
World Wide Web
DOI 10.1007/s11280-017-0454-0

Recommendations based on a heterogeneous
spatio-temporal social network

Pavlos Kefalas1 ·Panagiotis Symeonidis1 ·
Yannis Manolopoulos1

Received: 18 September 2015 / Revised: 30 October 2016 / Accepted: 20 March 2017
© Springer Science+Business Media New York 2017

Abstract Recommender systems in location-based social networks (LBSNs), such as
Facebook Places and Foursquare, have focused on recommending friends or locations
to registered users by combining information derived from explicit (i.e. friendship net-
work) and implicit (i.e. user-item rating network, user-location network, etc.) sub-networks.
However, previous models were static and failed to adequately capture user time-varying
preferences. In this paper, we provide a novel recommendation method based on the time
dimension as well. We construct a hybrid tripartite (i.e., user, location, session) graph, which
incorporates 7 different unipartite and bipartite graphs. Then, we test it with an extended
version of the RandomWalk with Restart (RWR) algorithm, which randomly walks through
the network by using paths of 7 differently weighted edge types (i.e., user-location, user-
session, user-user, etc.). We evaluate experimentally our method and compare it against
three state-of-the-art algorithms on two real-life datasets; we show a significant prevalence
of our method over its competitors.

Keywords Algorithms · Link prediction · Location recommendation · Friend
recommendation · Social networks · Big data

� Pavlos Kefalas
kefalasp@csd.auth.gr

Panagiotis Symeonidis
symeon@csd.auth.gr

Yannis Manolopoulos
manolopo@csd.auth.gr

1 Department of Informatics, Aristotle University, Thessaloniki, 54124, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-017-0454-0&domain=pdf
http://orcid.org/0000-0002-7197-1416
mailto:kefalasp@csd.auth.gr
mailto:symeon@csd.auth.gr
mailto:manolopo@csd.auth.gr

World Wide Web

1 Introduction

Users utilize location-based social networks (LBSNs) to share their location with their
friends, by incorporating in their posts the longitude and latitude information of their loca-
tion. In LBSNs, users explicitly build a friendship network by adding each other as friends.
In addition, users form implicit sub-networks through their daily interactions, like com-
menting on same posts or rating similarly some products/services in places they have
co-visited.

Previous works have focused on recommending friends or locations [9, 15] to users by
combining information derived from multi-modal and heterogeneous explicit and implicit
networks. In particular, there has been extensive research in this area, which mainly focuses
on information derived from users’ interaction with locations over user-location bipartite
network ties. However, such models are static and fail to capture adequately users’ prefer-
ences as they change over time. That is, time is an important factor in LBNSs, which affects
the recommendation accuracy. For example, users periodically perform daily activities in
specific locations (e.g. home, work, etc.).

To incorporate the time dimension into their models, Xiang et al. [16] and Yuan et al.
[19] proposed the construction of tripartite graphs (i.e., users, locations, sessions) known as
Session-based Temporal Graph (STG) andGeographical-Temporal influences Aware Graph
(GTAG), respectively. Notably, both STG and GTAG do not incorporate edges among nodes
of the same set, thus, failing to exploit information from all three unipartite networks (user-
user, location-location and session-session). For instance, STG and GTAG do not have links
among user nodes. However, intuitively friends tend to visit similar locations at close time
points, which means that friendship links could leverage the accuracy of location recom-
mendations. A second problem of STG and GTAG stems from their own structure. That is,
GTAG and STG do not connect directly users either with locations or sessions, which results
to lower recommendation accuracy when data (i.e., session/location nodes) are sparse.

In this paper, we provide recommendations based on a Heterogeneous Spatio-Temporal
graph (HST graph) by incorporating the time dimension into our model. To build this HST
graph, we create a new type of an artificial node, called extended session node, which is
associated with the co-location of two or more users in a location at a specific time period.
Our HST graph incorporates 7 different unipartite or bipartite graphs providing more infor-
mation in comparison to STG and GTAG. Moreover, we follow a star-schema structure,
where users are directly connected with locations and sessions. This structure can be more
resistant in cases of sparsity (e.g. when there are not enough session nodes as a result of the
fact that users check-into locations at different time periods).

Further, we extend the Random Walk with Restart algorithm (RWR) to run on our HST
graph to provide spatio-temporal recommendations. Our extended version of RWR algo-
rithm is called RandomWalk with Restart on Heterogeneous Spatio-Temporal (RWR-HST)
algorithm. RWR-HST can adequately capture the notion of user-user similarity or the user-
location relevance from our HST graph. That is, social drivers which influence the ties
formation in communities like homophily, social influence, common friendship, etc. are
incorporated by design into the RWR algorithm, as it will be shown later.

The contributions of this paper are summarized as follows:

– We propose the construction of the HST graph, which is a tri-partite graph consist-
ing of 3-disjoint sets of nodes (i.e. sessions, users, locations), and incorporates edges
among nodes of the same set, including also three unipartite graphs, i.e. user friendship
network, session-session network and location-location network.

World Wide Web

– We propose a new variation of the RWR algorithm suitable for friend and location
recommendation in multi-modal social networks, called Random Walk with Restart on
Heterogeneous Spatio-Temporal algorithm (RWR-HST). Moreover, we provide details
about the complexity of the proposed algorithm and discuss other implementation
issues in detail (see Section 4.8).

– We compared our method with other state-of-the-art algorithms on two real datasets.
It will be shown that our RWR-HST algorithm prevails its predecessors and achieves
an significant improvement of 12-29% for friend recommendation and 9-30% for
location recommendation against all its competitors, in terms of relative average F1
performance (see Section 5.4).

The rest of this paper is organized as follows. Section 2 summarizes the related work,
whereas Section 3 presents a formal definition of the examined problem. Section 4 describes
the construction of our HST graph, its edge weighting and our proposed algorithm.
Experimental results are given in Section 5. Finally, Section 6 concludes the paper.

2 Related work

Time is a crucial factor in LBSNs, since it could leverage the accuracy of friend, loca-
tion and activity recommendations. Recently, Yuan et al. [18] exploited spatio-temporal
characteristics of POIs by using a unified framework consisting of spatial and temporal
dimensions.

Gao et al. [5] proposed the Location Recommendation with Temporal effects (LRT) algo-
rithm. They argued that the time dimension is crucial in recommendation and introduced
a framework to make time-aware recommendations. In the same direction, a time-aware
method was proposed by Marinho et al. [10] to improve location recommendations in
LBSNs. Ho et al. [7] extracted spatio-temporal information for future events from news
articles. Furthermore, Raymond et al. [13] proposed a method to provide location recom-
mendations for users that use buses. Their method was based on users’ location histories
and spatio-temporal correlations among the locations. By combining collaborative filtering
algorithms with link propagation, they were able to predict origins, destinations and arrival
times of buses.

