Revisited Skyline Query Algorithms on Streams of
Multidimensional Data

Alexander Tzanakas, Eleftherios Tiakas, Yannis Manolopoulos

Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

This paper focuses on the analysis and evaluation of skyline query algorithms
on streams of multidimensional data. It presents three algorithms and evalu-
ates them with different types of datasets, number of dimensions and “Sliding
Window” sizes. The results of these experiments are reviewed according to
time performance, memory consumption and the size of the skyline.

Keywords: Skylines, Analysis, Experiments, Evaluation

1. Introduction

1.1. QOverview of the skyline problem

Skyline queries are important for applications in which the preferences of
the user are the ones that determine its result. One such example is of the
tourist who wants to locate the hotels which better satisfy the preferences
of his stay in an area. Each hotel is represented by two values: the distance
from a specific point (E.g. a beach) and its price. The users wants to discover
the hotels which have the lowest price and also the smallest distance from
the beach. Skyline queries try to find items that “dominate” on other items.
Hotel A “dominates” B, if it is at least as close to the beach as B but offers
a better price. [1]

Finding the “dominance” essentially means finding the items with the
lowest values in all the dimensions. Items that are dominating, cannot be
dominated, because that would mean that another object has at least a
dimension that is “better”.

In Fig. 1 one can see how the example’s data are represented. The
X-axis depicts the hotel’s distance from the beach and the Y-axis depicts
the price. The line that connects the points nearest to two axes represents

Preprint submitted to ADBIS June 8, 2016

Price

o 1 2 3 4 5 6 7 8 9 10
Distance

Figure 1: Skyline Example

the skyline. These points dominate all other points of the data-set but do
not dominate each other. The skyline queries can be expanded to more
dimensions, in which an object dominates another if it has lower values in all
dimensions. Algorithms that are related with skyline discovery are divided
into two categories.

The algorithms that inspect the data statically, namely there are no in-
sertions or deletions while executing the algorithm and all of the data are
available at the beginning. The second category algorithms are valuable in
scenarios where a program has to return results based on the user’s prefer-
ences. E.g. a server in the tourist example calculates which are the best
hotels, when a user specifies a region and also when new businesses are in-
serted or deleted. In such scenarios static analysis of data has no meaning
because the cases are practically innumerable. One more case in which con-
tinuous skyline evaluation algorithms are useful, is the stock market. Traders
are interested in finding both the best value of a share and the number of
the shares that are negotiating in a specific price. Since transactions are
represented in the time space, the traders are interested only in actions that
occurred in a specific time frame. For that reason a mechanism that allows
transactions that are no longer a part of the trader’s interests to be removed
dynamically after a certain time, is required.

Fig. 2 depicts the change of skyline in time, after deleting an object.
The form of the skyline changes dynamically, so it must be continuously
calculated and updated.

o 1z 3 4 5 6 7 5 5 10 0 1 2z 3 4 5 6 7 5 5 10
Distance Distance
(a) Skyline at time t=a (b) Skyline at time t=b

Figure 2: Dynamic Skyline

1.2. Algorithms for skyline calculation

In databases, skyline queries have been examined thoroughly in the past.
Borzsonyi et al. [2| develop two techniques that are based on divide and
conquer and Block Nested Loop. The divide and conquer algorithm, divides
the data into parts that fit into the main memory. The skylines on all different
partitions are calculated separately in the main memory and then joined in
the final result. The “BNL” algorithm checks each tuple in the database
with every other and returns it, given that it is not dominated by another.
Another algorithm is the “SFS” [3], which sorts the data of the database
using a monotone function. Then the skyline can be calculated using a
sorted list. There are also algorithms that use binary operations found in
databases. Tan et al. [4] provide one more method based on the relations of
the skyline and the lowest coordinates of specific points. Papadias et al. [5]
and Kossman et al. [6] discover skylines using nearest neighbor techniques.
[7] Continuous skyline algorithms are reviewed in the next section of the

paper.

1.3. Related work

Even though a lot of work has been done and many algorithms have been
proposed for the calculation of the skyline, not much is done in the evaluation
of the algorithms and their proposed benefits. This paper tries to address

a(5) - time of arrival is 5

b(7) - time of expiry is 12
|

c(10)

£(14)
m

d(12)

e(6)

0 1 2 3 4 5 6 7 8 9 10X

Figure 3: Skyline at time 14. A new tuple has arrived. The sliding window size is 5.

this issue by comparing three algorithms that are widely used by researchers
to compare new algorithms.

