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Abstract Online social networks (OSNs) like Facebook, Myspace, and Hi5 have
become popular, because they allow users to easily share content. OSNs recom-
mend new friends to registered users based on local features of the graph (i.e.,
based on the number of common friends that two users share). However, OSNs
do not exploit the whole structure of the network. Instead, they consider only
pathways of maximum length 2 between a user and his candidate friends. On the
other hand, there are global approaches, which detect the overall path structure
in a network, being computationally prohibitive for huge-size social networks. In
this paper, we define a basic node similarity measure that captures effectively
local graph features (i.e., by measuring proximity between nodes). We exploit
global graph features (i.e., by weighting paths that connect two nodes) introduc-
ing transitive node similarity. We also derive variants of our method that apply
to different types of networks (directed/undirected and signed/unsigned). We per-
form extensive experimental comparison of the proposed method against existing
recommendation algorithms using synthetic and real data sets (Facebook, Hi5 and
Epinions). Our experimental results show that our FriendTNS algorithm outper-
forms other approaches in terms of accuracy and it is also time efficient. Finally, we
show that a significant accuracy improvement can be gained by using information
about both positive and negative edges.
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1 Introduction

Online social networks (OSNs) such as Facebook.com1, Myspace2, Hi5.com3, etc.
contain gigabytes of data that can be mined to make predictions about who is
a friend of whom. OSNs gather information on users’ social contacts, construct a
large interconnected social network, and recommend other people to users based on
their common friends. The premise of these recommendations is that individuals
might only be a few steps from a desirable social friend, but not realize it. Thus,
friend recommendation services allow users to get to know one’s friends of friends
and, hence, expand their own social circle.

In OSNs, two people can mutually agree to be listed as friends, to share infor-
mation items such as photos, news, etc. Friendship links on OSNs are initiated by
any of two people. For example, person A might find person B on the OSN and
request to add her as a friend. Person B then receives an email, and can either
accept the undirected friendship, or choose to reject it.

Individuals can also link themselves to others, using various other ways. For
example, anyone can create a group and invite others to join. Two persons may
belong in the same group or appear in pictures, which are tagged with their names.

In this paper, we focus on recommendations based on links that connect the
nodes of an OSN, known as the Link Prediction problem, where there are two
main approaches that handle it. The first approach is based on local features of a
network, focusing mainly on the network structure; the second approach is based
on global features, detecting the overall path structures in a network.

1.1 Motivation

Facebook.com and Hi5.com, as shown in Figure 1, have adopted a local method for
recommending new friends to a target user v8: “People you may know : (i) users
v2, v3, v5, v6 because you have one common friend (user v1) (ii) user v4 because you
have one common friend (user v9) . . . ”. Therefore, they provide friend recommen-
dations consider only pathways of maximum length 2. The list of recommended
friends is ranked based on the number of common friends each candidate friend has
with the target user. But in the aforementioned example, the list of recommended
friends cannot be ranked, because the number of common friends is the same for
all recommended friends. Thus, user v8 gets as friend recommendation user v2 or
v3 or v4 or v5 or v6 with equal probability.

However, if we take into account the “strong” connection between v8 and v9

(due to the fact that v9 does not share many edges with others) then v4 should
have a higher probability to be recommended as a friend to v8. In contrast, other
candidate friends (e.g. v2, v3, v5, v6) should have a lower probability to be recom-
mended as friends to v8 because of the “loose” connection between v8 and v1 (due
to the fact that v1 shares many edges with other nodes).

Compared to existing approaches, our method takes into account the local and
the global features of a network. In particular, we define a basic local similarity

1 http://www.facebook.com
2 http://www.myspace.com
3 http://www.hi5.com
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Fig. 1 Example of a Social Network.

measure that captures effectively the proximity between graph nodes. We also
exploit global graph features by introducing transitive node similarity. Thus, two
persons that are connected with a path have a high probability to know each
other, depending on: (i) the length of the path they are connected with, and (ii)
the degree of similarity between the neighbor nodes that form that pathway.

Moreover, many recent existing approaches propose complex link prediction
models using a combination of measures to express the similarity/distance be-
tween nodes. They can give much better accuracy in link prediction than the
simple measure approaches. However, their increased complexity deteriorates the
performance of the recommendation engine, as they require more time and com-
plex calculations. Therefore, they are not practical in large real networks where
recommendations must be made on-the-fly and very quick. The proposed approach
can provide similar accuracy in link prediction with simpler calculations and lower
complexities. Therefore, our method can be used in real-time recommendation
applications.

Finally, in contrast to the bulk of research on social networks that has focused
almost exclusively on positive interpretations of links between people, we also
study how the interplay between positive and negative relationships affects the
structure of on-line social networks. We connect our analysis to theories of signed
networks, such as the Structural Balanced theory [15], and the Status theory [18,
19]. More details about these theories can be found later in Section 3.6.

1.2 Contribution

The contributions of our approach are summarized as follows:

– A generalized framework for providing friend recommendations in OSNs is
provided.

– We provide accurate friend recommendations, exploiting node similarity be-
tween the pairs of connected nodes in an OSN.

– We define a transitive node similarity measure in OSNs by taking into account
the shortest paths between persons in an OSN.

– We provide an algorithm that exploits the similarity between a selected start-
ing node to other nodes of the network by progressively discovering shortest
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paths and calculating the corresponding transitive similarities of the discov-
ered nodes on-the-fly. When a specific defined accuracy has been reached to
the similarity calculations during a shortest path traversal, the discovery pro-
cedure stops in that path. In this way the algorithm discovers and expands
only the required parts of the network in order to compute the top similarities
for the selected user with the specified accuracy. Therefore, it keeps the time
and space complexity low even in large networks. These advantages can be
useful for cases where long term digital preservation of the social network con-
nections is needed, because as data in large networks (with billions of nodes)
are aggregated over time, our method is scalable to efficiently process them.

– We perform extensive experimental comparison of the proposed method against
existing recommendation algorithms using Facebook and Hi5 data sets.

– Our method substantially improves accuracy of friend recommendations with
respect to previous methods, as will be shown experimentally.

– We also derive variants of our method that apply to different types of networks
(directed/undirected and signed/unsigned). We show that a significant accu-
racy improvement can be gained by using information about both positive and
negative edges.

The rest of this paper is organized as follows. Section 2 summarizes the re-
lated work, whereas Section 3 briefly reviews the proposed method and prelim-
inaries in graph theory employed in our approach. Section 3.2 defines a node
similarity measure in OSNs. A motivating example, the proposed algorithm and
a derivation of variants of our method that apply to different types of networks
(directed/undirected and signed/unsigned) are described in Section 3.4. Experi-
mental results are given in Section 4. A discussion is presented in Section 5. Finally,
Section 6 concludes this paper.

2 Related work

Based on his provocative “small world” experiments, Stanley Milgram claimed that
everyone in the world could be connected to everyone else via “six degrees of sep-
aration” [25]. That is, for a randomly chosen pair of individuals, there exists with
high probability a short chain of intermediaries that connect them, where “short”
is usually interpreted to the logarithm of the population size. The “algorithmic
small-world hypothesis” states also that ordinary individuals can effectively “nav-
igate” these short chains themselves [1,17,20,29,32]. That is, individuals who at-
tempt to locate new friends in an OSN can effectively traverse chains of referrals.
Moreover, according to homophily theory [3] (i.e., “love of the same”) individuals
tend to prefer the same things that similar other users do like. Goel et al. [12]
reported experiments for the “algorithmic small-world hypothesis”, where half of
all chains can be completed in 6-7 steps, supporting the “six degrees of separation”
assertion. However, they report that the number of steps in a search chain depends
not only on the actual distance between the source and the target, but also on the
search strategies of the intermediaries.

The research area of link prediction in social networks, tries to infer which new
interactions among members of a social network are likely to occur in the near
future. There are two main approaches [20] that handle the link prediction problem.
The first approach is based on local features of a network, focusing mainly on the
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nodes structure; the second approach is based on global features, detecting the
overall path structure in a network.

– There is a variety of local similarity measures [20] (i.e., Adamic/Adar index,
Jaccard Coefficient, Common Neighbors index, etc.) for analyzing the “prox-
imity” of nodes in a network. Among these indices, Adamic/Adar [1] index is
reported [20] to attain the best performance in predicting new links in a social
network. Adamic/Adar index, which is similar to Jaccard Coefficient (a com-
monly used similarity metric in information retrieval), measures how strongly
“related” two web pages are. Common Neighbors index, also known as Friend
of a Friend algorithm (FOAF) [6], is adopted by many popular OSNs, such
as facebook.com and hi5.com for the friend recommendation task. FOAF is
based on the common sense that two nodes vx and vy are more likely to form
a link in the future, if they have many common neighbors. Furthermore, other
local similarity measures are based on preferential attachment [20]. The basic
premise of preferential attachment is that the probability that a new edge in-
volves a node is proportional to the current number of its neighbors (i.e., the
big gets bigger).

