values are better.

simCB() in the ratings is 0.67; this means that both the
similarity of users on accumulated past data, as captured
by simCB(), and the conventional similarity on the ratings
should be taken into account. However, CFstream that only
considers the conventional similarity has lower performance.
When evaluating on F-measure, Precision and Recall (not
shown), xStreams also outperformed CFstream; for Preci-
sion and Recall, the values for weight = 1.0 were better
than for weight=0.67 in the first half of the timepoints but
deteriorated thereafter; for weight=0.67, the performance
was more stable.

5.3 Experiments on Real Data
We evaluate xStreams to CFstream on MovieLens. Over

the 140 timepoints (months) of the MovieLens data, we slide
a window w of length 12.

We show the curves on Precision and RMSE for w = 12,
n = 2, and k = 100 in Figure 7 (a) & (b), respectively. The
evaluation measures illustrate nicely how di↵erent param-
eter settings respond to these two counteracting measures.
All the strategies had a low recall, which was around 0.04
with little variance among, therefore we omit their graphs.
The algorithm allows for the exploitation of more past data

because of the larger window size (w = 12). We have set the
number of neighbours k = 100 and used a splittest = 0.5, i.e.
half of the arriving ratings are held-out for evaluation. We
start with the delivery of recommendations at t30, because
the numbers of ratings and rated items are very low in the
first timepoints, while the number of cold-start items is very
high (see Figures 3(a), (d) and (c), respectively).

It is obvious that precision (and also recall) values depend
strongly on the number of recommendations. Thus, if we
increase the n parameter, precision will fall (and recall will
increase). Comparing the curves for the two n values, we
observe that the setting n = 2 and n = 7 (see Figure 7
(d) & (d)) leads to lower performance. Returning the top-
2 recommendations is more challenging, but we expected
that the large window size and the use of simCB() would
have partially compensated it. The precision drops faster
for n = 7 (Figure 7(a) vs (c)). A further reason for the low
performance is the use of splittest = 0.5: setting aside half
of the data for evaluation has a stronger negative impact in
the larger window.

Among the di↵erent variants of xStream and the CF-
Stream there is no clear winner. Rather, each strategy out-
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Figure 7: Comparison of xSreams & CFStream: from top l-to-r: Precision and RMSE for (a-b) n = 2, w =
12, k = 100, (c-d) n = 7, w = 12, k = 100.

performs the others at di↵erent moments. CFStream per-
forms comparably to xStreams in the first moments, while
the variants of xStreams with a weight of 67% or 0.33% for
simCB() show consistently better performance after t60,
i.e. they cope well with the influx of cold start items at t80
(Figure 3c). Since CFStream corresponds to a weight of 0,
and since xStreams with weight = 1.0 shows lower preci-
sion/recall values, we conclude that it is necessary to com-
bine the similarity among recent ratings (done by simCF ())
with the similarity of the profiles incorporating the users’
past behaviour (as done by simCB()).

6. CONCLUSION
We have presented a stream-based recommendation method

that learns and adapts to the user preferences, as these pref-
erences evolve over time. Preferences are reflected in the
ratings that users give to items; we accumulate them to
user profiles, and use stream clustering to build the profiles
and adjust them to change. This gives the basis for a more
elaborate notion of similarity: instead of a static similarity
between users, we have a dynamic similarity between user
profiles. To alleviate possible negative e↵ects caused by very

large profiles (sparse clusters with large radius), we also re-
strict similarity further by requiring proximity within the
profile. Hence, two users are similar at some moment, if
they have the same profile at this moment and are proximal
within the profile.

We have studied our approach on a synthetic and a real
dataset. The synthetic dataset has been used to depict the
e↵ects of change in a controlled, transparent way. For this
dataset, we have shown that our method experiences a per-
formance deterioration after the imputed change, where-
upon it replaces gradually but swiftly the outdated pro-
files with new ones, and recovers fast. The real dataset
MovieLens exhibits less drastic forms of change, whereupon
our approach also shows smoother performance. Strategies
with larger window size achieve higher precision and average
RMSE (which is apparently dominated by precision) at the
cost of low recall. The best balance between precision and
recall is achieved by a strategy with small window size, i.e.
one that maintains little profile information and replaces the
profiles as soon as performance deteriorates.

An intriguing finding was the discrepancy between preci-
sion and recall for all strategies, i.e. for both our stream-



based strategies with di↵erent window sizes and for the change-
insensitive baseline. A possible explanation, which requires
further investigation though, is the power law that governs
the data distribution. The long tail shown in Figure 3 im-
plies that little information is available for most of the users:
perhaps, high precision is achieved by learning a lot about
the few users in the short head, while the low recall is caused
by the long tail. This seems to be supported by the fact that
best recall is achieved by the strategy with the smallest win-
dow size, which exploits little information about the users
and forgets learned profiles fast. A deeper study of this issue
is our next planed task.

Related to the above is the future study of the implica-
tions of power law on the similarity among users: there are
many users with many ratings, but most users have few rat-
ings on mostly di↵erent items. This makes the computation
of similarity more complicated. We want to investigate elab-
orate similarity measures for such users. This will allow us
to tackle the problem of formulating recommendations for
the many users in the long tail, whose preferences evolve no
less than those of the few users in the short head.
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