2. Continuous skyline calculation algorithms

In this paper continuous skyline algorithms are presented and evaluated.
Three different approaches are examined, the “LookOut” method presented
in [1] and “Lazy” and “Fager” methods proposed by [7]. Certain aspects
of the implementation of these three algorithms are given and then they are
evaluated based on different metrics. These metrics include execution time,
memory allocation and the size of the skyline.

2.1. The Lazy Algorithm

“Lazy” algorithm is presented in [7] by Yufei Tao and Dimitris Papadias.
Changes in skylines can happen in two occasions:

1. a new tuple is inserted in the database
2. an object has “ezpired” and has to be removed

The “expiration” of the object is calculated as the time resulting from “time
of arrival + size of sliding window”. The lazy algorithm uses the pre-
processing module (“L-PM”) and the maintenance module (“L-MM?”).

When a tuple r is inserted in the system the “L-PM” module checks if
it is dominated by another tuple in the current skyline. E.g. in Fig. 3 the
arrival of tuple f at time 14 does not affect the current skyline, because f is
dominated by object d. For that reason f is saved in the database with the
objects that are not being used currently in the skyline, but may appear in
it later. The database which stores the “inactive” data is called “DBrest”
and the database which stores the skyline is called “DBsky”.

In the case which the incoming object dominates some of the skyline
objects, it is stored in “DBsky” and the data that are dominated are deleted,
because they will not appear again.

The algorithm also defines two regions of a tuple r:

1. the dominance region, called r.DR
2. and the anti-dominance region r.ADR

The r.DR region has as starting point the coordinates of the object r and
as ending the maximum coordinates that can appear. Contrary the r.ADR
region covers a region that spans from the star of the axes to the object itself.
Figure / depicts the shape of r.DR and r.ADR in a 2-d example.

max corner

r.DR

r tuple

origin
Figure 4: r.ADR and r.DR regions
When a tuple arrives a test is performed, to check if any of the objects

that are already in the skyline are in the “r.ADR ” region. In contrast, to find
the objects that belong in the dominance region of the new tuple, the “Lazy”

Algorithm 1 L-PM algorithm
1: r = an incoming tuple
2: issue a d-dimensional emptiness test to check whether any point of DBsky
isin . ADR
if the test result is false (r. ADR contains objects) then
insert r to DBrest and terminate
else
issue a d-dimensional query to find the points of DBsky in r.DR
for each tuple r’ in the query result do
output (-r’; current time) and discard from system
end for
10: output(+r, current time) and add r to DBsky
11: set T esfg to the earliest expiry time of the tuples in DBsky
12: end if

algorithm, performs an r.DR query. If an object is found in the “r.ADR”
region then the new tuple is stored in the “DBrest” database, where it will
stay until it appears in the skyline, or expires. On the other hand, if there
are objects in the “r.DR 7 region, they are expunged from the system and
the new one is inserted in the skyline. The time of expiry for the skyline is
set to the lowest value found in it. The pseudo code of “L-PM” module is
shown in Algorithm 1

y l |

101

9 u

8

7

6] =

st "

.. EDR-Region

3 -—
2 —
. Skyline
0 _—
0 1 2 3 4 5 6 7 8 9 10X

Figure 5: Exclusive dominance region for a 2-d example

The “L-MM” module is responsible for the maintenance of the data that
already exist in the database. For that reason it is executed at the time spec-
ified by the “L-PM” module, which is when an object expires and has to be
deleted from the skyline. The algorithm removes the specific object and also
removes the objects that are stored in “DBrest” and have expired already.
Then the skyline is recalculated, only for the objects that are dominated
exclusively by a tuple r which is about to be deleted. In Fig 5 the exclusive
dominance region for a 2-d example is depicted. Then the algorithm defines
the next execution time for the “L-MM” module, namely the time an object
will be deleted from the system. The pseudo code is shown in Algorithm 2.

Algorlthm 2 L-MM algorithm
r = the tuple in DBsky that expires
output(-r, T:¥) and remove r from DBsky
= the ﬁrst(oldest) tuple in DBrest
while 7.t, <T:5¥ do //r’ has expired
expunge r’ and set r’ to the next tuple in DBrest
end while
compute the skyline for the set S of data in DBrest dominated exclusively
by r, but not by any other skyline point
for each tuple r’ in this skyline do
9: output(+r’, T5:) and move 7’ from DBrest to DBsky
10: end for

11: set T** to the earliest expiry time of the records in DBsky

exp

*®

2.2. The Eager algorithm

The “Lazy” algorithm has some disadvantages like the fact that is stores
data that are obsolete and tuples that will not be used in the skyline at any
time. Such reasons pushed its authors to consider a different approach, which
led to algorithm “Fager” [7].