– There is a variety of global approaches [20] (i.e., Shortest Path algorithm, RWR
algorithm, SimRank algorithm etc.). Liben and Kleinberg [20] claimed that the
identification of the shortest path between any pair of nodes in a graph can
be used for link prediction (friend recommendation). The computation of the
shortest path between two nodes, can be made using any well-known shortest
path algorithm [8,11]. RWR algorithm [27] (Random Walk with Restart algo-
rithm) is based on a Markov-chain model of random walk through a graph.
RWR considers a random walker that starts from node vx who chooses ran-
domly among the available edges every time, except that, before he makes a
choice, with probability c he goes back to node vx (restart). Thus, the rele-
vance score of node vx with respect to node vy is defined as the steady-state
probability rvx,vy that the random walker will finally stay at node vy . In the
same direction with RWR, Fouss et al. [10] proposed a Random walk model
that computes quantities (the average commute time, the pseudoinverse of the
Laplacian Matrix of a graph, etc.) to capture similarities between any pair of
nodes in a network. These quantities have the property of increasing, when the
number of paths connecting two nodes increases and when the length of paths
that connects them decreases. SimRank [16,33] also computes a global similar-
ity measure based on the structural context of a network that says “two objects
are similar if they are related to similar objects”. Recently, Clauset et al. [7]
proposed an algorithm based on the hierarchical network structure. First, they
use a hierarchical random graph to statistically fit the real network data. Then,
the dependence of the connection probability on the depth of the nodes in the
hierarchy can be inferred. One can predict the missing links of the network ac-
cording to the connection probability by ranking them in a descending order.
Finally, Blondel et al. [5] considered path-based similarity measures between
nodes of different directed networks [26], i.e., based on asymmetric adjacency
matrices, which is a more complex situation than the one we consider.

The novelty of our approach compared to existing approaches is as follows:

– In contrast to global algorithms, such as the Random Walk with Restart
(RWR) algorithm [27], the Shortest Path [8,11] algorithm etc., our method also
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takes into account local graph features (i.e., the weighted similarity between
nodes that may share many edges with others). We selected RWR and Short-
est Path algorithms as representatives of the global algorithms and compared
them with our method. As will be shown experimentally later, our method
outperforms RWR and Shortest Path. The reason is, they traverse globally the
social network, missing to capture adequately the local graph characteristics.

– In contrast to local similarity measures, such as FOAF [6] algorithm (also
known as the Common Neighbors index [21]), the Adamic/Adar [1] index etc.,
we take into account also global graph features (i.e., paths connecting any
pair of nodes in an OSN). We have compared our method against FOAF algo-
rithm and Adamic/Adar index, as representatives of the local-based measures.
As will be shown experimentally later, our method outperforms FOAF and
Adamic/Adar index. The reason is, we do not take into account only pathways
of length 2 to compute similarity between a pair of nodes in an OSN. Instead,
we use an extensive similarity measure that takes into account transitive node
similarity.

Finally, besides the aforementioned link prediction algorithms that are based
solely on graph structure, there are also other methods that exploit other data
sources such as messages among users, user ratings, co-authored papers, common
tagging etc. For instance, Ido Guy et al. [14], proposed a novel user interface
widget for providing users with recommendations of people. Their people recom-
mendations were based on aggregated information collected from various sources
across IBM organization (i.e., common tagging, common link structure, common
co-authored papers etc.). Chen et al. [6] evaluated four recommender algorithms
(Content Matching, Content-plus-Link, FOAF algorithm and, SONAR) to help
users discover new friends on IBM’s OSN. Lo and Lin [22] proposed two algorithms,
denoted as weighted minimum message ratio (WMR) and weighted information ratio

(WIR), respectively, which generate a friend list based on real-time message inter-
action among members of an OSN. Cha et al. collected and analyzed large-scale
traces of information dissemination in the Flickr social network. They experimen-
tally derived that over 50% of users find their favorite pictures (i.e., pictures they
bookmark) from their friends in an OSN. TidalTrust [13] and MoleTrust [24] are
also hybrid approaches that combine the rating data of collaborative filtering sys-
tems with the link data of trust-based social networks (i.e., Epinions.com) in order
to improve the friend recommendation accuracy. In contrast to the above meth-
ods, we focus only on recommendations based on the link structure of an OSN
and thus, we will exclude them from our experimental comparison.

3 The proposed method

In this section we present the main strategy of the proposed methodology: Firstly,
a specific starting node (user) is selected for which we will make recommendations.
Then, we compute the similarities from the selected node to other nodes (users)
of the network based on specific predefined similarity measures, which we present
in the following subsections. The similarities of neighboring nodes are calculated
instantly, and all other required similarities are calculated through a progressive
process, which discovers shortest paths and updates the similarities transitively
on-the-fly. When a specific predefined threshold value is reached, through a path,
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then the discovery procedure stops in that path. Finally, the calculated similarities
are sorted descending and the nodes (users) having the top-k similarity values are
recommended to the selected starting node (user).

3.1 Preliminaries in Graphs

In this subsection, we present the most important notations and the correspond-
ing definitions used throughout the rest of the paper. Notice that, we use: (i)
calligraphic notation for sets, (ii) lowercase notation for integer numbers, (iii) up-
percase notation for matrices, and (iv) bold lowercase notation for vectors, as
shown in Table 1.

Symbol Description
G undirected and unweighted graph
vi node of a graph G
ei edge of a graph G
V set of graph nodes
E set of graph edges
n = |V| number of nodes in graph G
m = |E| number of edges in graph G
A adjacency matrix of graph G
R incidence matrix of graph G
S basic similarity matrix of graph G
ES extended similarity matrix of graph G
ri node vector of node vi in R
sim(vi, vj) basic similarity between vi and vj

esim(vi, vj) extended similarity between vi and vj

deg(vi) degree of node vi

Table 1 Frequently used notations.

Let G be a graph with a set of nodes V and a set of edges E . Every edge
is defined by a specific pair of graph nodes (vi, vj), where vi, vj ∈ V. First, we
assume that the graph G is undirected and un-weighted, thus the graph edges
do not have any weights, plus the order of nodes in an edge is not important.
Therefore, (vi, vj) and (vj , vi) denote the same edge on G. Later we will extend
our study without this assumption in directed and in weighted/signed graphs. We
also assume that the graph G does not have multiple edges, thus if two nodes vi, vj

are connected with an edge of E , then there is no other edge in E also connecting
them. Finally, we assume that there are no loop edges on G (i.e., a node can not
be connected to itself). The graph expressing friendships among users of an OSN,
which can be seen in Figure 1, will be used as our running example throughout
the rest of the paper. For illustrating the calculations in the running example we
will use well-known representations, such as the adjacency matrix An×n, and the
incidence matrix Rm×n. The adjacency matrix of our running example is depicted
in Figure 2. The incidence matrix of our running example is depicted in Figure 3.

To later define our proposed similarity measure between any pair of nodes in
a graph G, we use a node vector space model based on the incidence matrix R

of G. Using this model, each node can be encoded as a binary vector where each
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  V1    V2     V3    V4     V5    V6     V7    V8     V9

A

010001000

100000001

000110000

001000001

001000001

100000110

000001001

000001001

010110110 V1

V2

V3

V4

V5

V6

V7

V8

V9

Fig. 2 Adjacency Matrix of the Social Network.

  v1     v2      v3     v4      v5     v6      v7     v8      v9

R

110000000

001100000

001010000

100001000

000001100

000001010

010000001

000100001

000010001

000000101

000000011 e1=(v1,v2)

e2=(v1,v3)

e3=(v1,v5)

e4=(v1,v6)

e5=(v1,v8)

e6=(v2,v4)

e7=(v3,v4)

e8=(v4,v9)

e9=(v5,v7)

e10=(v6,v7)

e11=(v8,v9)

Fig. 3 Incidence Matrix of the Social Network.

component reflects the appearance of a particular edge in the node. Thus, any
node vi of G is represented by a binary vector derived from the corresponding
column of vi in R. We will call this vector representation of a node vi in graph G

as the node vector ri.

3.2 The Basic Node Similarity Measure

In this Section, we define a basic node similarity measure to determine the prox-
imity between any pair of neighbor nodes in a graph G. Based on our basic node
similarity measure, the probability that a new edge involves a node is inversely
proportional to the number of its neighbors. This contradicts with preferential at-
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tachment [20], which claims that the probability that a new edge involves a node
is proportional to its current number of neighbors. The intuition behind it is that,
if two adjacent nodes have a lot of other adjacent nodes, the two nodes are less
likely to become friends. In the same direction, if the shortest path between two
nodes goes through a lot of high degree nodes, the two nodes are less likely to be-
come friends. As we will later experimentally show (see Section 4.7), our similarity
measure outperforms the preferential attachment measure.

Therefore, if vi and vj are two neighbor connected nodes of G, we define a
specific function sim(vi, vj) that expresses their corresponding similarity in the
range [0,1] and has all the required properties (i.e., positivity, reflexivity, symmetry
etc.) of a well-defined measure. The more similar the nodes are, the more the value
of sim(vi, vj) will be close to 1. On the contrary, the more dissimilar the nodes
are, the more the value of sim(vi, vj) will be close to 0.