In a different direction, Ding et. al [3] presented an algorithm to compute the time
weights for different items by assigning a decreasing weight to old data rather than to
items recently purchased. In particular, they use a clustering method to distinguish differ-
ent kinds of items by tracing user’s preference dynamics with the use of a decay factor.
Similarly, Koren [8] introduced the timeSVD++ algorithm, which captures the lasting and
the transient factors by modeling the user preference dynamics through the entire time
period. The goal is to distill longer term preferences from the noisy patterns using a matrix
factorization model. He showed that in an item-item neighborhood model, the essential
relations among the items can be extracted by learning how ratings evolve. Unfortunately,
both approaches are out of our scope, since they: (i) concern item rather than Point-Of-
Interests (POIs) recommendation, (ii) ignore geographical information, and (iii) ignore
social network relations.

The creation of artificial session nodes has been originally proposed by Xiang et al.
[16], who designed a framework that models users’ long-term and short-term preferences
over time. Their model was based on a Session-based Temporal Graph (STG) to incorpo-
rate user, location and session information. In addition, Xiang et al. [16] proposed a novel

World Wide Web

recommendation algorithm named Injected Preference Fusion (IPF) and extended the per-
sonalized Random Walk for temporal recommendation.

Figure 1 shows an example of STG. As shown, there are 2 users, 4 locations and 3 session
nodes. User U1 has visited locations L1, L2 and L3, whereas user U2 has visited locations
L3 and L4. Notice also that locations L1 and L2 are linked to Session 1 node. This means
that both locations (L1 and L2) were co-visited by U1 at the same period T1 (e.g. during the
morning of Thursday 19 September 2013). Based on this graph, the user-location bipartite
graph denotes the long term preferences of a user, whereas the location-session bipartite
graph denotes the short term preferences of a user.

Our work is inspired by the work of Xiang et al. [16]. However, our HST graph has two
main differences in comparison with STG:

– The introduction of session nodes to connect users (but not locations). That is, user
nodes are the heart of a star schema graph and, thus, they are connected via direct links
with both location and session nodes

– The graph structure per se is the second difference. It is not only a 3-partite graph
that consists of 3-disjoint sets of nodes (i.e. sessions, users, locations). In contrast, it
incorporates also edges among nodes of the same set, i.e. three unipartite graphs, which
makes it even richer in information.

Recently, Yuan et al. [19] inspired from the STG, proposed the Geographical-Temporal
influences Aware Graph (GTAG), which also consists of three entities (i.e., users, ses-
sions and locations). User nodes are connected with session nodes to capture the temporal
influences. Moreover, session nodes are connected with location nodes to capture the geo-
graphical influence. Notice that, in contrast to our HST graph, GTAG does not capture
the underlying similarity among nodes of the same set, i.e. user-user, session-session and
location-location. Moreover, they proposed a Breadth-first Preference Propagation (BPP)
algorithm to walk over GTAG. BPP follows paths based on 3 criteria: (i) there is no repeated
node in a path, (ii) the path contains only one visited location and session node of the target
user, and (iii) the walk terminates when an unvisited location is met. The main problem of
GTAG is its own structure. That is, users are not connected directly with locations, but they
are connected through session nodes. Thus, BPP fails to make accurate location recommen-
dations, when there are not enough session nodes (i.e. when users check-in to locations at
varying time points).

Figure 1 An example of STG

World Wide Web

Our approach differs from the GTAG-BPP algorithm at the following points:

– Our framework, builds the graph in a different way, which eventually allows our algo-
rithm to more efficiently exploit the relations among the nodes. In particular, HST
connects directly users with locations and users with sessions. This way, the algorithm
will not stop if there is no edge between a user node and a session node. In contrast, the
algorithm chooses an alternative path, through an edge connecting the user node with
either a session or a location node.

– Also, RWR-HST exploits efficiently information from sub-networks such as: (i)
friendship, (ii) user-location, and (iii) location-location etc., which GTAT-BPP ignores.

– Finally, HST weighs differently the edges between the nodes.

3 Problem definition

Periodicity and proximity are two main factors in LBSNs. To examine users’ check-in peri-
odic behavior, we have incorporated time into our model using Sessions, which captures the
co-locations among two or more users during a time window. This way, we augment our
knowledge about a user through his/hers check-in history. For example, if two users hang
out at a bar where a rock band performs live every Friday, then they probably like the same
things and they could be friends in the future or they could be interested attending the same
venues.

Thus, the problem can be formulated as: given a graph G which represents the relations
among users and locations nodes (i.e. check-in history), we want to recommend new friends
and POIs to a target user taking into consideration the auxiliary information derived from the
Session artificial nodes of our novel Heterogeneous Spatio-Temporal graph (HST graph).

Time-User-Location graph

Time-Time graph

User-Time graph

Time-Time graph

User-User graph

User-Location graph

Location-Location graphLocation-Time graph

Figure 2 Latent Relations among Time, Users, Locations dimensions of an LBSN and the generated k-
partite graphs

World Wide Web

4 Background and preliminaries

Here, we introduce the most important notions with the necessary definitions and a moti-
vating example depicted in Figure 2. Also, we provide an analytical description of the basic
entities that interact in a LBSN (i.e. users, locations, and time dimension) and discuss the
information types that can be extracted from the connections among them. Figure 2 shows
the relations among the aforementioned entities. As shown in Figure 2, we have 3 layers
(one layer for each entity) and 5 users who have visited some places. For each visit we keep
the time of the user’s check-in. As also shown in Figure 2, there are 7 graphs of different
participating entities (i.e. three unipartite, three bipartite and one tripartite). On the right
side of Figure 2, we can see the 3 generated unipartite graphs (Time-Time graph, User-User
graph, and Location-Location graph). On the left side of Figure 2, we observe 3 bipartite
graphs (User-Time graph, User-Location graph, and Location-Time graph). Finally, on top
of Figure 2, we can see the tripartite graph (Time-User-Location graph).

It is necessary to emphasize that the above graph is not a k-partite graph, since there
can also exist edges among nodes of the same set (e.g. an edge between a user and another
user, i.e. friendship). Henceforth, we denote this special case of a graph as hybrid k-partite
graph because it is a k-partite graph that consists of k-disjoint sets of nodes (i.e. time, users,
locations), incorporating edges among nodes of the same set as well.

As depicted in Figure 2, our data are in the form of 〈t ime, user, location〉 triplets, which
are usually modeled by a tripartite graph or a tensor. However, if we had to use a tripartite
graph or a tensor for capturing the time dimension as well, then we should create a new node
for each different timestamp. This would create a huge tensor or a temporal graph with an
enormous number of time nodes introducing severe noise in the model.

Definition 1 (Session node): Based on the above considerations, we choose to create a new
type of an artificial node, called session node, which is associated with the co-location of
two or more users (e.g. u1, ..., un) in a location l at a specific time period t . This co-location
of two or more users reflects their interest for a place at a specific time.

For example, two users may often visit a specific bar on Friday nights to listen a favorite
music band. Thus, the possibility of having both common music interests is very high. That
is, two users who visit a specific location at a certain time period have a higher possibility
to become friends than those who visit a location but not during the same period.

To create a new session node, in the same direction as in [16], we transform the
〈user, location, time〉 into 〈user, location〉 and 〈user, session〉 by dividing the time into
discrete intervals (bins). Then, we associate each bin with corresponding users who have
visited a specific place during this bin. Notice that a session node combines a number of
users, with a location at a specific time interval. The length of a session can last from one
hour, to six hours, or even one day etc. Based on the 〈user, location〉 and 〈user, session〉
we create our temporal graph, the HST graph.