The “Fager” algorithm aims to resolve two main issues:

1. to lower the memory consumption by keeping only the tuples that are
or will be part of the skyline
2. to lower the cost of the maintenance module, in this case the “E-MM

”

It achieves these two goals, by doing more in the pre-processing module (“E-
PM?”. In the “E-PM ” module the “influence time” is calculated, which can
predict at the time of arrival, if a tuple will be a part of the skyline at some
future point. If there is no such time, the object can safely be ignored and
not even stored in the database. The “Fager” algorithm uses a “FEvent List”,
in which the events are sorted in ascending order based on the time of their
respective events. Such events are the expiration of an object, or the transfer
from database to the skyline. Each tuple that is not a part of the skyline
but, will be in the future, is marked and transferred to it at the proper time.
Specifically in the “E-PM ” module, for each incoming tuple, a query is made
so that the tuples that are dominated by the incoming one are found. These
tuples are then removed from the system. The new r tuple is inserted in
the database and the “influence time” is calculated. The influence time is
calculated by finding all the objects of the skyline that are in the “r.ADR”
region of the tuple r and then keeping the greatest expiry time of them. At
that time point the tuple r will be transferred from the database to skyline.
If the “influence time” calculated is equal to the arrival time, the tuple is
inserted in the skyline directly and in the event list is marked with “EX”
value. Otherwise it is stored in the database with the “FL” value. The
pseudo code for “E-PM” module is shown in the Algorithm 3.

When the time for an event arrives the “E-MM” method is executed.
This method is less complicated than its respective in “Lazy” algorithm,
because more processing has been done in the “E-PM” module. Thus if the
next event in the list is marked as “EX”, then the tuple is simply removed
from the system. Otherwise, the tuple is now a part of the skyline and a
new event is stored in the event list to indicate the expiry time of the tuple.
Algorithm 4 contains the pseudo code of the “E-MM” module.

Algorithm 4 E-MM algorithm
e = the event with the minimum event time in EL
r = the record referenced by e
delete e from EL
if e.tag = FX then
output(-r, e.t) and expunge r from the system
else
output(+r, e.t and insert <r,r.te,, EX> into EL
end if

Algorithm 3 E-PM algorithm
1: r = the incoming tuple
2: issue a d-dimensional query for the r.DR region to retrieve the tuples in
DB dominated by r
for each tuple r’ in the query result do
delete its event entry from FL, and discard r’ from the system
if the event of r’ is of type EX then output (-7, current time)
end for
insert r into DB
issue a d-dimensional max search for the r.ADR region to obtain the
skyline influence time r.¢4,
9: if 7.t equals the current time then
10: output(+r, current time)
11: insert <r, r.tey,, EX> into EL
12: else
13: insert <r,r.ts,, EX> into EL
14: end if

3. The LookOut algorithm

The LookOut algorithm [1] connects each object of the database with a
time interval for which it is valid. This time interval consists of the arrival
time and the expiry time. The skyline can change in two occasions:

1. some skyline data are about to expiry
2. new data are inserted in the database

In the case of expiry, the entirety of the data has to be checked for tuples
that where dominated by the expiring tuple ¢+ and should now be in skyline.
These tuples must only be inserted in the skyline only if they are not dom-
inated by others. In the case of insertion the skyline must be checked for
tuples that dominate the incoming one. If this is not the case the new object
is inserted in the skyline and every previous skyline object is checked if it is
dominated by the new or not.

The LookOut algorithm takes advantage of two important observations
in hierarchical spatial indexes, e.g. R-Trees [8] and quadtrees [9]:

1. If point p dominates all the corners of a node n, then p dominates all
the objects of the node and its children.

2. If all the corners of a node n dominate a point p then all the objects
and its children dominate that point.

Using these two observations “pruning” of nodes is possible, thus rejecting
new objects is faster.