To capture proximity between node vectors, we apply the Jaccard Coefficient,
which is able to measure the degree of overlap between node vectors, in contrast to
other measures (i.e., dot product, Euclidean distance etc.), which cannot measure
it. In particular, we use an extension of the Jaccard Coefficient that contains the
cosine similarity metric as we have binary vectors. This extension is also called
the Tanimoto coefficient [30], and for two binary vectors a, b is defined as:

sim(a,b) =
a · b

||a||2 + ||b||2 − a · b

By applying the above measure in our node vector space model, we must replace
the vectors a,b with the node vectors ri, rj of matrix R, and then the following
equation is derived:

sim(vi, vj) =
ri · rj

||ri||2 + ||rj||2 − ri · rj

Finally, by substitution of vector operations between ri, rj in the previous equation
with the corresponding values of the incidence matrix R, we derive the following
equivalent equation:

sim(vi, vj) =

m
∑

h=1

R[eh, vi] · R[eh, vj ]

m
∑

h=1

R[eh, vi]
2 +

m
∑

h=1

R[eh, vj ]
2 −

m
∑

h=1

R[eh, vi] · R[eh, vj ]

(1)

The squares of R can be dropped as R takes only Boolean values, thus we have:

sim(vi, vj) =

m
∑

h=1

R[eh, vi] · R[eh, vj ]

m
∑

h=1

R[eh, vi] +
m
∑

h=1

R[eh, vj ] −
m
∑

h=1

R[eh, vi] · R[eh, vj ]
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Note also that the term
m
∑

h=1

R[eh, vi] · R[eh, vj ] in the final derived equation, ex-

presses the number of edges that the nodes vi, vj share, whereas the terms
m
∑

h=1

R[eh, vi],

m
∑

h=1

R[eh, vj ] are equal to the degrees of nodes vi, vj respectively.

The basic node similarity measure satisfies the positivity property, returning
values into the interval [0,1]. Note that the maximum value of similarity (equal
to 1) can be reached, when the two nodes are connected with only one edge and
have no connections with other nodes, and the minimum value (equal to 0) can be
reached when the two nodes do not share any edge. Moreover, Equation 1 can be
simplified by using Theorem 1.

Theorem 1 If the basic node similarity measure of Equation 1 is applied in a graph

G satisfying all mentioned assumptions of Section 3.1 (i.e., G is an undirected and un-

weighted graph, which does not have multiple or loop edges), then it can be simplified

to the following:

sim(vi, vj) =















1, if vi = vj

0, if vi 6= vj ∧ (vi, vj) /∈ E∧(vj , vi) /∈ E
1

deg(vi)+deg(vj)−1
, otherwise

where deg(vi) and deg(vj) are the degrees of nodes vi and vj , respectively.

Proof If vi = vj , then due to the reflexivity property (proved in Section 7 (Ap-
pendix)) we have: sim(vi, vj) = 1.

The fact that (vi, vj) /∈ E and (vj , vi) /∈ E means that nodes vi, vj do not share
any edges. Thus the term

∑m
h=1 R[eh, vi] ·R[eh, vj ] in Equation 1 is equal to 0 and

sim(vi, vj) = 0.
If nodes vi, vj share one edge, then they can not share any other edge as

explained in Section 3.1. Thus, the term
∑m

h=1 R[eh, vi] · R[eh, vj ] in Equation 1
is equal to 1. Moreover, the terms

∑m
h=1 R[eh, vi],

∑m
h=1 R[eh, vj ] are equal to the

degrees of nodes vi, vj , respectively. In that case we have:

sim(vi, vj) =
1

deg(vi) + deg(vj) − 1
,

and the theorem has been proven. ⊓⊔

Henceforth, Theorem 1 will be used in defining our basic similarity measure,
which is based on the inverse sum of node degrees. However, someone could suggest
the usage of any other local-based similarity measure [20] as described in Section 2.
For this reason, our basic measure will be later experimentally compared with
other measures, which are also based on the nodes degree and the preferential
attachment process [20]: the sum of nodes degree and the product of nodes degree.

Now, let us calculate some similarity values on the graph of Figure 1 using
Equation 1. The similarity between nodes v1 and v2 is: sim(v1, v2)=

1
5+2−1=1

6=0.16.

The similarity between nodes v2 and v4 is: sim(v2, v4)=
1

2+3−1=1
4=0.25. Thus, the

similarity score between nodes v1, v2 is less than that of v2, v4 because the degree
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of node v1 is greater than that of v4, whereas v1 shares only one of its total 5
edges.

Collecting all similarity values between the nodes of a graph G, we construct
the basic node similarity matrix S of G, which is an n×n matrix having n rows and
n columns labeled by the graph nodes. The basic node similarity matrix values
are defined as follows:

S[vi, vj ] = sim(vi, vj)

In our running example, the basic node similarity matrix is depicted in Figure 4,
where all values are rounded to the third decimal digit. As shown, user v9 is more
similar with user v8 than user v4. This is reasonable, because user v4 is connected
with 2 other nodes (v2 and v3), while user v8 is connected with only 1 other node
(v1).

 V1               V2              V3              V4              V5               V6              V7              V8              V9

10.3330000.25000

0.33310000000.167

0010.3330.3330000

000.333100000.167

000.333010000.167

0.25000010.250.250

000000.25100.167

000000.25010.167

00.16700.1670.16700.1670.1671

S

V1

V2

V3

V4

V5

V6

V7

V8

V9

Fig. 4 Basic Node Similarity Matrix.

The basic node similarity measure, defined in Equation 1, satisfies fundamental
properties, which are proved in Section 7 (Appendix) such as: positivity, reflexivity,
and symmetry. Therefore, the basic similarity measure is well-defined for further
use in applications such as node clustering, graph visualization etc. As expected,
the basic node similarity matrix S has the following properties:

– Due to the positivity property, all values of S are positive numbers in the
interval [0,1]. The maximum value of similarity (equal to 1) arises, when two
nodes are connected with only one edge and have no connections with other
nodes, whereas the minimum value (equal to 0) arises when two nodes do not
share any edge.

– Due to the reflexivity property, all values of the main diagonal in S are equal
to 1.

– Due to the symmetry property, S is a symmetric square matrix.

3.3 Extending the Node Similarity Measure

Based on Theorem 1, the similarity values between all non-neighbor nodes in a
graph G are zero. For instance, in our running example, the similarity value between
nodes v1 and v4 is zero, because they do not share any edge. However, users v1
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and v4 have both user v2 as a common friend, and thus they could be related in
some way.

By using a transitive similarity we can efficiently solve this problem. In our
method, we define a transitive node similarity, between two nodes vi and vj , de-
noted as extended similarity. Extended similarity is calculated by the product of
the basic similarities between the nodes of the shortest path from vi to vj . This en-
sures that extended similarities will become smaller than all the basic similarities,
which define it, as the following theorem holds.

Theorem 2 Let p = {vp1 , vp2 , ..., vpk} be any path from node v = vp1 to u = vpk .

Then,

esim(v, u) ≤ sim(vpi , vpi+1),∀i ∈ {1, 2, . . . , k − 1}

Proof All basic similarities are numbers into [0,1]. Thus, let sim(vpi , vpi+1) =
1
ai

,∀i ∈ {1, 2, . . . , k − 1} where ai ≥ 1. Then,

esim(v, u) =
k−1
∏

i=1

sim(vpi , vpi+1) =
k−1
∏

i=1

1

ai

Therefore, it is sufficient to prove ∀i ∈ {1, 2, . . . , k − 1} that:

k−1
∏

j=1

1

aj
≤

1

ai

or equivalently:
1

a1 · a2 · ... · ak−1
≤

1

ai

⇔ a1 · a2 · ... · ak−1 ≥ ai

⇔ a1 · a2 · ... · ai−1 · ai+1 · ... · ak−1 ≥ 1

which always holds, and the theorem has been proven. ⊓⊔

However, for the calculation of the extended similarity someone could suggest
to calculate the products of all possible paths between any pair of nodes and then
to select the maximum extended similarity value. This choice has a prohibitive
computational cost. Thus, in our method, we calculate the product of the shortest
path, by imposing a penalty to the long distance nodes.

For the above reasons, we choose the shortest path among all possible paths
between the two nodes. This shortest path expresses the minimum number of
edges required to connect the two nodes, as all edges of graph G are not weighted.
Therefore, we define the following extended node similarity measure for any two
nodes of G:

esim(vi, vj) =























0, if there is no path between vi, vj

sim(vi, vj), if vi, vj are neighbors
k
∏

h=1

sim(vph , vph+1
), otherwise

(2)

where vp1=vi, vpk+1
=vj and the nodes vph (for h=2,. . .,k) are all the intermediate

nodes that the shortest path from vi to vj passes through. Note that, in case
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that vi, vj are neighbor nodes, the shortest path between them is the single edge
connecting them, and this explains why esim(vi, vj) = sim(vi, vj).

It is also important to note that if there are several paths from vi to vj having
the same length with the shortest (i.e., all these paths can be alternative shortest
paths), we select the path that maximizes the product of the basic similarity values
in order to define the corresponding extended similarity score.