4.1 Session node extraction

Users may visit locations all day long. The huge amount of these check-ins, prevent us from
understanding their trends and their likes, without before preprocessing the time dimension
of this information. To have an abstract and thorough understanding of the users’ behavior,
we create artificial session nodes based on SQL statements.

World Wide Web

Sql Statement 1 SQL query for table creation

CREATE TABLE ultime(
id int NOT NULL,
UserID int NOT NULL,
LocationID int NOT NULL,
tmp datetime DEFAULT NULL
PRIMARY KEY (id));

For our running example, let’s assume that we create a table to hold information about
users, locations, and the time of their check-ins, as shown in SQL Statement 1. In particular,
we have the primary key “id”, the field “UserID” for users, the field “LocationID” for
locations, and the field “tmp” for the time of the user’s check-in.

Sql Statement 2 SQL query for session nodes extraction

SELECT A.userID, B.userID, A.Locationid
FROM ultime as A,ultime as B
WHERE A.LocationID = B.LocationID

AND A.userID <> B.userID
AND (DATEDIFF(HOUR, A.tmp, B.tmp) / 24=0)
AND (DATEDIFF(HOUR, A.tmp, B.tmp)

We extract the artificial session nodes, by using an SQL statement as shown in SQL
Statement 2. This SQL statement finds co-locations between two or more users during the
same time period, i.e. a session. In our running example, we set the time window for a co-
location of two or more users equal to 6 hours. It is obvious that we can also use other bin
lengths (i.e. we can split time into time slots of an hour, a day, a month or a year, depending
on the desired session for extraction).

4.2 Constructing the heterogeneous spatio-temporal graph

We define a hybrid 3-partite graph as G(S, U, L, E (US), E (SU), E (UL), E (LU), E (SS),
E (UU), E (LL)), which consists of 3-disjoint sets of nodes (S for session, U for user, L for
location). G is called “hybrid” because it has also edges among nodes of the same set, as
shown in Figure 3, where there are edges among users. Similarly, there are edges among
sessions and edges among locations. E (US) represents the edges between nodes in U and
S . Vice versa, E (SU) represents edges between nodes in S and U . E (UL) represents edges
between nodes in U and L, whereas on the other hand E (LU) represents edges between the
nodes in L and U . E (SS) represents the edge set linking the nodes in S . E (UU) represents
the edge set linking the nodes in U . Finally, E (LL) represents the edge set linking the nodes
in L. For clarity, in Table 1 we provide a list of all used symbols notations and descriptions.

We assume that the graph G is directed and weighted. We also assume that the graph G
may have multiple edges connecting two nodes s and u. An example of a hybrid 3-partite
HST graph is illustrated in Figure 3, where there are 2 session nodes: session s1(l2|u1, u2)
indicates that user u1 and user u2 co-visited location l1 at the same time period, whereas
session s2(l4|u2, u3, u4) presents that several users (u2, u3 and u4) co-visited location l4 at

World Wide Web

Figure 3 Hybrid 3-partite temporal graph example

the same time period. Notice that, there is a major difference between HST and graphs that
consider only the users’ relations. In a toy example, someone may want to propose a friend
to user u3. Using only the user-user network of the User Layer it is impossible to provide
a friend recommendation because the only available information is the connection with u1,
who is already a friend of u3. However, by using an auxiliary network (e.g., the user-location

Table 1 Symbols notations and descriptions

Symbol Description

S Set of sessions, S = {s1, s2, ..., sn}
Su Set of sessions a user participated

Sl Set of sessions at a location

s, s′ Some sessions

U Set of users, U = {u1, u2, ..., un}
Uu Set of users who are friends with user u

Us Set of users who participated in a session s

Ul Set of users who visited a location l

u, u′ Some users

L Set of locations, L = {l1, l2, ..., ln}
Lu Set of locations visited by a user u

l, l′ Some locations

dl,l′ Distance between locations l and l′

E (US) Set of edges linking nodes of U to nodes of S

E (SU) Set of edges linking nodes of S to nodes of U

E (UL) Set of edges linking nodes of U to nodes of L

E (LU) Set of edges linking nodes of L to nodes of U

E (SS) Set of edges linking the nodes of S

E (UU) Set of edges linking the nodes of U

E (LL) Set of edges linking the nodes of L

World Wide Web

bipartite network) the recommendation task becomes easier by the fact that u2 and u4 have
also visited location l4.

4.3 Edge weighting

In this section, we define the weights between nodes in our HST graph. By incorporating
the artificial session nodes into our HST graph, we have the following 7 types of edges,
which have to be weighted differently:

– an edge from a session node s to a user node u,
– an edge from a user u to a session s,
– an edge from a user u to a location l,
– an edge from location l to a user u,
– an edge from a user u to another user u′,
– an edge from a location l to another location l′, and
– an edge from a session s to another session s′.

In the following, we define the edge weights for the 7 different edge types, starting from
the edges of the bipartite graphs (session-user and user-location). Firstly, we set the weight
w(s, u) of the edge from a session node s to a user node u as:

w(s, u) = 1

|Us | (1)

where (|Us |) is the number of users who participated in a session s. Notice that we weight
differently an edge that starts from a user u and ends to a session s. In particular, w(u, s) is:

w(u, s) = 1

|Su| (2)

where |Su| is the number of sessions in which a user u has participated. That is, the
probability of a user to join a session is equally divided on all sessions s/he has participated.

Next, we define the edge weight w(u, l) of the edge from a user node u to a location
node l as:

w(u, l) = nu,l
∑

∀l∈L

nu,l

(3)

where nu,l is the number of times a user u visited a location l and
∑

∀l∈L nu,l is the total
number of check-ins in all locations by user u. We define the edge weight w(l, u) that starts
from location l and ends at a user u as:

w(l, u) = nl,u
∑

∀u∈U

nl,u

(4)

where the nl,u is the number of times a location l is visited by a user u and
∑

∀u∈U nl,u is
the total number of check-ins of all users in location l.

We proceed with the edge weighting of the unipartite graphs (user-user, location-
location, session-session). First, the edge weight w(u, u′) between two user nodes u and u′
is defined as the fraction of 1 over the number of users (Uu), who are friends with a user u:

w(u, u′) = 1

|Uu| (5)

World Wide Web

The edge weight between two location nodes l and l′ is defined as:

w(l, l′) =
⎛

⎜
⎝1 − (geodistl,l′)∑

∀l,l′∈L

(geodistl,l′)

⎞

⎟
⎠ (6)

In this case, we set as link weight the geographical distance between two location nodes l

and l′. To obtain all weights, we calculate the distance between all pairs of locations.
Finally, for the edge weighting between two session nodes s and s′, we take into consid-

eration both the location and the time dimensions of each session nodes after normalizing
both dimensions, by using the following equation:

w(s, s′) =
⎛

⎜
⎝1 − (geodists,s′)

∑

∀s,s′∈S

(geodists,s′)

⎞

⎟
⎠ +

⎛

⎜
⎝1 − (timediffs,s′)

∑

∀s,s′∈S

(timediffs,s′)

⎞

⎟
⎠ (7)

where geodists,s′ and t imediffs,s′ are the geographical distance and the time difference
between two session nodes s and s′, respectively.