The pseudo code of “LookQOut” algorithm is given in Algorithm 5. Each
new object is inserted in the database (e.g. R-Tree) and then the expiry
time is stored in a binary heap which contains all the expiry times sorted
in ascending order. The object is checked if it belongs to the skyline by
"1s8Skyline” algorithm. If an object must be removed then all candidates
that may replace it in the skyline are calculated by “MINI” algorithm.
Final insertion is only done if “isSkyline” algorithm returns true.

Algorithm 5 LookOut algorithm
1: while time!= endTime do
2 ndp // new data point
3 insert ndp into Tree and expiry time into Heap
4: if isSkyline(Tree, ndp) is true then
5: remove points from Skyline dominated by ndp
6
7
8
9

add ndp to Skyline
end if
if top of Heap == currentTime then
: if point belongs to skyline then
10: save point to variable DSP
11: end if
12: delete point from DB and Heap
13: end if
14: calculate new skyline points with MINI(DSP, Tree) and save them
in NSP

15: for every point p in NSP do

16: if isSkyline(Tree, t) is true then
17: add p to skyline

18: end if

19: end for

20: update time

21: end while

10

“4sSkyline” algorithm (shown in “Algorithm 6", uses a “best-first” search,
namely nodes that have the lowest distance are inserted first in the heap.
When expanding a node, if the lower left corner does not dominate the arriv-
ing tuple, it is not visited again and it is rejected. If the upper right corner
of a child dominates the new tuple, the algorithm terminates with negative
output and the tuple is not inserted in the skyline. If the node is a leaf, the
tuple is compared with all the other tuples of the leaf, to check whether it
dominates them or not. If there is such a leaf the incoming object is not
inserted in the skyline, otherwise it is.

Algorithm 6 isSkyline algorithm
1: insert Tree into Bheap with distance 0
2: while BHeap isn’t empty do
3: Tree = top of Bheap

4: if Tree is leaf node then

5: if one of the entries of Tree dominates P,.,, then
6: return false

7: else

8: continue

9: end if

10: end if

11: if Child is part of the non-empty children of tree then
12: if minimum corner of Child does not dominate P,.,, then
13: continue

14: end if

15: if maximum corner of Child dominates P,.,, then
16: return false

17: end if

18: insert Child into BHeap

19: end if

20: end while

The “MINI” algorithm (shown in Algorithm 7), also uses a “best-first”
search and a binary heap based on the distance from the axis origin to the
coordinates of the point. An object that is about to be deleted is passed
as an argument and returns the objects that are dominated by it. Moreover
these objects are checked before insertion for domination by others, that have
already been inserted. Following the same logic with “isSkyline” algorithm,

11

if the upper right corner is dominated by the object that is about to be
deleted, the node is rejected, otherwise if it is an internal dominated node,
it is inserted in the heap. If the node currently checked is a leaf, the local
skyline is calculated and stored.

Algorithm 7 MINI algorithm

1: insert Tree into BHeap with distance 0
2: while doBHeap isn’t empty

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

if BHeap.top is a point then
point = top of BHeap
plsDominated = FALSE
for each element a in miniSkyline do
if a dominates point then
plsDominated = TRUE
end if
if plsDominated is FALSE then
insert point into miniSkyline
end if
plsDominated = FALSE
end for
end if
Tree = top of BHeap
if P, dominates maximum corner of Tree then
if Tree is a leaf node then
find the local skyline of just Tree
if point is part of the local skyline of Tree then
if Py, dominates point then
insert point into BHeap
end if
end if
end if
end if
insert the children of Tree with their distance in BHeap

28: end while

12

4. Experimentation and Evaluation of the algorithms

4.1. Methodology

Data that can be adapted in different cases are needed for the experi-
ments and the evaluation of the results. For that reason three data types
were created and tested:

1. Correlated data
2. Anti-correlated data
3. Independent data

These categories enable the creation of datasets with different distribution
of data in the hierarchical spatial indexes. In this paper R-Trees where used
as the hierarchical spatial index [8]. R-Trees create nodes based on the data
that were inserted in them. Every node, starting from the root contains
data that are contained in the rectangle of the particular node. The node
is created using the corner coordinates of the rectangle and as extension the
data that are inside this node. This specific feature is important, because it
enables algorithms to traverse the tree and prune nodes that are insignificant.

