TIME SPLIT LINEAR QUADTREE FOR INDEXING IMAGE DATABASES

Theodoros Tzouramanis,
theo@delab.csd.auth.gr

Michael Vassilakopoulos

mvass@computer.org

& Yannis Manolopoulos

manolopo@delab.csd.auth.gr

Lab of Data Engineering, Dept. of Informatics, Aristotle University, 54006 Thessaloniki, Greece

ABSTRACT

The Time Split B-Tree (TSBT) is modified for indexing a
database of evolving binary images. This is accomplished
by embedding ideas from Linear region Quadtrees that make
the TSBT able to support spatio-temporal query process-
ing. To improve query performance, additional pointers are
added to the leaf-nodes of the TSBT. The resulting access
method is called Time Split Linear Quadtree (TSLQ). Al-
gorithms for processing five spatio-temporal queries have
been adapted to the new structure. Such queries appear in
Multimedia Systems, or Geographical Information Systems
(GIS), when searched by content. The TSLQ was imple-
mented and results of extensive experiments on query time
performance are presented, indicating that the proposed al-
gorithmic approaches outbalance respective straightforward
algorithms. The region data sets used in the experiments
were real images of meteorological satellite views and syn-
thetic raster images.

1. INTRODUCTION

Numerous applications require efficient retrieval and query-
ing of static spatial objects, or of spatial objects that change
over time. These include Image and Multimedia databases,
GIS, Urban Planning, Computer-Aided Design (CAD), etc.
The traditional indexing methods are not suitable to store
spatial data because of their inability to implement a total
ordering of objects in space and preserve proximity, at the
same time. A plethora of techniques have been developed
for spatial data [1]. Recently, reseach in spatio-temporal
databases has evolved and access methods for data objects
that change their spatial locations and/or their shapes at dif-
ferent time intervals, have been proposed [2].

The objective of this report is to present an efficient
spatio-temporal access method (STAM) for storing and ac-
cessing evolving binary raster images (regional data). The
new structure is based on the TSBT [3], a secondary mem-
ory transaction-time method. Instead of storing independent
numerical data having a different transaction-time each, for
every consecutive image the new access method stores a

Research performed under the European Union’s TMR Chorochronos
project, contract number ERBFMRX-CT96-0056 (DG12-BDCN).

0-7803-6725-1/01/$10.00 ©2001 IEEE

group of codewords that share the same transaction-time
(each codeword represents a spatial subregion). Moreover,
additional pointers have been added to the leaf-nodes of the
TSBT, aiming at increased query performance. The result-
ing STAM is called Time Split Linear Quadtree (TSLQ).
This structure has analogous functionality to other signi-
ficantly different structures recently proposed by the au-
thors, Overlapping Linear Quadtrees (OLQs) [4] and Multi-
version Linear Quadtree MVLQ) [5]. All three structures
have the same origin, Linear region Quadtree [6]. Five effi-
cient algorithms for processing spatio-temporal queries have
been also adapted to an image database organized with a
TSLQ. Such queries appear in Multimedia Systems, or GIS,
when they are searched by content. The TSLQ was imple-
mented and a thorough experimentation has been conducted
using sequences of real and synthetic raster images. Re-
sults from these experiments that are presented, indicate that
the proposed algorithmic approaches outbalance respective
straightforward algorithms. A comparison with OLQs and

" MVLAQ is a research activity in progress.

733

The rest of the paper is organized as follows. Section 2
provides a description of the new STAM. Section 3 dis-
cusses query processing and Section 4 presents experimen-
tal results that characterize graphically the query perfor-
mance of the TSLQ. Finally, Section 5 concludes the paper
introducing, also, ideas for further research.