4.4 Construction of the transition probability matrix

Random walk processes on graphs have been extensively used in social network analysis
[11, 17]. To apply a random walk on a heterogeneous spatio-temporal graph, we have to
construct a transition probability P matrix to configure and set all transition probabilities
among the nodes of our HST graph. To represent all possible transitions on the HST graph,
the size of the P matrix should be (|S|+|U |+|L|)×(|S|+|U |+|L|). By combining (1)-(7),
we compute the transition probability matrix P which comprises of several sub-matrices
that correspond to our HST graph, as follows:

P =
⎡

⎣
SS SU 0
US UU UL
0 LU LL

⎤

⎦ (8)

where SS is a |S| × |S| sub-matrix representing the transition probability between ses-
sion nodes to session nodes, as defined in (7). UU is a |U | × |U | sub-matrix, which is not
symmetric because transition probabilities between two user nodes are defined based on the
number of neighbors of each user node (see (5)). LL is a |L| × |L| sub-matrix represent-
ing the transition probability from location nodes to location nodes, as defined in (6). US
sub-matrix holds the transition probabilities from user nodes to session nodes, whereas SU
sub-matrix holds the transition probabilities from session nodes to user nodes. Similarly,
UL sub-matrix holds the transition probabilities from user nodes to location nodes, whereas
LU sub-matrix holds the transition probabilities from location nodes to user nodes. Finally,
matrix P is normalized and the sum of edge weights of nodes equals to 1 for all nodes.

4.5 Normalization

In Section 4.3 we described the edge weighting among nodes of our HST graph in both
unipartite and bipartite sub-networks. We aimed to assign weights on edges in the interval
[0,1]. All these weights will be inserted in a probability transition matrix P , and then we
will run our method for capturing the notion of similarity between the nodes of the HST
graph. However, in several cases the distribution of the weight values in the interval [0,1]

World Wide Web

between the 7 edge types (i.e. session-user, user-user, etc.) differs significantly. For example,
consider the case that the most weights in E (US) are normally distributed between 0 and 0.1,
whereas most similarity values of E (LL) are normally distributed between 0.9 and 1. That
is, the weighting values of E (US) will always be dominated by those of E (LL).

To avoid this problem, we present a normalization step for the construction of the final
transition probability P matrix:

– we compute the mean similarity value mP of the matrix P .
– we compute the standard deviation value sP of the matrix P .
– for each (i, j) cell of the P matrix, where i �= j , we apply the transformation:

P(i, j) = P(i, j) − mP

sP
(9)

– we scale and translate the derived values back into the interval [0,1]:

P(i, j) = P(i, j) − minP

maxP − minP

(10)

where minP ,maxP are the minimum and maximum values of matrix P after the
transformation by (9), respectively.

– finally, we normalize our matrix P according to Theorem 1.1 presented in [2]. In par-
ticular, we convert our transition probability matrix P to a stochastic matrix so that the
values of each column of our transition probability matrix P sum up to 1. Thus, given
our transition matrix P with positive eigenvalue r and a positive maximal eigenvalue
we apply (11):

P = D−1 · r−1 · P(i, j) · D (11)

where D = diag{x1, x2, ..., xn} is a diagonal matrix with size equal to the size of the
dimensions of the probability matrix P .

4.6 Random walk on the normalized transition probability matrix

The Random Walk with Restart (RWR) algorithm [12, 14] is a variation of the well-known
PageRank algorithm. RWR has properties, which can adequately capture the notion of user-
user similarity or the user-location relevance for a specific user u of our HST graph. The
main advantage of RWR over PageRank is its teleporting characteristic, which obliges the
random walker to re-start his walk from the initial node u. As expected, RWR assigns more
importance/similarity to the nearby nodes of u. Thus, if two users are close to each other,
the probability of becoming friends is larger. Moreover, RWR can capture the notion of
similarity among users who share a large number of common friends. For the user-location
graph, if two users visit the same locations, then the overall probability for connecting them
(via a location node) increases. The same holds for two users via a session node.

RWR considers one random walker starting from an initial user node u and randomly
choosing among the available edges with a probability α. In addition, each time the random
walker may return back to the initial node with a probability 1 − α. Therefore, the random
walk process can be represented as:

S(UU)(t + 1) = α · P · S(UU)(t) + (1 − α) · I (12)

where S(UU)(t) and S(UU)(t +1) are the state probability matrices at time t and t+1, respec-
tively. S(UU) is a matrix that represents the link relevance from all HST graph nodes to

World Wide Web

the target user u. Parameter a is the prior probability that the random walker will leave its
current state. Moreover, I is the identity and P the transition-probability matrix.

4.7 Network contribution adjustment

Here, we incorporate different weighting strategies in our method, which are essential to
effectively control the contribution of each sub-network to the final similarity among users.
Our main task is to recommend new friends/locations to a target user by exploiting both
explicit and implicit sub-networks (i.e., user-user, user-location, user-session, etc.). As dis-
cussed in the previous, our HST graph consists of 7 different types of edges. In Section 4.6,
we ran RWR without having balanced the ratio among the 7 types of edges. However, if
we would like to promote the information derived from the unipartite friendship user-user
network and simultaneously reduce the contribution of other sub-networks (e.g. bipartite
user-location and user-session networks), then we should have embedded parameters to
adjust the contribution of each network.

In this context, the transition probability matrix P transforms to:

P =

⎡

⎢
⎢
⎣

β · SS γ
2 · SU 0

γ
2 · US δ · UU ε

2 · UL
0 ε

2 · LU ζ · LL

⎤

⎥
⎥
⎦ (13)

where 0 ≤ β, γ, δ, ε, ζ ≤ 1 are the trade-off parameters controlling the contribution of each
type of the 7 networks to the final similarity. Notice that, for UL and LU sub-networks, we
use the same parameter. The same stands for US and SU sub-networks. The reason is that
we have already used a different weighting strategy for each sub-network, as explained in
Section 4.3.

It is apparent that the friendship network is very important to provide friend recommen-
dations within the friendship domain. Notably, the contribution of the user-location and
user-session networks could be proven helpful, albeit in some cases noisy as well. The trade-
off parameters will be examined experimentally and should be adjusted by either learning
the dynamics of the networks, or be limited in a specific range according to the recom-
mendation domain. In a real recommendation system, users may be able to self-adjust the
contribution of an auxiliary information source to the received recommendations.

4.8 Random walk on the edge weighted HST graph

In this section, we will describe how the walk of a random surfer (i.e. (12)) differs when we
vary edge weights for different blocks of the transition probability matrix P (see Section
4.7). Based on the different weighting strategy, we can assign different contribution to each
unipartite and bipartite network. Our main purpose is to find out the gain we get when we
add auxiliary information to the original friendship network. Next, we enrich our knowledge
about a user by incorporating into the initial friendship network a new auxiliary network at
each time.