Algorithm 8 BBS algorithm
1: sk =
2: insert all entries of the root R in the heap
3: while heap not empty do

4: remove top entry e

5: if e is dominated by some point in S then
6: discard e

7: else

8: if e is an intermediate entry then

9: for each child e; of e do

10: if e; is not dominated by some point in S then
11: insert e; into heap
12: else
13: insert e; into S
14: end if
15: end for
16: end if
17: end if

18: end while

13

Moreover “BBS 7 [5] algorithm (shown in Algorithm 8) was used for
skyline computation, in all three algorithms. The “BBS ” algorithm traverses
from the root of the tree and expands each node, storing in ascending order
the distances from the axes origin. In each iteration the node with the lowest
distance is expanded or discarded. If the node is dominated by the existing
skyline it is rejected, otherwise kept. When the algorithm finds a leaf, it
inserts the data in the skyline, because they already have been checked.

In the case of the “Lazy” algorithm the “FExclusive Dominance Region”
must be calculated, for “L-MM?” algorithm to work. This is easily achieved in
2-d datasets. An array sorted in ascending order is needed for each dimension
of the skyline points. Then finding the next value, after the point that
is about to be deleted, creates a tuple that has the upper right corner of
the exclusive dominance region. Using the coordinates of the point to be
deleted, with the coordinates of the upper right corner, the “EDR” region is
calculated. Fig. 6 depicts this calculation.

b(4,3)
c(7,2)

o 4 N w M a0 O N ® © O <

1.2 3 4 5 6 7 8 9 10X

o

Figure 6: Calculating a 2-d EDR

On the other hand, in more than 2 dimensions the shape of the “EDR”
becomes complicated and its calculation hard or even impossible [10]. The
authors of [7] don’t state, how the “EDRs” were calculated and if the datasets
used on the experiments allowed the creation of “£FDRs” that could be calcu-
lated easily like in the case of 2-d datasets. For that reason the experiments
of this paper were conducted with the dominance region of a point, in more
than 2 dimensions. This technique works for all dimensions.

14

4.2. Time performance of the algorithms

Various tests were conducted, based on the dimensions and the size of the
“Sliding Window”. In all the tests the “Fager” algorithm achieves the best
performance, as tuples are checked only once at the time of the arrival, if they
belong in the skyline or not. What is more the “Fager” algorithm has a linear
scaling in all dimensions and “SW?” sizes. The “Lazy” algorithm has similar
performance for 2-d datasets, but on more dimensions its performance is
heavily compromised (Fig. 10 - 15). This is a result of the dominance region
that is used in more than 2 dimensions. In this case the search region is far
greater than in the “EDR” region, thus the number of tuples to be checked
each time is also much greater.

“LookQut” algorithm is worse in all cases compared to the other two. For
small “SW?” sizes the difference is comparable, but when the size becomes
greater than some hundreds the execution time is increased dramatically.
One of the reasons of this behavior is caused by “MINI” sub-algorithm. For
“mini-skyline” to be calculated, all the tuples that have not been “pruned”
in the expansion phase, are possible insertions in the skyline and have to
be checked. When the “SW?” size is getting larger, more tuples are possible
members of the skyline and must be checked with each other. Another issue
of the “LookOut” algorithm, is after the execution of the “MINI”, when the
“isSkyline” has to be executed, so that the possible members are sorted and
accordingly rejected, or inserted in the skyline.

30 70

25 60
50
) ‘\.\'

40

‘;ﬁ—; == Lazy ‘i"' == Lazy
E —— Eager E 30 —4— Eager
10 =% LookOut 20 == LookOut
5 = — = 10 % <
L —= —n
0 0
Anti-corellated Independent Correlated Anti-corellated Independent Correlated
Data type Data type
Algorithm Lazy Eager LookOut Algorithm Lazy Eager LookOut
Data Type Data Type
Anti-correlated 16.05 6.17 24.32 Anti-correlated 7.26 11.01 63.11
Independent 5.06 5.44 21.56 Independent 6.52 10.89 52.75
Correlated 5.28 4.74 18.45 Correlated 5.48 9.03 45.29

Figure 7: 1M 2-d data with sliding window of 100 Figure 8: 1M 2-d data with sliding window of 1K

15

One more observation lies in the fact that all 3 algorithms seem to perform

better in “Correlated” data type.