In our running example, according to the previous definition, the extended
similarity between nodes v1 and v4 using Equation 2 equals:

sim(v1, v4) = sim(v1, v2) · sim(v2, v4) =
1

6
·
1

4
= 0.042

as the shortest path between v1, v4 is: v1 → v2 → v4 (the alternative path v1 →

v3 → v4 has the same length and the same similarity score since nodes v3 and v2

have equal degrees). Note that the extended similarity score between nodes v1, v4

is less than the basic similarity score of v1, v2 (0.167) and v2, v4 (0.25).
Collecting all the extended similarity values between the nodes of a graph G,

we construct the extended node similarity matrix ES of G. It is a matrix which has
the same dimensionality and structure with the basic node similarity matrix S. Its
values are defined as follows:

ES[vi, vj ] = esim(vi, vj)

In our running example, the extended node similarity matrix is depicted in
Figure 5, where all values are rounded to the third decimal digit.

 V1               V2              V3              V4              V5               V6              V7              V8              V9

10.3330.0030.0090.0090.250.0620.0620.056

0.33310.0090.0280.0280.0830.0280.0280.167

0.0030.00910.3330.3330.0020.0090.0090.056

0.0090.0280.33310.0280.0070.0280.0280.167

0.0090.0280.3330.02810.0070.0280.0280.167

0.250.0830.0020.0070.00710.250.250.042

0.0620.0280.0090.0280.0280.2510.0280.167

0.0620.0280.0090.0280.0280.250.02810.167

0.0560.1670.0560.1670.1670.0420.1670.1671

ES

V

V1

V2

V3

V4

V5

V6

7

V8

V9

Fig. 5 Extended Node Similarity Matrix.

It is important to note that using the extended node similarity in a connected
graph, such as the graph G of our running example, all values of ES will be
positive numbers (non-zero values). This is due to the fact that there is always a
shortest path between any pair of node of a connected graph. However, if a graph
is not connected, then for nodes belonging to the same connected component, the
extended node similarity scores will be still non-zero, whereas zero values will exist
for pairs of nodes belonging to different components.

The extended node similarity measure satisfies all fundamental properties,
which are proved in Section 7 (Appendix), and advantages that the basic node
similarity measure has: positivity, reflexivity, symmetry. All these properties, af-
fect also the similarity values of the extended node similarity matrix ES:
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– Due to the positivity property, all values of ES are positive numbers in the
interval [0,1]. Moreover, the zero values appear only if we do not have connected
nodes (there is no path between the two nodes).

– Due to the reflexivity property, all values of the main diagonal in ES are equal
to 1.

– Due to the symmetry property, ES is a symmetric square matrix.

3.4 The FriendTNS Algorithm

In this section, we present the proposed algorithm, denoted as FriendTNS (Friend
Transitive Node Similarity), we analyze its steps, provide implementation details
and discuss its time and space complexity.

The main strategy of the FriendTNS algorithm is simple: to compute the sim-
ilarities from a specific starting node (the selected user) v0 to other nodes (users)
of the network by progressively discovering shortest paths and calculating the cor-
responding transitive similarities s[] of the discovered nodes on-the-fly, following
Theorem 1 and Equation 2. When a specific defined accuracy (according to a
precision parameter p) has been reached to the remaining similarity calculations,
during a shortest path traversal, the discovery procedure stops in that path. In that
way the algorithm discovers and expands only the required parts of the network
in order to compute the top similarities for the selected user with the specified
accuracy. Therefore, it keeps the time and the space complexity low even in large
networks. Moreover, the precision p works as a natural bound and keeps the calcu-
lations in a specific small part of the network around the user v0, which is sufficient
to calculate the top-k similarities. All these properties makes the algorithm able
to work efficiently also in very large networks, in dynamic environments, and in
environments that the network structure is not known in advance.

The algorithm input is the graph G of the network, the node v0 which represents
the target user that will take friend recommendations, the number k of friends
that will be recommended to him, and p the desired precision. The output is
the recommendations array recom[1...k] which holds the corresponding IDs of the
recommended users as friends of v0. The outline of the FriendTNS algorithm is
depicted in Figure 6.

In the first part of the algorithm (lines 1-3), FriendTNS initializes the variables
and the arrays. The array s[1...n] holds the similarity calculations for the target
user v0, while dist[1...n] holds the distances for the shortest path calculations. H

is a min-heap with the node distance as a prioritization key. The array deg[1...n]
holds the computed degrees of the discovered nodes, while ind[1...n] holds an index
of the corresponding node IDs during the sorting process of the node similarity
values.

The second part of the algorithm (lines 4-14), is based on a well-known Dijkstra-
like shortest path procedure, but modified for the required similarity calculations.
Important modifications/additions are:

– The computation of the node degrees in line 6 is made only for the discov-
ered nodes, which are required for the calculation of the basic similarity value
sim(v, u) that is used in line 9.

– When an update on the distance of a node u from v0 occurs, then the transitive
similarity of that node is also updated according to the newly discovered path
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Algorithm Friend-TNS-Algorithm(G,v0,k,p)
Input: graph G, user node v0, recommendations k, precision p

01. s[1...n] = 0, deg[1...n] = 0, ind[1...n] = 0, recom[1...k] = 0
02. H = ∅, dist[1...n] = ∞
03. v = v0, dist[v0] = 0, s[v0] = 1, insert v0 into H
04. while H is not empty do
05. for all adjacent nodes u of v (u neighbor of v)
06. compute the degrees of nodes u, v: deg[u], deg[v] (if not known)
07. if dist[u] > dist[v] + 1 then
08. dist[u] = dist[v] + 1
09. s[u] = s[v] ∗ sim(v, u)
10. end-if
11. if u /∈ H ∧ s[u] ≥ p then insert u into H
12. end-for
13. v = get top item of H and remove it from H
14. end-while
15. sort the derived similarity list s[] with a descending order
16. and keep an index of the corresponding node IDs in ind[]
17. h = 0
18. for i = 1 to n
19. v = ind[i]
20. if node v is not a neighbor of v0 then
21. recom[h] = v, h + +
22. if h > k then exit for
23. end-if
24. end-for
25. return recom[]

Fig. 6 Outline of FriendTNS Algorithm.

from the starting node v0 to u on-the-fly (line 9). Note that in line 9 the
similarity value sim(v, u) is the basic similarity between the nodes v, u as they
are adjacent, thus the formula of Theorem 1 is used for this calculation.

– The newly discovered node u is inserted into the heap H only when its corre-
sponding discovered shortest path returns a transitive similarity value greater
than the precision p. This means that if the transitive similarity value goes
under p the expansion of the path stops. As already mentioned, this works as a
natural bound and keeps the expansion in a specific small part of the network.
It is important to note that due to the transitivity calculations and Theorem
2, every newly discovered edge in a path produces progressively smaller (or
equal) similarity values, thus there will be always a stop-point in any path. In
our experiments, after testing, we used p = 0.000001 which is enough for the
similarity calculations in the selected networks. A further decrease of the value
of p (increase of the precision) does not provide different recommendations.
Therefore, any transitive similarities smaller than 0.000001 are not calculated
(they remain 0), and there is no need of further expansion in the correspond-
ing paths. However, the user can further calibrate (increase or decrease) the
precision as desired. Please notice that in very dense networks, there are a lot
of nodes with very high degrees. In such cases, the basic similarity values can
become very small, and consequently the extended similarity values may ex-
ceed the standard double precision limits, even between nodes that have small
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network distances. Therefore, even if we set the precision p near the limits of
double numbers, some extended similarity values may become zero due to un-
derflows. Thus, the final recommendations will be biased. In order to overcome
this limitation, special structures to handle the calculations of such decimal
numbers should be developed.

In the last part of the algorithm (lines 15-25), friends are recommended to v0

according to their similarity values in s[]. Therefore, we sort the similarity list s[]
(line 15), we keep an index ind[] for the corresponding node IDs (line 16), and
we recommend the top-k nodes (users), which are not already friends of v0 (lines
17-25).

In our running example, user v8 would receive user v4 as friend recommen-
dation, because his similarity score (0.083) is greater than the similarity score of
users v2, v3, v5, v6 (0.028). Note that the similarity values of the neighbor nodes
of v8 (and v8 itself) are ignored as these are already friends of the target user v8.
The resulting recommendation is reasonable, due to the fact that user v9 (which
is responsible for recommending user v4 to target user v8) does not share many
edges with others. In contrast, user v1 (which is responsible for recommending
users v2, v3, v5, v6 to target user v8) shares many edges with others. Thus, our
FriendTNS algorithm is able to capture the associations among the graph nodes.

3.5 Implementation Details and Complexity

FriendTNS keeps the graph nodes and edges in memory using an adjacency list
representation (not an adjacency matrix), which requires an O(n+m) space, where
n is the total number of nodes and m is the total number of edges. All other arrays
(s, dist, deg, ind, recom) require O(n) space. Therefore, our FriendTNS total space
complexity is O(n + m).

For the time complexity analysis, lines 1-3 and 17-25 have a computational
complexity of O(n). Moreover, for lines 15-16 we used the quick-sort algorithm
which has a complexity of O(n log n). For the similarity calculations part (lines
4-14), we used a Fibonacci heap as in the shortest path algorithm of Fredman-
Tarjan [11], which returns a complexity of O(m+n log n). Therefore, the total time
complexity of FriendTNS is: O(n) + O(n logn) + O(m + n logn) = O(m + n logn).