2. THE NEW ACCESS METHOD

2.1. Linear Region Quadtrees

We assume that a two-dimensional binary raster image is
represented as a 2™ x 2™ array of pixels ordered by rows,
where n is a positive integer. The region Quadtree [6] is
based on the successive decomposition of two-dimensional
images into four quadrants of 2"~ x 27~ pixels. If a part
of an image is not covered entirely by black or white, it
is recursively subdivided into four subquadrants, until each
subquadblock is entirely unicolor. An example of a binary
raster image and its Quadtree appears in Fig. 1a and Fig. 1b,
respectively.

The Quadtree is a main memory structure. However, the
represented image may be very large and its Quadtree too

Fig. 1. (a) a raster image, (b) a Quadtree and (c) an LRQ

large for main memory. In such a case, information about
the leaves that correspond to black quadblocks of the im-
age array can be inserted into a B*-tree producing, thus, a
pointer-less version of the Quadtree. The latter method is
called Linear region Quadtree (L RQ in the sequel, [6]).
Each black Quadtree leaf-node is represented by a pair
of numbers < C, L >. The first number C is termed a loca-
tional code and denotes the correct path to this leaf-node
from the Quadtree root. Each one of the n digits of C can
be 0,1,2 or 3, corresponding to quadrants NW, NE, SW and
SE, respectively. The second number L of the pair, is the
Quadtree level where the node is located. This linear rep-
resentation of the black Quadtree nodes is called FD (Fixed
length - Depth) linear implementation {6]. Fig. 1c presents
the LRQ that is obtained from the Quadtree of Fig. 1b. For
simplicity, only the FD locational codes (quadcodes in the
sequel) of the black Quadtree nodes appear in the LRQ.

2.2. Time Split Linear Quadtree

If a sequence of NV evolving images has to be stored in an
LRQ, each one labeled with a unique time stamp T'; (fori=1,
2, ..., N), then updates will overwrite old versions and only
the last inserted image will be retained. TSLQ converts the
ephemeral LRQ to a persistent data structure, where past
states are also maintained and can be accessed. It couples
time points with spatial objects in each node. Data records
residing in leaves are of the form (< C, L >,T,), where
< C, L > is the FD code of a black Quadtree node and 7', is
the insertion time point of this FD code in the TSLQ. Non-
leaf nodes contain entries of the form (C’, T?, Ptr), where
Ptr is a pointer to a descendent node, C” is the smallest C
recorded in that descendent node and 77/ is the time point at
which the latter node became current (valid).

Two types of nodes are distinguished: current and his-
torical nodes. In each TSLQ node, we added two new fields:
the “StartTime” and the “EndTime” fields to register
the time interval when this node is current (valid) in the
database. As all new FD codes are inserted into current
nodes, only current ncodes are subject of split. They can be
split either by key (i.e. by FD locational code), or by time.
The key split is a split like the one in a standard B +-tree. It
creates one new node, whose StartTime field gets the value
of the StartTime of the initially overflowing node. The time
split is a split on transaction time. It implies the produc-

734

tion of one historical node and the creation of one new node
whose StartTime field gets the value of the time point cho-
sen for the spit. It requires the duplication of all the records
which intersect the time point chosen for the split.

The split dimension, i.e. whether a split is performed by
key or time, is determined by a split policy. We chose the
Isolated-Key-Split policy [3, 7], which generally achieves a
good tradeoff between space consumption, i.e. the degree
of redundancy of stored data, and query performance.

The algorithm of deletion in the TSLQ is, also, signif-
icantly different from the corresponding algorithm in the
TSBT. The TSBT merely posts deletion markers (i.e. spe-
cial record versions indicating the deletion) for all deleted
records and does not merge sparse nodes. On the contrary,
the implementation of a “real world” deletion of an FD code
< C,L > in the TSLQ at time point T; depends on the
StartTime field of the corresponding leaf:

—1If StartTime < T then the FD code deletion is handled
as a logical deletion, by inserting a deletion marker record
of the appropriate entry.