When we take into consideration only the user-user unipartite network, then (12) is
transformed to:

S
(UU)
Friends(t + 1) = α · UU · S

(UU)
Friends(t) + (1 − α) · I (14)

Equation (14) contains only information derived from the social ties among the users.
That is, (14) recommends friends using information only from the friendship network.

World Wide Web

When, in addition, we take into consideration the user-location bipartite network, then (14)
is augmented as:

S
(UU)
Friends−Checkins(t + 1) = α ·

((ε

2
· UL

)
·
(ε

2
· LU

)
+ δ · UU

)
·

·S(UU)
Friends−Checkins(t) + (1 − α) · I (15)

At this point, notice that in (15), we use a different weighting parameter for LU and UL
paths. Similarly, if we also take into account the user-session bipartite network, then the
later equation is augmented to:

S
(UU)
Friends−Sessions(t + 1) = α ·

((ε

2
· UL

)
·
(ε

2
· LU

)
+(δ · UU)+

(γ

2
· US

)
·
(γ

2
· SU

))
·

·S(UU)
Friends−Sessions(t) + (1 − α) · I (16)

Finally, if we take into account all 7 networks together (i.e., user-location, location-
location, location-user, user-user, user-session, session-session, and session-users), then the
later equation is augmented to:

S
(UU)
Friends−Sessions−Checkins(t + 1) = α ·

((ε

2
· UL

)
· (ζ · LL) ·

(ε

2
· LU

)
+ (δ · UU)

+
(γ

2
· US

)
· (β · SS) ·

(γ

2
· SU

))
· S

(UU)
Friends−Sessions−Checkins(t) + (1 − α) · I (17)

where S(UU)(t) and S(UU)(t + 1) are the state probability matrices at time points t and t+1,
respectively. The probability of moving to another node is represented as α, whereas the
probability of returning to the initial node is 1−α. Moreover, I is the identity matrix having
the dimensions of the user-user network and UL,LU ,UU ,US,SU ,SS , and LL are the
transition-probability block matrices, respectively.

4.9 Recommending locations to a user

To derive location recommendations for a target user u at a time point t , we take into account
the check-in history of his k most similar users. More specifically, let s1, s2, . . . , sk the
corresponding final similarity values of the k most similar users u1, u2, . . . , uk to u (those
values have already been calculated with S(UU) similarity matrix, i.e. si = S(UU)(u, ui))
and rui ,t,l the frequency of times that user ui visited a location l at a time point t . Then, the
probability that a user u will check-in a location l at a specific time t is:

r̂u,t,l =

k∑

i=1
si · rui ,t,l

k∑

i=1
si

(18)

If some rui ,t,l are not defined into the user-location-time ultime table (i.e. the user ui

has not visited location l at time point t), then the corresponding terms into the summation
of (18) are deleted. Finally, we sort the predicted locations r̂u,t,l of user u and we suggest
the top-N locations, where N is a desired cardinality value.

World Wide Web

4.10 The proposed algorithm

The pseudocode of our method is given in Algorithm 1. Our RWR-HST algorithm provides
both friend and location recommendations for a target user at a target time point.

The creation of artificial session nodes and the Heterogeneous Spatio-Temporal (HST)
graph are described in lines 1-2. Line 3 presents the weighting procedure of the edges of
the HST graph. Line 4 describes the construction of the transition probability matrix P and
its normalization. Lines 7-11 compute the user-user similarity matrix SUU based on (17).
Then, we provide friend recommendation in line 12. Lines 13-15 show how the location
recommendations are computed. In particular, the predicted r̂u,t,l (line 14) is computed
using (18). The locations with the estimated values are accommodated in a list (line 15),
and the top-N predicted location values are returned for recommendation (lines 15-17). In

World Wide Web

other words, the locations and their estimated values are added to set E (line 15), which is
then sorted on predicted value, retaining only the top-N positions (line 16). The locations
at these positions are recommended to the user u (line 17).

4.11 Complexity analysis

Time complexity of our RWR-HST approach may be carried out by using the auxiliary
information. Thus, if only the user-user network is considered in our HST graph, then its
complexity is O(t · |E (UU)| · |U |), where t is the number of iterations, |E (UU)| is the number
of user-user edges and |U | is the number of users. Then, if we add the user-location edges to
the graph, its complexity isO(t ·|E (UU)|+|E (UL)|·|U |), where |E (UL)| is the number of user-
location edges. By including all 7 networks, the final time complexity is O(t · (|E (UU)| +
|E (UL)| + |E (US)| + |E (SU)||E (LU)| + |E (SS)| + |E (LL)|) · |U |).

5 Experimental evaluation

Here, we experimentally compare our RWR-HST approach against with three opponent
methods: (i) a fast version of the classic Katz algorithm, denoted as Fast-Katz [4], (ii) the
RandomWalk with Restart algorithm, denoted as RWR [12, 14], and (iii) the state-of-the-art
algorithm, denoted as GTAG-BPP [19]. The parameters used to evaluate the performance
of the above algorithms are identical to those reported in the original papers. However, for
datasets that were not used in these papers, we tuned the parameters so as to get the best
results for all methods.

5.1 Data sets

We performed our experiments using two real-world big datasets, i.e., Foursquare1 and
Gowalla2. Foursquare [6] dataset contains 18,107 users 2,073,740 check-ins, 847,081 loca-
tions and 231,148 social ties among users. This dataset is collected betweenMarch 2010 and
January 2011. Notice that we did not use the dataset of our main competitor [19] because
it does not incorporate the friendship network. Gowalla [1] dataset concerns 196,591
users who have 950,327 social ties among them (i.e. friendship network). Also, they have
performed 6,442,890 check-ins to 1,280,969 locations. This dataset is collected between
February 2009 and October 2010.

Detailed information about both networks is illustrated in Table 2. In particular, infor-
mation about friendship networks can be seen in Table 2a, where we present the type of
each network (i.e. directed or undirected), the number of users, the number of links among
users, the nodes’ Average Degree (ADG) and the Local Clustering Coefficient (LLC). As
expected, the sparsity of the user-user matrix is very big, i.e., 99.92% and 99.99% for the
Foursquare and for the Gowalla datasets, respectively.

Furthermore, Table 2b contains information about the bipartite user-location network.
In this table, we present the number of users, the number of locations, and the number of
check-ins. Moreover, parameter AVGu denotes the average number of check-ins per user,
whereas parameter AVGl denotes the average number of check-ins per location.