This probably is due to different “R-

Trees” structure and better “MRBs” creation , across different data types,
which results in faster traversals of the tree. Figures 7 - 15 depict all these

observations.
200 — 120
180 | \ /\
160 100
140 80
. 10 =
‘g’ 100 == Lazy %’ 60 == Lazy
E 30 —4— Eager E —4— Eager
60 =%~ LookOut 40 ==~ LookOut
40 20
20 + - - —.
o = — T —
Anti-corellated Independent Correlated Anti-corellated Independent Correlated
Data type Data type
Algorithm Lazy Eager LookOut Algorithm Lazy Eager LookOut
Data Type Data Type
Anti-correlated 13.09 16.41 189.27 Anti-correlated 14.19 6.49 102.87
Independent 13.99 16.18 184.63 Independent 14.18 7.56 113.59
Correlated 7.12 14.85 166.96 Correlated 12.20 5.76 86.32

Figure 9: 1M 2-d data with sliding window of 10K

500
450

400 =
350

300

250

Figure 10: 1M 4-d data with sliding window of 100

2000
1800
1600
1400
1200
1000

-‘E- == Lazy %’ == Lazy
E 200 =t Eager E 800 =t Eager
150 e | 00K OUE 500 e LoOKOUL
100™ —a 400
50 200
0¥ F —+ LR +
Anti-corellated Independent Correlated Anti-corellated Independent Correlated
Data type Data type
Algorithm Lazy Eager LookOut Algorithm Lazy Eager LookOut
Data Type Data Type
Anti-correlated 122.89 13.29 411.80 Anti-correlated 1249.9 30.09 1819.39
Independent 123.09 12.93 428.73 Independent 1776.30 31.15 1773.00
Correlated 103.70 11.62 323.01 Correlated 1118.71 28.10 1624.72

Figure 11: 1M 4-d data with sliding window of 1K

Figure 12: 1M 4-d data with sliding window of 10K

16

200

1400

180‘\.\' — -
1200
160 \
140 1000
. 10 5 800
g 100 oz i
E 80 : Ilgag);r E 600 : E:\Zg);r
50 == LookOut - 100 e | 00k OUt
40
20!——‘ — — 200 -— —
o¥ k4 % = =
Anti-corellated Independent Corralated Ant\-lznrellated Independent Correlated
Data type Data type
Algorithm Lazy Eager LookOut Algorithm Lazy Eager LookOut
Data Type Data Type
Anti-correlated 29.91 7.09 184.71 Anti-correlated 139.78 12.49 1264.03
Independent 25.24 6.72 162.12 Independent 137.27 11.79 1231.35
Correlated 17.96 6.00 151.75 Correlated 117.59 10.93 1083.14

Figure 13: 1M 6-d data with sliding window of 100

14000

Figure 14: 1M 6-d data with sliding window of 1K

12000 %"
10000

8000

e
- 4000 = [ookOut
2000
04 * =
Anti-corellated Independent Correlated
Data type
Algorithm Lazy Eager LookOut
Data Type
Anti-correlated 11415.70 27.59 9969.60
Independent 12522.34 47.05 12920.20
Correlated 11814.40 38.53 12492.90

Figure 15: 1M 6-d data with sliding window of 10K

17

4.3. Memory consumption of the algorithms

Authors of [7] state that “Eager” algorithm was developed to consume
less memory than “Lazy”. This is verified by the experiments, because even
in the 6-d datasets and the largest “SW?”, the algorithm consumes less than
10MB of memory - Fig. 16.

8

7

% i Sliding Wind ow
é size
;g“ . —a—0.1K
g) —— 1K
g 10K
i = 100K
—p— 1M
1
- ¥
]
s ad 6-d
Data Dimensions
Data dimensions 9d 4-d 6-d
“SW?” size
0.1K 05 05 0.5
1K 05 06 0.6
10K 0.5 08 1.2
100K 06 1.2 29
1M 06 1.2 6.9

Figure 16: Memory consumption of “Fager” algorithm in MB

On the other hand the “Lazy” and the “LookOut” algorithms have higher
memory consumption, since they exceed in some cases hundreds of MB even
in 2-d datasets. “LookOut” algorithm displays fluctuations in the memory
allocation, that are not proportionate to the size of the “Sliding Window” or
the data dimensions. “Lazy” algorithm has normal fluctuations, but when
the “SW?” size is 1M the memory consumption reaches 50MB - Fig. 17.