— Otherwise, if StartTime = T; then the appropriate en-
try is removed from the leaf. After this physical deletion,
if the number of entries in the leaf is above a threshold d
(analogous to the page consolidation threshold used in the
Bt-tree), then the deletion is completed. Otherwise, the
node underflows. This case is handled as in the B*-tree,
with the difference that if a sibling node exists then we have
to check its StartTime field, before proceeding to a merge.
Ifits StartTime < Tj, a current time split is made first on
the sibling and the two nodes with StartTime = T; are
then combined. If the new combined node has too many
records, a key split is performed.

For example, consider the two consecutive images (with
respect to their timestamps 77 = 1 and 7> = 2) in Fig. 2a.
The TSLQ structure after the insertion of the first image is
given in Fig. 2b. The node capacity b equals 4, the thresh-
old d is the 20% of b and the data records are of the form
(< C,L >,T,). The second version of the structure is illus-
trated in Fig. 2c and it is constructed based on the first one,
after the insertion of FD code < 011,0 > and the deletion
of FD codes < 102, 0 >, < 303,0 > and < 333,0 >. The
deletion marker records are of the form (< C,—1 >,T})
where T denotes a deletion time point.

3. SPATIO-TEMPORAL QUERY PROCESSING

The major feature of the new STAM, is that it can efficiently
handle all the special types of spatio-temporal queries for
quadtree-based databases, described in detail in [4]. More
specifically, algorithms for processing the Strict Contain-
ment, Border Intersect, General Border Intersect, Cover and
Fuzzy Cover Window spatio-temporal queries were adapted
to the TSLQ. Definitions and algorithms for the processing

TmageNr.2 - Timestomp T, =1

s Imege Nr2 - Timestamp T,=2 =00
= <020, 1>
H=<02,0-
=120, 1>
H-=<s0.0>
=303, 0>
=331, 00
=333, 00
B-=<11,0-
000, 1
102, 1
300, 1
300, 2
StartTime » 1] ‘StartTime = 1 | ¢ ERaT) StartTime =] StariTime =2|
<002, 0>, 1 <300, 0>, 1 <002,0>, 1| [<102,05 1] [<300,0> 1| [<300,07 1
<020, 1>, 1 303, 0>, 1 <011,0> 2| [<102-1>2 | [<363,05, 1| [<331,0% 1
<102, 0>, 1 331,05, 1 <020,1> 1] [Q120,1>, 1] [<331,05, 1
<120, 1>, 1 333,05, 1 <333,0>, 1
L xeyspie & | ome e §

(b) (c)

Fig. 2. (a) Two raster images and the TSLQ structure after
the insertion of (b) the first image and (c) the second image.

of the above queries are given in [4] and can be applied to
TSLQ with slight modifications.

Window queries have a primary importance since they
are the basis of a number of operations that can be exe-
cuted in various modern applications. For example, the
Strict Containment Window Query discovers the black re-
gions that completely fall inside the window of a query at
each time point within the time interval [T, Tiv]. This query
is possible to appear in a Multimedia application, when a
user is interested in the content of a window in the evolu-
tion of time.

In order to improve spatio-temporal query processing
we added four “horizontal” pointers in every TSLQ leaf.
This way there is no need to top-down traverse consecu-
tive tree instances to search for the history of a specific FD
code and excessive page accesses are avoided. The names
of these pointers are: B-, BC-, F- and FC- pointer. Their
roles and functions are described in detail in [4].

Alternative naive approaches for answering the above
spatio-temporal queries are easy to devise. The respective
algorithms would perform a suitable range search for every
TSLQ version that corresponds to the given time interval,
as if each one of them was separately stored in an LRQ,
starting from the TSLQ root. These alternative approaches
would not take into account the horizontal pointers, result-
ing in significantly worse I/O performance.