1http://www.public.asu.edu/hgao16/dataset.html
2http://snap.stanford.edu/data/loc-gowalla.html

http://www.public.asu.edu/ hgao16/dataset.html
http://snap.stanford.edu/data/loc-gowalla.html

World Wide Web

Table 2 Datasets specifications

(a) Friendship Network

Dataset Type Users Edges ADG LCC

Foursquare undirected 18107 231148 10.5800 0.1841

Gowalla undirected 196591 950327 4.8 0.2367

(b) User-Location Network

Dataset User Location Check-ins AVGu AVGl

Foursquare 18107 847081 2073740 101 48.16

Gowalla 196591 1280969 6442890 37.18 3.11

(c) User-Location-Session Network

Session nodes

Dataset Users POIs 3 Hour 6 Hour 9 Hour 12 Hour 24 Hours

Foursquare 18107 847081 36606 78402 89079 90012 93204

Gowalla 196591 1280969 381697 645982 819441 1002941 1603128

In addition, as shown in Table 2c we have created artificial session nodes to study the
effect of the length of a session slot. We have created session nodes based on 3 hours, 6
hours, 9 hours, 12 hours and 24 hours. The average session per user (for sessions of 3 hours)
is 2.02 and 1.94 for the Foursquare and the Gowalla dataset, respectively. This means that it
is easier to find co-locations among users in both cases since each user participates almost
in two sessions (i.e. average co-location with at least two other users). Thus, this will affect
positively the recommendation accuracy of all algorithms, as will be experimentally shown
later.

In Figure 4 we show statistics on the Foursquare and the Gowalla datasets. Notice that
both x-axis and y-axis are in the log scale. As shown, the datasets follow a power law
distribution for both the number of users’ check-ins (Figure 4a and c) and the number of
visits to a particular location (Figure 4b and d). As shown in Figure 4a and c, there is a small
number of users who have checked-in to many locations (short head) and many users that
have only checked-in a small number of locations (long tail). Similarly, as shown in Figure
4b and d, few locations have many visits, whereas many locations have a small number of
visits. Notice that, it is very difficult for all algorithms to recommend accurately locations,
which have not been visited from many users (i.e., recommendation in the long tail of the
distribution).

Finally, Figure 5 presents the location distribution for both datasets in terms of latitude
and longitude on a world map. In particular, Figure 5a depicts the Foursquare dataset dis-
tribution and Figure 5b depicts the Gowalla dataset distribution. Please notice that both
datasets have similar check-ins distribution.

5.2 Protocol

Here, we describe the experimental protocol followed for the friend and the location recom-
mendation tasks. For the friend recommendation task, we consider the division of friends
of each target user into two sets: (i) the training set ET

U is treated as known information,
and (ii) the probe set EP

U is used for testing. It is obvious that, EU = ET
U ∪ EP

U and
ET
U ∩ EP

U = �. Therefore, for a target user we generate the recommendations based only
on the friends in ET

U . For the location recommendation task, we have followed a similar

World Wide Web

10
0

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

a b

c d

Figure 4 Power Law distribution diagrams for Foursquare [(a) and (b)] and Gowalla [(c) and (d)] datasets

procedure. That is, we have also divided the check-ins of each target user into two sets: (i)
the training set ET

C is treated as known information, and, (ii) the probe set EP
C is used for

testing.

a b

Figure 5 Distribution of locations on a world map for both datasets

World Wide Web

Each experiment has been repeated 30 times (each time a different training set is selected
at random) and the presented measurements, based on two-tailed t-test, are statistically sig-
nificant at the 0.05 level. All algorithms have the task either to predict the friends or the
locations visited of the target user in the probe sets. We use the classic precision/recall/F1
metrics as performance measures for friend and location recommendations. For the friend
recommendation task, for a test user receiving a list of N recommended friends (top-N list),
precision is the ratio of the number of relevant users in the top-N list (i.e. those in the top-
N list that belong in the probe set EP

U of friends of the target user) to N . On the other hand,
Recall is the ratio of the number of relevant users in the top-N list to the total number of
relevant users (all friends in the probe set EP

U of the target user). For the location recom-
mendation task, for a test user receiving a list of N recommended locations (top-N list),
Precision is the ratio of the number of relevant locations in the top-N list (i.e., those in the
top-N list that belong in the probe set EP

C of locations of the target user) toN . Also, Recall is
the ratio of the number of relevant locations in the top-N list to the total number of relevant
(all locations in the probe set EP

C of the target user), whereas F1 is the normalized harmonic
mean of precision and recall providing an overall picture of the algorithms’ performance.

5.3 Sensitivity analysis

In this section, we perform sensitivity analysis of RWR-HST algorithm in terms of preci-
sion, when we vary: (i) the training set sizes, (ii) the length of the time window of a session,
(iii) the combination of auxiliary sources used, and (iv) the top-N recommended users.

As far as the variation of the training set sizes is concerned, we aim to verify that more
information results to better recommendations. For the variation of the length of the time-
window of a session, we expect to verify that precision increases as we decrease the length
of the time-window. That is, we expect two users to be more similar when they check-in to
the same locations at closer time points. For the different combinations of auxiliary sources
used, our main purpose is to find out what gain we get, when we add auxiliary information
to the original friendship network. Finally, we expect that the precision decreases as we
increase the number of recommended users.

Next, we present the sensitivity analysis for the tasks of friend and location recommen-
dations.

5.3.1 Friend recommendation

For the Foursquare dataset, Figure 6a illustrates the precision and the recall vs. different
sizes of the train set (20%, 40%, 60%, 80%) when we recommend a top-1 friend to the
target users. As expected, as long as the size of the train set increases, precision and recall
increase as well. The highest precision value is attained when the train set incorporates 80%
of the information. Henceforth, we set the training set size to 80.

Figure 6b shows precision and recall vs. different lengths of the time-window of a
session (i.e., 24-hours, 9-hours and 3-hours). As expected, as we decrease the length of
time-window of a session, precision increases. The same applies for recall, related to a low
false negative rate as the time-window decreases. Thus, the notion of similarity between two
users is captured more effectively as we decrease the time-window of a session. That is, two
users are more similar when they check-in to the same locations at closer time points.

Figure 6c present precision and recall vs. different combinations of auxiliary sources
used (i.e., “F”, “F-S”, “F-C” and “F-C-S”). Notice that the networks are depicted with
abbreviations (i.e. “F” is the Friendship network, “F-S” is Friendship with Session

World Wide Web

a b

c d

e f

g h

Figure 6 Sensitivity analysis of RWR-HST algorithm for friend recommendations. For the Foursquare
dataset, precision and recall vs. (a) different training set sizes, (b) the length of the time-window, (c) aux-
iliary sources used, and (d) top-N recommended users. For the Gowalla dataset, precision and recall vs.
(e) different training set sizes, (f) the length of the time-window, (g) auxiliary sources used, and (h) top-N
recommended users

World Wide Web

network, “F-C” is Friendship with Check-ins network and “F-C-S” is Friendship, Check-
ins and Session networks, all three together). As shown, precision and recall increase as we
add auxiliary sources into our model.

Figure 6d present precision and recall vs. top-N recommended users. As expected, pre-
cision performance of RWR-HST gradually decays when we ask for a higher number of
recommended users. This is reasonable because precision drops as we increase the number
of top-N recommendations, whereas at the same time recall increases.

For the Gowalla dataset, Figure 6e, f, g and h show almost similar results and trends to
the ones that are explained previously for the Foursquare dataset (i.e., Figures 6a, b, c and
d), respectively. Notice, also, that in both datasets RWR-HST algorithm achieves very high
values in terms of precision. As already explained in Section 5.1, the reason is that the more
the edges among the nodes exist, the higher the possibility of finding similar users with our
target user is. Moreover, as shown in Table 2(c) there were found thousands of co-locations
among users for both datasets, which eventually lead to the creation of equal number of
artificial nodes.