3.6 Extending FriendLink for different types of Networks

Until this point, we dealt with un-weighted and undirected networks. However, our
algorithm can be easily extended to different types of networks. In this Section,
we derive variants of FriendTNS that apply to directed networks and networks
with weighted edges, including the case of edges with negative weights (signed
networks).

Applying FriendTNS to directed graphs can be achieved (i) by simply disre-
garding the edge directions [31], or (ii) by inserting into the adjacency list repre-
sentation only the directed edges. We followed the second case in our experimental
evaluation for the directed networks.

Applying FriendTNS to weighted graphs can be achieved by holding the weights
in the adjacency list representation, and by changing the distance calculations of
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lines 7,8 of the FriendTNS algorithm (Figure 6), to: dist[u] > dist[v] + w(u, v) and
dist[u] = dist[v] + w(u, v), respectively, where w(u, v) denotes the weight of the
edge (u, v) in the graph.

In signed and directed networks edges have positive (+1) as well as negative
(-1) weights. Such signed directed graphs arise for instance in social networks
(i.e., Epinions.com, Shashdot Zoo, etc.) where negative edges denote enmity or
status instead of friendship. In such signed and directed graphs, FriendTNS’s basic
similarity measure of Theorem 1, which is the inverse of the sum of nodes’ degree,
can be adjusted accordingly based on the Status theory [18,19].

In this theory, a positive edge (vi, vj) means that vi regards vj as having a
higher status than herself, while a negative edge (vi,vj) means that vi regards vj

as having a lower status than herself. Assuming that all participants in the system
agree on this status ordering, status theory predicts that when the direction of an
edge is flipped, its sign should flip as well. As shown in Figure 7, to determine the
sign of edge (vi, vj), we first flip the directions of the edges between vk and vi and
between vj and vk, so that they point from vi to vk and from vk to vj . We also
flip the signs accordingly as we do this. Then, we can define the sign of (vi,vj) to
be the sign of the sum of the final signs of (vi,vk) and (vk,vj).

vj

vkvi

+1-1 -1

+1

-1

vj

vkvi

0 -1 +1

+1

-1

vj

vkvi

+10 -1

-1

+1

vj

vkvi

+1 -1 +1

-1

+1

Fig. 7 The prediction of the sign of edge vi,vj (dashed line) based on the Status Theory.

Notice that status theory makes no prediction (zero value) when the two signs
cancel out, which will be later handled by our extensive similarity measure.

Based on Status theory [18,19], the positive nodes’ in-degree deg+
in(x) and the

negative nodes’ in-degree deg−out(x) of a node x increase its status. In contrast, the
positive nodes’ out-degree deg+

out(x), and the negative nodes out-degree deg−in(x)
decrease its status. In the following, our basic similarity measure is transformed,
so that it can take into account the aforementioned properties of Status Theory.

sim(vi, vj) =
1

σ(vi) + σ(vj) − 1
,

where

σ(x) = deg+
in(x) + deg−out(x) − deg+

out(x) − deg−in(x).

As already stated, in networks with negative edge weights the concept of tran-
sitivity has to take into account negative values. Thus, for our extended similarity
measure of Theorem 2, if some edges have negative weight, the total weight of a
shortest path can be calculated as the product of the edges’s weights, based on
the assumption of multiplicative transitivity of the structural balance theory [15,
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19], as formulated in the graph-theoretic language by Hage and Harary (1983). It
is also important to note that the positivity property of the similarity values does
not hold in the case of signed networks, as both basic and extended similarities
can be positive or negative, based on the derived sigma values.

Structural balance theory considers the possible ways in which triangles on
three individuals can be signed. Triangles with three positive signs exemplify the
principle that “the friend of my friend is my friend”, whereas those with one
positive and two negative edges capture the notions “the enemy of my friend is
my enemy”, “the friend of my enemy is my enemy”, and the “enemy of my enemy
is my friend”. Concretely, this means that if vk forms a triad with the edge (vi,vj),
then structural balance theory posits that vi,vj should have that sign that causes
the triangle on vi,vj ,vk to have an odd number of positive signs, just as each of
the principles above have an odd number of occurrences of the word “friend”. In
other words, sim(vi,vj) = sim(vi,vk) * sim(vi,vk), as shown in Figure 8. Notice,
that multiplicative transitivity can be also applied for all different-length shortest
paths found in a signed graph.

vj

vkvi

+1 +1

+1

vj

vkvi

-1 -1

+1

vj

vkvi

-1 +1

-1

vj

vkvi

+1 -1

-1

Fig. 8 The prediction of the sign of edge vi,vj (dashed line) based on the Structural Balanced
Theory.

4 Experimental Evaluation

In this section, we compare experimentally our approach with existing friend
recommendation algorithms. Henceforth, our proposed approach is denoted as
FriendTNS. We use in the comparison the Random Walk with Restart [27] algo-
rithm, the Shortest Path[8] algorithm, the Adamic and Adar [1] algorithm and the
Friend of a Friend [4] algorithm, denoted as RWR, Shortest Path, Adamic/Adar
and FOAF, respectively. Our experiments were performed on a 3 GHz Pentium
IV, with 2 GB of memory. All algorithms were implemented in C. To evaluate the
examined algorithms, we have generated synthetic data sets and chosen three real
data sets from the Facebook, Hi5, and Epinions web sites.

4.1 Algorithms Settings

For each algorithm of our evaluation, next we will briefly describe the specific used
settings:
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FriendTNS algorithm: Our FriendTNS algorithm recommends friends to a
target user v based on a user similarity matrix it constructs. Users can be rec-
ommended to v according to their weights associated with each {v, vi} pair in the
user similarity matrix.

Random Walk with Restart: The “random walk with restart” (RWR) is
a variation of the PageRank algorithm and will be used as a representative of
the family of graph-based methods such as PageRank and HITS. It operates as
follows: consider a random walker that starts from node vx. The random walker
chooses randomly among the available edges every time, except that before making
a choice, he goes back to node vx with probability c (restart). Thus, the relevance
score of node vx with respect to node vy is defined as the steady-state probability
rvx,vy that the random walker will finally stay at node vy, as shown by Equation 3:

rvx = c · A · rvx + (1 − c) · evx (3)

where evx is the n · 1 starting vector with the vx-th element equal to 1 and 0 for
the other elements of the vector, whereas A is the adjacency matrix of graph G.

Equation 3 defines a linear system problem where rvx is a n · 1 ranking vector
and element rvx,vy is the relevance score of node vy wrt node vx, as shown by
Equation 4:

rvx = (1 − c) · (I − c · A)−1 · evx (4)

In our experiments, we tuned the c parameter with test values (5 ∗ 10−6, 5 ∗

10−5, ..., 5 ∗ 10−1). The best recommendation accuracy attained with c = 5 ∗ 10−3.
However, we have to notice that as c grows from 0.005 to 0.5 the recommendation
accuracy slightly drops, which shows that RWR is insensitive to the choose of c.

Shortest Path algorithm: Shortest Path calculates the shortest distance be-
tween any pair of users in the social network. Therefore, users can be recommended
to a target user v according to their shortest distance in the social network. We
use the Frendman-Tarjan algorithm [11] to calculate the shortest paths between
any pair of nodes.

Adamic/Adar algorithm: For a node vx, let Γ (vx) denote the set of neigh-
bors of vx in graph G. A number of approaches are based on the idea that two
nodes vx, vy are more likely to form a link in the future if their sets of neighbors
Γ (vx), Γ (vy) have large overlap; this follows the natural intuition that such nodes
vx, vy represent people with many friends in common, and hence are more likely
to come into contact themselves.

The Jaccard coefficient measures the probability that both vx, vy have a fea-
ture f , for a randomly selected feature f that either vx or vy has. Adamic and
Adar [1] considered a related measure to decide when two personal home pages are
strongly “related”. In particular, they computed features of the pages and defined
the similarity between two pages x, y as follows:

∑

z
1

log(frequency(z)) , where z is

a feature shared by pages x, y. This refines the simple counting of common fea-
tures by weighting rarer features more heavily. Thus, for computing the similarity
between two nodes vx, vy in a graph G, we can use Equation 5:

score(vx, vy) =
∑

z∈Γ (vx)∩Γ (vy)

1

log |Γ (z)|
(5)

Friend of a Friend algorithm: Friend of a Friend algorithm (FOAF) algorithm
leverages only social network information of friending based on the intuition that
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“if many of my friends consider Alice a friend, perhaps Alice could be my friend
too”. The clear intuition behind it [6], is the primary algorithmic foundation of
the “People You May Know” feature on Facebook, which is one of the few known
people recommenders deployed on a social networking site. Formally speaking, if we
define predicate F (vi, vj) to be true if and only if vi is a friend of vj , the algorithm
can be described as follows: for a user vx being the recipient of a recommendation,
its recommendation candidate set is defined as follows [6]: RC(vx) = {user vc|∃

user vi s.t. F (vx, vi) and F (vi, vc)}. For each candidate vc ǫ RC(vx), its common
friends set is: CF (vx, vc) = {user vi|F (vx, vi) and F (vi, vc)}, which represents the
friends of vx that connect to vc and thus serve as a bridge between vx and vc. We
then define the score of each candidate vc for recipient vx as the size of CF (vx, vc).