18

80

0 67.5
2 g Sliding Window
B size
g m0.1K
T 1K
g 0 10K
g 5 = 100K
10 8.5 10 75 =
0506 14 29 2.3
, 0508 =
LookOut Lazy
Algorithm
Algorithms LookOut Lazy
“SW?” size
100 0.5 10
1K 0.6 2.9
10K 1.4 2.3
100K 8.5 7.5
1M 58.0 67.5

Figure 17: Memory consumption of “LookOut” and “Lazy” algorithms in MB

4.4. Skyline size

In this section the size of skyline is examined. The dimensions and the
size of the “SW” affect the size of skyline. The fewer dimensions the dataset
has, the smaller the size of the skyline is. This is logical, as the possibility of
dominance in more dimensions is reduced, thus increasing the skyline. The
same principle stands for the size of the “Sliding Window” as shown in Fig.
18. The size of it, affects the size of the skyline. In a bigger time frame, more
tuples are possible members of the skyline.

19

4000

3500
3000
2 500 Sliding Window
= SlZze
% 2000 m0.1K
= m 1K
z 1500 10K
=
% 1000 b
500
0 - S —— ‘ —
2-d 4-d G-d
Data dimensions
Data dimensions od 4-d 6-d
“SW?” size
0.1K 11 22 28
1K 16 74 143
10K 17 174 522
100K 19 298 1447
1M 20 463 3754

Figure 18: Skyline size for different data dimensions and “SW?” sizes

5. Future work

Skyline queries are an interesting and well studied area of scientific re-
search. But there are a lot of challenges and questions that need answers.
What is more, skyline queries are an integral part of other fields. As stated in
the previous sections skyline queries can be used for finding the best results
based on a user’s preferences or even monitoring the stock prices.

This paper presented three skyline query algorithms that are used by
many researchers, so as to compare their algorithms. Experiments estab-
lished the fact that dimensions and the size of the “SW” are the main factors
that affect the performance and the effectiveness of an algorithm, something
that is not clearly visible in small datasets.

In the future, the research must focus on the development of algorithms
that calculate the skyline even more effectively, because information is con-
stituted by more and more data. This means that the dimensions needed to
represent information, are also growing in size. But this has a negative im-

20

pact in the time complexity of the algorithms. Even algorithms like “Fager”
in big datasets need a considerable time to calculate the skyline, something
that is not consistent with the users’ needs. Researchers have already started
to work on algorithms that take advantage of the raw power of multi-core
systems [11] and high-end GPU configurations [12], that improve the skyline
computation time considerably. But that is not enough, as distributed sys-
tems become widespread and the services based on them are also increasing.
Skyline algorithms that can operate in such environments are needed. One
such example is the algorithm presented in [13], but there are a lot that can
be done in this field.

6. References

1]

2]

[7]

M. Morse, J.M. Patel, and W.I. Grosky. Efficient continuous skyline
computation. Information Sciences 177, pages 3411-3437, 2007.

S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator.
IEEFE 17th International Conference on Data Engineering, pages 421—
430, 2001.

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting.
IEEFE 19th International Conference on Data Engineering, pages 7T17—
719, 2003.

K.-L. Tan, P.-K. Eng, and B.C. Ooi. Efficient progressive skyline compu-
tation. 27th International Conference on Very Large Data Bases, pages
301-310, 2001.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive
algorithm for skyline queries. ACM SIGMOD international conference
on Management of data, pages 467478, 2003.

D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An
online algorithm for skyline queries. 28th international conference on
Very Large Data Bases, pages 275286, 2002.

Yufei Tao and Dimitris Papadias. Maintaining sliding window skylines
on data streams. [IEEE Transactions On Knowledge And Data Engi-
neering, 18:377-391, 2006.

21

8]

[10]

[11]

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
an efficient and robust access method for points and rectangles. ACM
SIGMOD international conference on Management of data, pages 322—
331, 1990.

H. Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR), 16:187-260, 1984.

Ping Wu, Divyakant Agrawal, Omer Egecioglu, and Amr El Abbadi.
Deltasky: Optimal maintenance of skyline deletions without exclusive
dominance region generation. IFEE 23rd International Conference on
Data Engineering, pages 486 — 495, 2007.

Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha Kim, and Hyeon-
seung Im. Parallel skyline computation on multicore architectures. IEEFE
25rd International Conference on Data Engineering, pages 760 — 771,
2009.

Kenneth S. Bgh, Sean Chester, and Ira Assent. Work-efficient parallel
skyline computation for the gpu. Proceedings of the VLDB Endowment,
8:962-973, 2015.

Joo B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil
Nrvg. Efficient execution plans for distributed skyline query processing.
ACM 14th International Conference on Extending Database Technology,
8:271-282, 2011.

22