4. EXPERIMENTS

The TSLQ was implemented in C/C++. The page size was
1K, the leaf (internal) node capacity was equal to b=108
(b’=84) and the page consolidation threshold d (d’) is the
20% of b (b"). The evolving images were synthetic and real
binary raster images of sizes 512x 512 and 1024 x 1024 pix-
els, respectively. Each sophisticated algorithm for the five

735

8

indspancist searches through roots (128 1;
e
e e

B
&

et through
s i ermorta gowiars (G0 ? 0zs
!|20 l
100 o2
e o
§ o t
a8 01
g« i
e 2rches through roots —s—
Q 2 Q am v ooy pokien o=
o
07 o7 o8 C.ES 08 s ax4 168416 R 64
Aggregation Coafficient Wincow size (pbaels x pomss)

Fig. 3. The /O efficiency of the Strict Containment (left)
and the Cover (right) Window Queries.

spatio-temporal queries was executed several times for dif-
ferent window sizes and in a random window position ev-
ery time. Besides, the respective naive algorithms were ex-
ecuted by performing independent umbrella-like searches
through TSLQ root. In each run, we kept track of the aver-
age number of disk reads needed to perform the query per
time point. For a more effective comparison of the two dif-
ferent algorithmic approaches, we excluded from the mea-
surement the number of disk reads spent for the very first
image of the sequence of the N images, since we are inter-
ested only in the I/O cost profit we can succeed by the use
of the horizontal pointers.

4.1. Experiments with Synthetic Data Sets

Every experiment was repeated 10 times using a pair of sim-
ilar images. In the beginning, the first image was created
with a specific black/white analogy and an aggregation co-
efficient agg() that was increased at various amounts. The
quantity agg() has been defined in [8] and expresses the
coherence of regions of homogeneous colors in an image.
Starting from a random image and using the algorithm pre-
sented in (8], an image with exactly the same black/white
analogy and higher aggregation (more realistic, including
larger regions covered entirely by black or white) can be
created. After the insertion of the first image, the second im-
age was created by randomly changing the color of a given
percentage (2%) of the pixels of the first image. Finally, the
FD codes of that image were compared with those of the
previous image and inserted in the TSLQ. Windows of sizes
ranging from 4 x4 to 128 x 128 pixels were queried 10 times
each against the structure produced. Thus, every algorithm
was executed 10x 10 times.

The performance of the sophisticated and the naive algo-
rithms is illustrated in Fig. 3. The left (right) part shows the
T/O cost of the Strict Containment (Cover) Window Query
as a function of the aggregation coefficient (of the window
size) for 70% black images (50% black images and aggre-
gation coefficient equal to 0.85). The linear decrease of the
I/O cost for the naive algorithm of the Strict Containment
Window Query is explained by the fact that images with
larger aggregation form larger and solid black spatial re-

5 209 KindFuzzy Covar - Incep. smarches (1281280 o~
n 151 kindFuzzy Cover - indsp. esarches (128¢128) ——
4p 1etor 2ndkindF “horz.* 128128 -
s ® § 2 HindFaazy Cover - Indep, eeahas (5451
Tet IndFLEzy Cover - Inchb. searchme {5881) +—
» Y&t or 2nd kingl| Cover - “hortz.” poirters (64461) -=—
1w X
! @ ! t:3
§x e
& S
|]
3 S T ——
© . m
0 °

2080 8020

4080 00 2060 a0
Blackwhim enslogy (W) Bluckfunre snsogy (%%

Fig. 4. The I/O efficiency of the Border Intersect (left) and
the Fuzzy Cover (right) Window Query.

gions (“islands”) and thus the corresponding LRQ holds a
smaller number of FD codes.