The candidates are recommended to vx in decreasing score order. For a single
recommended candidate vc, we supply the common friends in CF (vx, vc) as the
explanation for recommending vc. Thus, Facebook.com provides friend recommen-
dations, considering only pathways of maximum length 2 between an individual
and his possible friends in a social network. Therefore, users can be recommended
to vx according to the number on length-2 paths connecting them with him in the
social network.

4.2 Real Data Sets

We used the Epinions4 data set, which is a who-trusts-whom social network. In
particular, users of Epinions.com express their Web of Trust, i.e., reviewers whose
reviews and ratings they have found to be valuable. It contains 49K users and 487K
directed edges among pairs of users. Moreover, we crawled the Facebook website
on the 30th of October, 2009. Our data crawling method was the following: For
each user u, we traverse all his friends and then traverse the friends of each of
u’s friends etc. We created a data set with 3694 users, denoted as Facebook 3.7K.
Moreover, from the Hi5 web site, we crawled 63329 users and all of their friends,
denoted as Hi5 63K5, available from the Hi5 site on the 15th of April, 2009. Finally,
we also use in our comparison the extended signed Epinions 132K data set from
the Stanford Large Network Dataset Collection (SNAP)6, which consist of positive
and negative edges. A positive edge implies friendship/trust whereas a negative
edge implies enmity/distrust.

4.3 Generation of Synthetic Network Model

To study the algorithms’ efficiency (i.e., time complexity) and effectiveness (i.e.,
accuracy with controllable sparsity), we also used synthetic network models of
different sizes. In contrast to purely random (i.e., Erdos-Renyi) graphs, where the
connections among nodes are completely independent random events, our synthetic
model ensures dependency among the connections of nodes, by characterizing each
node by means of a ten-dimensional vector with each element a randomly selected

4 http://www.trustlet.org/wiki/Downloaded Epinions dataset
5 Our Facebook and Hi5 data sets are available in our web site:

http://delab.csd.auth.gr/∼symeon
6 http://snap.stanford.edu/data/index.html
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real number in the interval [−1,1]. This vector represents the node’s intrinsic
features such as the profile of a person. Two nodes are considered to be similar
and thus of high probability to connect to each other if they share many close
attributes. In particular, we define the similarity between two nodes as the scalar
product of their corresponding vectors.

Given a network size N and the degree k of each node, we start with an empty
network with N nodes. At each time step, a node with the smallest degree is ran-
domly selected (there is more than one node having the smallest degree). Among
all other nodes whose degrees are smaller than k, this selected node will connect
to the most similar node with probability 1 − pr, while a randomly chosen one
with probability pr. This process will be terminated when all nodes are of degree
k. The parameter pr ∈ [0,1] represents the strength of randomness in generating
links, which can be understood as noise or irrationality that exists in almost every
real system. Based on the above procedure, we have created 2 synthetic data sets
based on different network sizes N (1000, 100000), with k nodes degree equal to
10 for the first synthetic data set and with k equal to 100 for the second synthetic
data set, whereas pr is equal to 0.2 for both data sets. For further reading about
the procedure of links generation for the synthetic data set see [23].

4.4 Basic Topological Properties of the Real and Synthetic Data Sets

We calculated several topological properties of the synthetic and real data sets
which are presented in Figure 9.

TOPOLOGICAL PROPERTIES:

N = total number of nodes 

E = total number of edges 

ASD = average shortest path distance between node pairs 

ADEG = average node degree 

LCC = average local clustering coefficient  

GD = graph diameter (maximum shortest path distance) 

Data-Set Type N E ASD ADEG LCC GD

Facebook 3.7K Undirected 3694 13692 3.73 7.41 0.32 10

Hi5 63K Undirected 63329 88261 7.18 2.78 0.02 19

Epinions 49K Directed 49288 487183 4.01 19.76 0.26 14

Synthetic (N=1000, k=10) Undirected 1000 5000 2.81 10 0.01 4

Synthetic (N=100000, k=100) Undirected 100000 5000000 3.56 100 0.001 16

Epinions 132K Signed 131828 841372 1.78 6.38 0.24 14

Fig. 9 Topological properties of the real and synthetic data sets.

As shown in Figure 9, Epinions 49K and Facebook 3.7K data sets present
(i) a large clustering coefficient (LCC), and (ii) a small average shortest path
length (ASD). These topological features can be mainly discovered in small-worlds
networks. Small-world networks have sub-networks that are characterized by the
presence of connections between almost any two nodes within them (i.e., high
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(a) (b)
Fig. 10 Virtual planar graph representation of (a) Epinions 49K and (b) Hi5 63K data sets.

LCC). Moreover, most pairs of nodes are connected by at least one short path
(i.e., small ASD).

In contrast, as also shown in Figure 9, Hi5 63K has a very small LCC (0.02)
and a quite big ASD (7.18). In other words, Hi5 data set can not be considered as
a small-world network, since (i) most of its nodes can not be reached from every
other by a small number of hops or steps and (ii) does not have sub-networks that
are a few edges shy of being cliques.

4.5 Sparsity Analysis of the Real Data Sets

The sparsity of a social network is determined by its node degrees. The smaller the
degrees of nodes in a social network, the sparser it is. Most real OSNs are very
sparse, as the degree of their nodes is significantly smaller than their total number
of nodes: (deg(vi) << n, ∀vi ∈ V).

To examine the sparsity of Epinions 49K and Hi5 63K data sets, we enumerated
their edges and node degrees and designed their virtual graph representations.
Figure 10 depicts the graph visualizations of the tested data sets using Frick’s
GEM and Cone algorithms of the Tulip project [2]. We only present a fraction
of the graph visualization. In particular, we present the node with the highest
degree (in the center of the graph visualizations), and all connected nodes to it in
a distance of 7 hops. As shown, Epinions 49K is more dense than Hi5 63K, having
many more edges and higher degree nodes. As will be experimentally shown later,
a higher network sparsity harms the algorithms’ accuracy performance. Notice
that for Facebook 3.7K data set, we have verified that the graph representation
is similar to Epinions 49K on a smaller scale. The reason is that they both can
be considered as small world networks, having similar main characteristics (high
LCC, high ADEG, and small ASD).

4.6 Experimental Protocol and Evaluation Metrics

Our evaluation considers the random division of friends of each target user into
two sets: (i) the training set ET is treated as known information and, (ii) the probe
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set EP is used for testing and no information in the probe set is allowed to be used
for prediction. It is obvious that, E = ET ∪ EP and ET ∩ EP = ⊘ . Therefore, for a
target user we generate the recommendations based only on the friends in ET .

Each experiment has been repeated 30 times (each time a different training
set is selected at random) and the presented measurements, based on two-tailed
t-test, are statistically significant at the 0.05 level. All algorithms have the task to
predict the friends of the target users in the probe set.

We use the classic precision/recall metric as performance measure for friend
recommendations. For a test user receiving a list of k recommended friends (top-k
list), precision and recall are defined as follows:

Precision is the ratio of the number of relevant users in the top-k list (i.e., those
in the top-k list that belong in the probe set EP of friends of the target user)
to k.

Recall is the ratio of the number of relevant users in the top-k list to the total
number of relevant users (all friends in the probe set EP of the target user).

Moreover, we use the AUC statistic to quantify the accuracy of prediction al-
gorithms and test how much better they are than pure chance, similarly to the
experimental protocol followed by Clauset et al. and other papers [7,23]. AUC is
equivalent to the area under the receiver-operating characteristic (ROC) curve. In
our problem context, the AUC statistic can be interpreted as the probability that
a randomly chosen missing link (a true positive) is given a higher score than a
randomly chosen non-existent link (a true negative). In particular, it is the proba-
bility that a randomly chosen missing link (a link in EP ) is given a higher similarity
value than a randomly chosen non-existent link (a link in U −ET , where U denotes
the universal set). In the implementation, among n times of independent compar-
isons, if there are n′ times the missing link having higher similarity value than a
randomly chosen non-existent link and n′′ times the missing link and nonexistent
link having the same similarity value, we define AUC by Equation 6:

AUC =
n′ + 0.5 × n′′

n
(6)

If all similarity values are generated from an independent and identical dis-
tribution, the accuracy should be about 0.5. Therefore, the degree to which the
accuracy exceeds 0.5 indicates how much better the algorithm performs than pure
chance.

4.7 Sensitivity Analysis of FriendTNS on synthetic networks

In this Section, we study the sensitivity of FriendTNS in terms of accuracy perfor-
mance. In particular, we test how the performance of FriendTNS is affected, when
(i) it is combined with different basic similarity metrics, (ii) it runs on synthetic
data sets with different controllable sparsity, and (iii) it runs with different graph
model randomness.