5.3.2 Location recommendation

In this section, we present the sensitivity analysis for the task of location recommendations.
As shown in Figure 7, we test the precision and the recall performance of RWR-HST as
we vary: (i) the training set size, (ii) the length of session’s time-window, (iii) the auxiliary
sources used, and (iv) the top-N recommended users. The results are similar to the ones for
the task of friend recommendation. That is, as we gradually vary parameters values, results
show a scalar improvement of precision performance, which verifies our initial assump-
tions. That is, as we increase the size of training set, we enhance known information, which
results to a better understanding of users’ behavior. Secondly, we have verified that preci-
sion increases as we decrease the length of the session’s time-window. Moreover, as we add
auxiliary information to the original friendship network, we get better recommendations.
That is, RWR-HST has more options to walk through the network structure using differ-
ent paths and edge types. Finally, as we increase the number of top-N recommendations,
precision drops for both datasets.

5.3.3 Impact of trade-off parameters

In this section, we tune the trade-off parameters (i.e., β, γ, δ, ε and ζ) of RWR-HST and
examine their impact. To find the optimal parameter values we tune them over a develop-
ment set. This set consisted by the 30% of the training set of each dataset, respectively.
Each time we tune one parameter, the rest ones remain fixed (i.e. equal to the division of the
remaining percentage). We have chosen F1 metric to measure the accuracy of our frame-
work because it considers both precision and recall while being computed, as shown in (19).
Moreover, since it is assumed to be the weighted average of both mentioned metrics, the
closer the values of F1 to 100% are, the higher the contribution of particular subnetwork is.

F1 = 2 · Precision · Recall

P recision + Recall
(19)

For the friend recommendation task, in Figure 8a and b, we visualize the F1 metric vs.
different values (i.e., 0.1 to 0.8) of the trade-off parameters for the Foursquare and Gowalla

World Wide Web

a b

c d

e f

g h

Figure 7 Sensitivity analysis of RWR-HST algorithm for location recommendations. For the Foursquare
dataset, precision and recall vs. (a) different training set sizes, (b) the length of the time-window, c auxiliary
sources used, and (d) top-N recommended users. For the Gowalla dataset, precision and recall vs. (e) different
training set sizes, (f) the length of the time-window, (g) auxiliary sources used, and (h) top-N recommended
users.

World Wide Web

a b

c d

Figure 8 Impact of parameters β, γ, δ, ε and ζ for RWR-HST to recommend: (a) friend on Foursquare
dataset, (b) friend on Gowalla dataset, (c) location on Foursquare dataset, and (d) location on Gowalla dataset

datasets, respectively. Each trade-off parameter, as explained in Section 4.7 controls the
contribution of each sub-network. As shown in Figure 8a, the blending of parameters out-
performs the case, where we exploit information from only one sub-network. For example,
when we exploit only information from the friendship network (by setting δ parameter
equal to 0.8), we get F1 equal to 65. However, by blending information from all sub-
networks, we get F1 almost 80. Notice that, the higher the values we achieve indicates
the high contribution of the particular subnetwork. Thus, session-session (i.e. β parameter)
and user-location (i.e. ε parameter) subnetworks can be considered as the more influen-
tial sub-networks for leveraging the accuracy for the friend recommendation task for both
datasets.

For location recommendations, the results are shown in Figure 8c and d, for the
Foursquare and Gowalla datasets, respectively. Again, the blending of information from dif-
ferent sub-networks outperforms the performance of each sub-network separately. While
recommending locations using the Foursquare dataset, the session-session (i.e. β parameter)
and the location-location (i.e. ζ parameter) sub-networks contribute the most in compari-
son to the other subnetworks. On the other hand, while recommending locations using the
Gowalla dataset the session-session (i.e. β parameter) and user-location (i.e. ε parameter)
subnetworks can be considered as the more influential sub-networks against the others. In
general, information from the aforementioned sub-network can also re-confirmed by the
results provided in Figure 6c and g for the task of friend recommendations and Figure 7c and
g for the task of location recommendations. Finally, Figure 8 illustrates the final instance of

World Wide Web

the tuned parameters, while experimenting with the training and the test set as described in
Section 5.2.

5.4 Comparison with other methods

Here, we compare our approach with other three comparison partners i.e. RWR, Fast-Katz
and GTAG-BPP, in terms of precision and recall. As the number N of the recommended
users/locations varies starting from the top-1 to top-N , we examine the precision and recall
scores. Achieving high recall scores while precision follows with the minimum decline
indicates the robustness of the examined algorithm.

For the friend recommendation task, in Figure 9a and c, we visualize the precision ver-
sus recall curve for the Foursquare and Gowalla datasets, respectively. As N increases,
precision falls, while recall increases as expected for all algorithms. RWR-HST demon-
strates the best results achieving the highest precision, outperforming all other algorithms.
Notice that in terms of precision, we get an average 11.2% and 12% improvement
over GTAG-BPP, as shown in Figure 9a and c, respectively. The reason is that RWR-
HST exploits effectively information from all sub-networks (i.e., friendship, user-location,
etc.).

Moreover, the improvement of RWR-HST over GTAG-BPP for both datasets is due to
the fact that our framework builds the graph in a different way, which eventually allow
our algorithm to exploit the relations among the nodes more efficiently. In particular, since

a b

c d

Figure 9 Comparing RWR-HST, Fast-Katz, GTAG-BPP and RWR performance in term of Precision and
Recall at top-N recommended (a) users on Foursquare dataset, (b) locations on Foursquare dataset, (c) users
on Gowalla dataset, and (d) locations on Gowalla dataset

World Wide Web

GTAG-BPP uses the artificial session nodes as the only connection path between users and
locations, it is very hard to provide accurate recommendations (especially in cases with few
session nodes) in contrast to our heterogeneous spatio-temporal graph, which uses the user
nodes as the connection path between the sessions and the locations as already explained in
Section 4.2.

For location recommendations, we get similar results as shown in Figure 9b and d, for
the Foursquare and Gowalla datasets, respectively. Notice, that RWR-HST outperforms
again all other algorithms. Again in terms of precision, we get an average 6.8% and 13.3%
improvement over GTAG-BPP, as shown in Figure 9a and c, respectively. The reason is that
RWR-HST exploits information from more sub-networks than GTAG-BPP. Thus, RWR-
HST has more options to walk through the network structure using different paths and
edge types. Moreover, RWR-HST is more robust as we increase the number of top-N rec-
ommended locations because it achieves high recall scores, whereas precision score drops
smoothly.

In summary, Figure 10 shows the average relative performance (in terms of F1) of RWR-
HST versus GTAG-BPP, Fast Katz and RWR. Each red line inside a box plot represents the
average value taken over 30 times of experimental execution. As shown, in all cases the
comparison partners attain only a percentage (i.e., in the range 71-91%) of the performance

a b

c d

Figure 10 Relative average F1 improvement ratio of RWR-HST versus competitive algorithms recommend-
ing (a) users on Foursquare dataset, (b) location on Foursquare dataset, (c) users on Gowalla dataset, and (d)
location on Gowalla dataset

World Wide Web

of RWR-HST, which average relative performance is fixed to 1 (blue line). In particular,
with respect to the friend recommendation task we attain an average improvement against
GTAG-BPP algorithm between 12-23% for Fourquare and Gowalla datasets, respectively.
Similarly, for location recommendation task we attain an average improvement between
9-21% against the same algorithm.