4.2. Experiments with Real Data Sets

In the sequel, we provide results from some experiments
based on a sequence of N=26 real raster images, which are
meteorological views of California that were acquired from
ftp://s2k-ftp.cs.berkeley.edu/pub/sequoia/benchmark/raster/.
Originally, each 8-bit image pixel represented a value in
a scale of 256 tones of gray. We transformed each im-
age to a binary one, by choosing a threshold accordingly,
so as to achieve a black analogy ranging between 20% and
80%. This group of meteorological satellite images corre-
sponds to a particular 2-week interval of the same area (al-
most one image every 13 hours) and, thus, it is self-evident
that there must appear many differences from image to im-
age. It is obvious that the larger the image difference, the
worse the query time performance of the sophisticated al-
gorithms. However, the query performance results we ob-
tained with these images were encouraging in such a worst
case environment.

Windows of sizes ranging from 4 x4 to 256 x 256 pixels
were queried 50 times each against the structure produced.
The left (right) part of Fig. 4 depicts the time performance
of the Border Intersect (Fuzzy Cover) Window Query as a
function of black analogy (and threshold 60%), for three
(two) different window sizes.

An interesting general remark, refering to all the exper-
iments we performed, is that the use of horizontal pointers
leads to a remarkably high and stable I/O performance for
all the spatio-temporal cueries examined.

5. CONCLUSIONS

In the present paper, we proposed a new spatio-temporal
structure called Time Split Linear Quadtree. This access
method is able to index a database of consecutive raster
images. It was demonstrated that it can be used in mod-
ern applications (multimedia, GIS) to support query pro-
cessing of evolving images. Real world examples of such
applications include the storage and manipulation of data

736

of meteorological phenomena, of faunal phenomena, of ur-
ban environment, of natural catastrophes, etc. Five effi-
cient algorithms for processing temporal window queries
have also been adapted to the TSLQ. We presented exper-
iments performed for studying the I/O efficiency of these
algorithms. These experiments were based on sequences of
synthetic and real evolving images. In general, our experi-
ments showed clearly that, thanks to the *“horizontal” point-
ers in the TSLQ leaves, our algorithms are very efficient in
terms of disk activity.

In the future, we plan to investigate the use of a declus-
tering scheme for the nodes of the TSLQ in order to exploit
I/O parallelism for the above temporal window queries. In
addition we plan to compare the space and time perfor-
mance of TSLQ to those of OLQs and MVLQ and to de-
velop algorithms for other new spatio-temporal queries that
would take advantage of TSLQ, MVLQ, OLQs and other
Quadtree-based STAMs and study their behavior. More-
over, we plan to investigate the possibility of designing anal-
ogous STAMS for grayscale and/or multicolored images.

6. REFERENCES

[1] V. Gaede and O. Guenther, “Multidimensional access
methods,” ACM Computer Surveys, vol. 30, no. 2, pp.
123-169, 1998.

[2] T. Abrahamand J.F. Roddick, “Survey of spatio-tempo-
ral databases,” Geoinformatica, vol. 3, no. 1, pp. 61-99,

1999.
(3]

D. Lomet and B. Salzberg, “Access methods for multi-

version data,” in Proc. ACM SIGMOD, 1989, pp. 315—
324.

[4] T. Tzouramanis, M. Vassilakopoulos, and Y. Mano-
lopoulos, “Overlapping linear quadtrees and spatio-
temporal query processing,” The Computer Journal,

vol. 43, no. 4, pp. 325-343, 2000.

[5] T. Tzouramanis, M. Vassilakopoulos, and Y. Mano-
lopoulos, “Multiversion linear quadtree for spatio-
temporal data,” in Proc. ADBIS-DASFAA 2000, Prague,

2000, pp. 279-292.

H. Samet, Applications of Spatial Data Structures,
Addison-Wesley, Reading MA, 1990.

[7] D. Lomet and B. Salzberg, “The performance of a
multiversion access method,” in Proc. ACM SIGMOD,

1990, pp. 354-363.
8

Y. Manolopoulos, E. Nardelli, G. Proietti, and M. Vas-
silakopoulos, “On the generation of aggregated random
spatial regions,” in Proc. CIKM’95, Washington DC,
1995, pp. 318-325.