As the basic similarities of our proposed algorithms are calculated using the
inverse sum of node degrees (Theorem 1), it is very interesting to compare the
precision of our basic similarity measure with the corresponding precision of two
other similarity measures, which are based on preferential attachment process [20]:
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the sum of node degrees and the product of node degrees. The basic premise of
preferential attachment is that the probability that a new edge involves node vi is
proportional to current number of neighbors of vi. Thus, we used the three afore-
mentioned measures to calculate the extended similarities of FriendTNS algorithm
for the synthetic 1K data set and then, we computed the precision attained by each
measure vs. the fraction of observed links used in the training set (pr parameter
is fixed to 0.2). Figure 11a depicts the results.
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Fig. 11 Precision vs. different basic similarity measures for (a) the synthetic 1K synthetic
data set and (b) the 100K synthetic data set.

We observe that the inverse sum of nodes degree measure outperforms both
other measures. The same result holds for the 100K synthetic data set, as shown in
Figure 11b. In the following, we adopt the inverse sum of nodes degree measure as
the default basic similarity measure of FriendTNS. Notice also that, as we increase
the fraction of observed edges, the precision of all algorithms is increased too. This
is reasonable, since every prediction algorithm is expected to give higher accuracy
for a denser network.

In our synthetic model, the parameter pr ∈ [0, 1] represents the strength of ran-
domness in generating links. Next, we test FriendTNS’s sensitivity with different
graph model randomness. For the 1K synthetic data set, as shown in Figure 12a,
when the strength of randomness is weak, the inverse sum of nodes degree performs
better than the other metrics. However, as the strength of randomness becomes
high all metrics cannot perform better than pure chance. The same result holds
for the 100K synthetic data set, as shown in Figure 12b.

4.8 Accuracy Comparison of FriendTNS with other methods

Next, we proceed with the comparison of FriendTNS with RWR, Shortest Path,
Adamic-Adar, and FOAF algorithms, in terms of precision and recall. For this
comparison, the percentage of links used in the training ET set is fixed to 50% of
the E set of graph edges. The precision vs. recall curve will reveal the robustness of
each algorithm in attaining high recall with minimal losses in terms of precision.
We examine the top-k ranked list, which is recommended to a target user, starting
from the top friend. In this situation, the recall and precision vary as we proceed
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Fig. 12 AUC vs. pr strength of graph model randomness for (a) the synthetic 1K data set
and (2) the synthetic 100K data set.

with the examination of the top-k list. Notice that the default value of k parameter
is set to 10 unless it is different declared in the text.

For the Facebook 3.7K data set, in Figure 13 we plot a precision vs. recall
curve for all algorithms. As expected, all algorithms’ precision falls as k increases.
In contrast, as k increases, recall for all algorithms increases as well. FriendTNS at-
tains the best results with impressive high precision. The reason is that FriendTNS
exploits global and local features of the social graph by combining the basic with
the extended similarity measure. In contrast, RWR traverses only globally the so-
cial network, missing to capture adequately the local characteristics of the graph.
Moreover, Shortest Path does not take into account the increased similarity be-
tween connected nodes that do not share many edges with others. Furthermore,
Adamic/Adar and FOAF algorithms exploit only local features of the social net-
work.
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Fig. 13 Comparison of FriendTNS, RWR, Shortest Path, Adamic/Adar and the FOAF algo-
rithm for the Facebook 3.7K data set.

The precision of FriendTNS is impressive in this specific data set. The main
reason is the topological characteristics of Facebook 3.7K data set. It presents (i)
a large clustering coefficient (LCC) equal to 0.32, and (ii) a small average shortest
path length (ASD) equal to 3.73. Thus, Facebook 3.7K data set can be considered
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as a small-world network. That is, small-world networks have links that connect
almost any two nodes (i.e.high LLC). Moreover, most pairs of nodes are connected
by at least one short path (i.e. small ASD). Thus, individuals who attempt to locate
new friends in an small-world network can more easily find them and recommender
systems are more effective.
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Fig. 14 Comparison of FriendTNS, RWR, Shortest Path, Adamic/Adar, and the FOAF al-
gorithm for the Epinions 49K data set.

For the Epinions 49K data set, as shown in Figure 14, we also plot precision
vs. recall curve for all algorithms. FriendTNS again attains the best results. The
precision of FriendTNS is again quite high. Based on its topological features, Epin-
ions 49K can be also considered as a small-world network, since it presents high
LCC and small ASD.
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Fig. 15 Comparison of FriendTNS, RWR, Shortest Path, Adamic/Adar, and the FOAF al-
gorithm for the Hi5 63K data set.

For the Hi5 63K data set, as shown in Figure 15, we plot precision vs. recall
curve for all algorithms. However, the overall performance of FriendTNS, RWR
and Shortest Path algorithms is significantly decreased compared with the results
in both previous data sets. The main reason is the high sparsity (i.e., very small
ADEG equal to 2.78) of the Hi5 data set. Moreover, it has very small LCC and
quite big ASD (7.18). In other words, Hi5 data set can not be considered as a



TNS: Predicting and Recommending Links in Signed Social Networks 27

small-world network. That is, most of its nodes can not be reached easily from
other nodes and there are no cliques. Thus, a recommender system can not be as
effective as it was in the previous two data sets.

4.9 Comparison of FriendTNS with Randomness

In this Section, we compare FriendTNS and the other methods with a pure chance
baseline algorithm that predicts missing links, by simply randomly selecting pairs
of nodes in graph G, to be connected (i.e., to be friends).

One way to quantify the effectiveness of a link prediction method [20], is the
ratio between the probability that the top-ranked pair of nodes is connected and
the probability that a randomly chosen pair of nodes is connected. For instance, for
the Facebook 3.7K data set, if each user was connected with all others, we would
have 6820971 [ 3694∗3694−3694

2 ] graph edges. However, in the Facebook 3.7K test

data set, we have 13692 edges. If the percentage of links used in the training ET

set were fixed to 50% of the E set of graph edges, then the remaining edges in the
probe EP set would be 6846. Thus, if we randomly proposed a new top-1 friend to
a target user u, the probability that he is a friend is 0.001 ( 6846

6820971). This means
that for the Facebook 3.7K data set, if we divide FriendTNS’s precision (0.83)
with the random’s predictor precision (0.001), we get the factor improvement (830
times) of FriendTNS over this random predictor. Following the same procedure
for the Epinions 49K and the Hi5 63K data set, the random’s predictor precision
is computed to 0.000022 and 0.0002, respectively.

This random friendship guess is denoted as Random predictor. Figure 16 shows
each algorithm’s performance on each data set (Facebook 3.7K, Epinions 49K, and
Hi5 63K), in terms of precision as a factor of improvement over Random predictor,
when we recommend a top-1 friend to a target user u and ET =50%. Each algo-
rithm’s performance is obtained by averaging over 30 independent realizations.
Bold entries represent the best algorithm performance. We can see that all five
methods significantly outperform the random predictor. Notice that the factor of
improvement –in terms of precision for all methods– over randomness is increased
as the data sparsity of a data set is increased. For instance, the factor of improve-
ment is enormous for the Hi5 data set, because it presents the larger data sparsity
among all three data sets. We note, however, that using this ratio to judge pre-
diction algorithms has an important disadvantage. Some missing connections are
much easier to predict than others: for instance, if a network has a heavy-tailed
degree distribution and we remove a randomly chosen subset of the edges, the
chances are excellent that two high-degree nodes will have a missing connection.
Thus, such a connection can be easily predicted by even simple heuristics such as
the product of nodes degree or the FOAF algorithm.

To overcome the aforementioned limitation and more meaningfully represent
the friend recommendation algorithms’ accuracy performance, we also use the
AUC statistic, which looks at an algorithms overall ability to rank all the missing
connections over nonexistent ones, not just those that are easiest to predict. For
the Epinions 49K data set, as shown in Figure 17a, we plot a curve for AUC vs. the
fraction of observed links used in the training set. As shown, as a greater fraction
of the network is known, the accuracy becomes even greater, for all methods.
FriendTNS does far better than pure chance, indicating that it is a strong predictor
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Facebook 3.7K Epinions 49K Hi5 63K

FriendTNS 830 2950 19789

RWR 631 2002 17543

Shortest Path 519 1932 15151

Adamic-Adar 204 650 5502

FOAF 151 531 4544

Fig. 16 Factor of improvement of FriendTNS, RWR, Shortest Path, Adamic/Adar, and the
FOAF algorithm over Random Predictor

of missing structure. The main reason is that FriendTNS captures effectively the
local and global graph features. Notice that we also verify the same algorithms’
rank for the Facebook and Hi5 data sets, as shown in Figures 17b and 17c,
respectively.
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Fig. 17 Comparison of FriendTNS, RWR, Shortest Path, Adamic/Adar, FOAF and the pure
chance algorithm for (a) the Epinions 49K, (b) the Facebook 3.7K and (c) the Hi5 data sets.

4.10 Time Comparison with other methods

In this section, we compare FriendTNS against the RWR, Shortest Path, Adamic/Adar,
and FOAF algorithms in terms of time complexity. We have created 2 synthetic
data sets based on different network sizes N (1000, 100000), where N is the total
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number of nodes in the network (and is the main time complexity factor). For the
first synthetic data set the k nodes degree is equal to 10, whereas k is equal to
100 for the second one. All recorded times are refer to the total required time for
calculating similarities for a target node with all other nodes in a graph. Each al-
gorithm’s performance is obtained by averaging over 30 independent realizations.
Figure 18 depicts the results. As shown, RWR present the worst results because
it calculates the inverse of an n × n matrix. FOAF and Adamic/Adar algorithms,
outperform Shortest Path and RWR due to their simpler complexity since they are
local-based similarity measures. However, as already shown in Section 4.8, both
methods give the worst results in terms of accuracy. Moreover, FriendTNS out-
performs all other methods since its threshold parameter p causes the calculations
to be performed only in small parts of the network around the selected user.