5.5 Comparative results in terms of efficiency

Here, we measure the execution time of our approach in comparison to the other three
partners. The time needed for user and location recommendations vs. top-N for both
datasets are shown in Figure 11. Regarding the user recommendation task, Figure 11a and
c depict a increment of time spend with respect to the number of requested recommenda-
tions. For the location recommendation task, we get similar results as shown in Figure 11b
and d.

Notice that, RWR-HST algorithm needs less time to provide friend recommendations
compared to other methods. The reason is that, it walks only over the edges connect-
ing the session and the location nodes with the target user node. Moreover, regarding
the location recommendation task, RWR-HST uses the precomputed results of the friend
recommendation and keep walking over the edges connected to it.

a b

c d

Figure 11 Comparison between algorithms in terms of execution time at top-N recommended (a) users on
Foursquare dataset, (b) locations on Foursquare dataset, (c) users on Gowalla dataset, and (d) locations on
Gowalla dataset

World Wide Web

6 Conclusions

In this paper, we proposed a method for friend and location recommendations based on a
Heterogeneous Spatio-Temporal graph (HST graph). HST graph incorporates spatial and
temporal dimension into a single model. In particular, we have constructed a hybrid tripartite
(i.e., user, location, session) graph, which incorporates 7 different unipartite and bipartite
graphs. Then, we run on it an extended version of Random Walk with Restart (RWR) algo-
rithm. We have experimented with two real world datasets (i.e., Foursquare and Gowalla) to
test the accuracy of our recommendations. We have also compared our algorithm with three
state-of-the-art algorithms (i.e., RWR, Fast-Katz, and GTAG-BPP). Results have shown
that auxiliary information leverages the accuracy of the final recommendations since the
time dimension plays a very important role. As future work, we intent to incorporate into
our model information derived from session-location and location-session sub-networks.
Another extension could be the adjustment of other algorithms (e.g., SimRank) so that they
can benefit from our HST graph.

Acknowledgments This research has benefited from discussions in the working groups of ICT COST
Action IC1406 on High-Performance Modeling and Simulation for Big Data Applications (cHiPSet).

References

1. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: User movement in location-based social
networks. In: Proceedings of the 17th ACMSIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD), pp. 1082–1090 (2011)

2. Chu, M.T., Guo, Q.: A numerical method for the inverse stochastic spectrum problem. SIAM J. Matrix
Anal. Appl. 19(4), 1027–1039 (1998)

3. Ding, Y., Li, X.: Time weight collaborative filtering. In: Proceedings of the 14th ACM International
Conference on Information & Knowledge Management (CIKM), pp. 485–492 (2005)

4. Foster, K.C., Muth, S.Q., Potterat, J.J., Rothenberg, R.B.: A faster katz status score algorithm. Computat.
Math. Organ. Theory 7(4), 275–285 (2011)

5. Gao, H., Tang, J., Hu, X., Liu, H.: Exploring temporal effects for location recommendation on location-
based social networks. In: Proceedings of the 7th ACMConference on Recommender Systems (RecSys),
pp. 93–100 (2013)

6. Gao, H., Tang, J., Liu, H.: Exploring social-historical ties on location-based social networks. In:
Proceedings of the 6th International AAAI Conference on Weblogs and Social Media (2012)

7. Ho, S.-S., Lieberman, M., Wang, P., Samet, H.: Mining future spatiotemporal events and their sentiment
from online news articles for location-aware recommendation system. In: Proceedings of the 1st ACM
SIGSPATIAL International Workshop on Mobile Geographic Information Systems (MobiGIS), pp. 25–
32 (2012)

8. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM Interna-
tional Conference on Knowledge Discovery & Data Mining (KDD), pp. 447–456 (2009)

9. Lu, Z., Savas, B., Tang, W., Dhillon, I.S.: Supervised link prediction using multiple sources. In:
Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), pp. 923–928 (2010)

10. Marinho, L.B., Nunes, I., Sandholm, T., Nóbrega, C., Araújo, J.a., Pires, C.E.S.: Improving location
recommendations with temporal pattern extraction. In: Proceedings of the 18th Brazilian Symposium on
Multimedia & the Web (WebMedia), pp. 293–296 (2012)

11. Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: A random walk around the city New venue recommen-
dation in location-based social networks. In: Proceedings of the International Conference on Privacy,
Security, Risk & Trust (PASSAT), and International Conference on Social Computing (SocialCom), pp.
144–153 (2012)

12. Pan, J., Yang, H., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery.
In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), pp. 653–658 (2004)

World Wide Web

13. Raymond, R., Sugiura, T., Tsubouchi, K.: Location recommendation based on location history and
spatio-temporal correlations for an on-demand bus system. In: Proceedings of the 19th ACM Inter-
national Conference on Advances in Geographic Information Systems (SIGSPATIAL), pp. 377–380
(2011)

14. Tong, H., Faloutsos, C., Pan, J.: Fast random walk with restart and its applications. In: Proceedings of
the 6th International Conference on Data Mining (ICDM), pp. 613–622 (2006)

15. Vasuki, V., Natarajan, N., Lu, Z., Savas, B., Dhillon, I.: Scalable affiliation recommendation using
auxiliary networks. ACM Trans. Intell. Syst. Technol. 3(1), 3:1–3:20 (2011)

16. Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal recommendation
on graphs via long- and short-term preference fusion. In: Proceedings of the 16th ACM International
Conference on Knowledge Discovery &Data Mining (KDD), pp. 723–732 (2010)

17. Yin, Z., Gupta, M., Weninger, T., Han, J.: A unified framework for link recommendation using random
walks. In: Proceedings of the IEEE International Conference on Advances in Social Networks Analysis
& Mining (ASONAM), pp. 152–159 (2010)

18. Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-interest recommendation,
In: Proceedings of the 36th ACM International Conference on Research & Development in Information
Retrieval (SIGIR), pp. 363–372 (2013)

19. Yuan, Q., Cong, G., Sun, A.: Graph-based point-of-interest recommendation with geographical and
temporal influences. In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management (CIKM), pp. 659–668 (2014)

	Recommendations based on a heterogeneous spatio-temporal social network
	Abstract
	Introduction
	Related work
	Problem definition
	Background and preliminaries
	Session node extraction
	Constructing the heterogeneous spatio-temporal graph
	Edge weighting
	Construction of the transition probability matrix
	Normalization
	Random walk on the normalized transition probability matrix
	Network contribution adjustment
	Random walk on the edge weighted HST graph
	Recommending locations to a user
	The proposed algorithm
	Complexity analysis

	Experimental evaluation
	Data sets
	Protocol
	Sensitivity analysis
	Friend recommendation
	Location recommendation
	Impact of trade-off parameters

	Comparison with other methods
	Comparative results in terms of efficiency

	Conclusions
	Acknowledgments
	References