Data-Set FriendTNS Shortest Path Adamic/Adar RWR FOAF

Synthetic-(N=1000, k=10) 0.001sec 0.011sec 0.003sec 0.017sec 0.002sec

Synthetic-(N=100000, k=100) 0.117sec 1.05sec 0.394sec 1.621sec 0.280sec

Fig. 18 Time complexity of the synthetic data sets. A smaller value is better.

4.11 FriendTNS Accuracy Performance in Signed Networks

In this section, we present the accuracy performance of FriendTNS when we take
into account positive and negative links of a signed network, i.e., extended Epinions
132K data set. We have two different variants of FriendLink: The first variation
considers only positive links and is denoted as FriendTNS+. The second variation
considers both positive and negative links and is denoted as FriendTNS+

−
. Fig-

ure 19a presents the precision and recall diagram for both versions of FriendTNS,
whereas Figure 19b presents the AUC accuracy statistic. Both Figures show that
FriendTNS+

−
outperforms FriendTNS+. The reason is that FriendTNS+

−
exploits

positive and negative links. This means that if we use information about negative
edges for predicting the presence of positive edges we get an accuracy improve-
ment of FriendTNS predictions. These results clearly demonstrate that there is, in
some settings, a significant improvement to be gained by using information about
negative edges, even to predict the presence or absence of positive edges.

5 Discussion

There are many difficulties in the study of the link prediction problem. A first
problem is the data sparsity [28] of the real online social networks. That is, the
prior probability of a link is typically quite small for building a statistical model. To
overcome this limitation, we studied a synthetic network model with controllable
density and also study sparsity in real data sets.

A second problem is the huge size of real systems. For instance, Facebook
in December 2012 announced that it counts more than 1 billion registered users
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Fig. 19 Accuracy performance of FriendTNS in terms of (a) precision/recall and (b) AUC
statistic.

and more than 500 millions of active users in any given day 7 with an average of
roughly 150 friends each. This means that our data sample collected is extremely
small relative to the overall graph. To study computational complexity issues, we
tested our algorithm’s performance with synthetic network models of different sizes
(different total number of nodes).

Real networks have many complex structural properties [9], such as nodes’
degree heterogeneity, the rich-club phenomenon, the mixing pattern, etc. These
network properties are not considered by our simple synthetic network model,
because they are out of the scope of this paper. However, our synthetic network
model can be easily extended to be closer to the real networks. For example, by
applying the nodes’ degree heterogeneity index [9] with a probability pr, a synthetic
network with different level of nodes’ degree heterogeneity can be composed. Notice
also that we use in our experiments the Epinions 49K and the extended signed
Epinions 132K data sets, which are benchmarks for many other scientific works and
can be downloaded from the Stanford Large Network Dataset Collection (SNAP).8

Finally, many real networks are evolving all the time in a day-to-day basis, and
new emerging nodes/edges are added in the network structure. FriendTNS can in-
crementally update the similarity values between nodes, without re-calculating
them from scratch. That is, FriendTNS discovers and expands only the required
parts of the network and computes similarities only for the target user, keeping
time and space complexity low. In other words, FriendTNS does not make calcu-
lations for the whole graph (i.e., for all users). In contrast, it performs calculations
only for the target user and for the current network structure. Therefore, the simi-
larities of the target user are calculated on-the-fly, even if there are changes in the
network structure. Notice that in cases of deletions or changes in the connections
of existing nodes, the affected similarities must be recalculated. The aforemen-
tioned advantages of our algorithm can be useful for cases, where long term digital
preservation of the social network connections is needed. Thus, as data in large
networks (with billions of nodes) are aggregated over time, our method is scalable
to efficiently process them.

7 Facebook’s statistics included in this section were obtained from http://newsroom.fb.com
8 http://snap.stanford.edu/data/index.html
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6 Conclusions

In this paper, we proposed the FriendTNS algorithm to provide more accurate
friend recommendations by computing effectively the proximity between any pair
of connected nodes in an OSN. We defined a transitive node similarity measure
in OSNs by taking into account local and global features of a social graph. We
also derived variants of our method that apply to different types of networks (di-
rected/undirected, weighted/unweighted, and signed/unsigned). We performed an
experimental comparison of the proposed method against existing recommenda-
tion algorithms using the three real social networks (Facebook, Epinions, and Hi5
data sets). We have shown that our FriendTNS algorithm provides more accu-
rate friend recommendations compared to existing approaches. In the future, we
want to examine other ways of improving friend recommendations based on other
features that OSNs offer, such as photo and video tagging, groups and common
applications. The combination of such features can provide information on dif-
ferent ways that users are connected and therefore yield to more accurate friend
recommendations.
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7 Appendix

The basic node similarity measure, defined in Equation 1, satisfies fundamental properties such
as: positivity, reflexivity, symmetry.

Theorem 3 The basic node similarity measure satisfies the positivity property.

Proof For any two nodes vi, vj of graph G we have:

sim(vi, vj) =

m
∑

h=1

R[eh, vi] · R[eh, vj ]

m
∑

h=1

(

R[eh, vi]
2 + R[eh, vj ]2 − R[eh, vi] · R[eh, vj ]

)
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=

m
∑

h=1

R[eh, vi] · R[eh, vj ]

m
∑

h=1

[

(R[eh, vi] − R[eh, vj ])2 + R[eh, vi] · R[eh, vj ]
]

=

m
∑

h=1

R[eh, vi] · R[eh, vj ]

m
∑

h=1

(R[eh, vi] − R[eh, vj ])2 +
m
∑

h=1

R[eh, vi] · R[eh, vj ]

All sums in the later equation are positive numbers, thus the positivity property holds:
sim(vi, vj) ≥ 0. Moreover, as the second sum on the denominator is equal with the numerator,
we have that sim(vi, vj) ≤ 1, and the theorem has been proven. ⊓⊔

Theorem 4 The basic node similarity measure satisfies the reflexivity property.

Proof For any node vi of graph G we have:

sim(vi, vi) =

m
∑

h=1

R[eh, vi] · R[eh, vi]

m
∑

h=1

(

R[eh, vi]
2 + R[eh, vi]

2 − R[eh, vi] · R[eh, vi]
)

=

m
∑

h=1

R[eh, vi]
2

m
∑

h=1

(

R[eh, vi]
2 + R[eh, vi]

2 − R[eh, vi]
2
)

= 1

and the theorem has been proven. ⊓⊔

Theorem 5 The basic node similarity measure satisfies the symmetry property.

Proof For any two nodes vi, vj of graph G we have:

sim(vi, vj) =

m
∑

h=1

R[eh, vi] · R[eh, vj ]

m
∑

h=1

(

R[eh, vi]
2 + R[eh, vj ]2 − R[eh, vi] · R[eh, vj ]

)

=

m
∑

h=1

R[eh, vj ] · R[eh, vi]

m
∑

h=1

(

R[eh, vj ]2 + R[eh, vi]
2 − R[eh, vj ] · R[eh, vi]

)

= sim(vj , vi)

and the theorem has been proven. ⊓⊔

The extended node similarity measure satisfies all fundamental properties and advantages
that the basic node similarity measure has: positivity, reflexivity, symmetry.

Theorem 6 The extended node similarity measure satisfies the positivity property, and, fur-
thermore, it returns values in the interval [0,1].
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Proof If there is no path between vi, vj , then we have: esim(vi, vj) = 0. In case that vi, vj are
neighbors, we have: esim(vi, vj) = sim(vi, vj) ∈ [0, 1], otherwise we have:

esim(vi, vj) =
∏k

h=1 sim(vph
, vph+1

). As all sim(vph
, vph+1

) values are into [0,1], the same
will also hold for their product. Thus the theorem has been proven. ⊓⊔

Theorem 7 The extended node similarity measure satisfies the reflexivity property.

Proof We have that: esim(vi, vi)=sim(vi, vi)=1, and the theorem has been proven. ⊓⊔

Theorem 8 The extended node similarity measure satisfies the symmetry property.

Proof In case there is no path between vi, vj , we have esim(vi, vj) = 0. Also we have
esim(vj , vi) = 0, thus: esim(vi, vj) = esim(vj , vi). In case vi, vj are neighbors, we have:
esim(vi, vj) = sim(vi, vj) = sim(vj , vi) = esim(vj , vi). Otherwise, the shortest path from vj

to vi will be the same path from vi back to vj , as the graph G is undirected and unweighted.
Therefore, we will pass through the same nodes in both directions and the similarity values of
the intermediate edges will be also the same. Thus, we have:

esim(vi, vj) =
k
∏

h=1

sim(vph
, vph+1

) =
1
∏

h=k

sim(vph+1
, vph

) = esim(vj , vi)

Thus the theorem has been proven. ⊓⊔


