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Abstract

We consider the problem of mining association rules on a shared-nothing multiprocessor. We present
three algorithms that explore a spectrum of trade-offs between computation, communication, memory usage,
synchronization, and the use of problem-specific information. The best algorithm exhibits near perfect scaleup
behavior, yet requires only minimal overhead compared to the current best serial algorithm.
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1 Introduction

With the availability of inexpensive storage and the progress in data capture technology, many organizations have
created ultra-large databases of business and scientific data, and this trend is expected to grow. A complementary
technology trend is the progress in networking, memory, and processor technologies that has opened up the
possibility of accessing and manipulating these massive databases in a reasonable amount of time. Data mining
(also called knowledge discovery in databases) is the efficient discovery of previously unknown patterns in large
databases. The promise of data mining is that it will deliver technology that will enable development of a new
breed of decision-support applications.

Discovering association rules is an important data mining problem [1]. Recently, there has been considerable
research in designing fast algorithms for this task [1] [3] [5] [6] [8] [12] [9] [11]. However, with the exception of
[10], the work so far has been concentrated on designing serial algorithms. Since the databases to be mined are
often very large (measured in gigabytes and even terabytes), parallel algorithms are required.

We present in this paper three parallel algorithms for mining association rules. In order to determine the best
method for mining rules in parallel, we explore a spectrum of trade-offs between computation, communication,

memory usage, synchronization, and the use of problem-specific information in parallel data mining. Specifically,

1. The focus of the Count Distribution algorithm is on minimizing communication. It does so even at the

expense of carrying out redundant duplicate computations in parallel.

2. The Data Distribution algorithm attempts to utilize the aggregate main memory of the system more
effectively. It is a communication-happy algorithm that requires nodes to broadcast their local data to all

other nodes.
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3. The Candidate Distribution algorithm exploits the semantics of the particular problem at hand both to
reduce synchronization between the processors and to segment the database based upon the patterns the

different transactions support. This algorithm also incorporates load balancing.

These algorithms are based upon the serial algorithm Apriori which was first presented in [3]. We chose the
Apriori algorithm because of its superior performance over the earlier algorithms [1] [6], as shown in [3]. We
preferred Apriori over AprioriHybrid, a somewhat faster algorithm in [3], because AprioriHybrid is harder to
parallelize; the performance of AprioriHybrid is sensitive to heuristically determined parameters. Furthermore,
the performance of Apriori can be made to approximate that of AprioriHybrid by combining the small workloads
of several Apriori cycles into a single workload requiring only one cycle The algorithm in [8] is quite similar to
Apriori and our parallelization techniques directly apply to this algorithm as well. The algorithm in [11] does
not perform as well as Apriori on large datasets with a large number of items. The algorithm in [9] attempts to
improve the performance of Apriori by using a hash filter. However, as we will see in Section 4.3, this optimization
actually slows down the Apriori algorithm. Concurrent to our work, that algorithm has been parallelized and
was recently presented with a simulation study in [10]. It too suffers from the use of a hash-filter, despite the
use of a special communication operator to build it. We discuss this further in Section 4.3.

Our three parallel algorithms have all been implemented on an IBM POWERparallel System SP2 (henceforth
referred to simply as SP2), a shared-nothing machine[7]. We present measurements from this implementation to
evaluate the effectiveness of the design trade-offs. The winning algorithm is now part of the IBM data-mining
product and is being used in the field.

The organization of the rest of the paper is as follows. Section 2 gives a brief review of the problem of mining
association rules[1] and the Apriori algorithm[3] on which the proposed parallel algorithms are based. Section 3
gives the description of the parallel algorithms. Section 4 presents the results of the performance measurements

of these algorithms. Section 5 contains conclusions. A more detailed version of this paper can be found in [2].

2 Overview of the Serial Algorithm

2.1 Assoclation Rules

The basic problem of finding association rules as introduced in [1] is as follows. Let Z = {i1,42,...,%m} be a
set of literals, called items. Let D be a set of transactions, where each transaction T is an itemset such that
T C Z. We say that a transaction T' contains X, a set of some items in 7, if X C T'. An association rule is an
implication of the form X = Y, where X C Z,Y C Z,and X NY = 0. The rule X = Y holds in the transaction
set D with confidence c if ¢% of transactions in D that contain X also contain Y. The rule X = Y has support
s in the transaction set D if s% of transactions in D contain X UY .

Given a set of transactions D, the problem of mining association rules is to generate all association rules that

have certain user-specified minimum support (called minsup) and confidence (called minconf).

Problem Decomposition The problem of mining association rules can be decomposed into two subproblems

[1]:

1. Find all sets of items (itemsets) whose support is greater than the user-specified minimum support. Itemsets

with minimum support are called frequent itemsets.



k-itemset | An itemset having k items.

Ly Set of frequent k-itemsets (those with minimum support).
Each member of this set has two fields: i) itemset and ii) support count.

Cx Set of candidate k-itemsets (potentially frequent itemsets).
Each member of this set has two fields: i) itemset and ii) support count.

p* Processor with id 1

D The dataset local to the processor P*

DR’ The dataset local to the processor P* after repartitioning

Cr The candidate set maintained with the Processor P* during the

kth pass (there are k items in each candidate)

Figure 1: Notation

L, := {frequent l-itemsets};
k := 2; // k represents the pass number
while ( Lx—1 #0 ) do
begin
C) := New candidates of size k generated from Lg_1;
forall transactions t € D do
Increment the count of all candidates in Cx that are contained in ¢

Ly := All candidates in C) with minimum support;
k:=k+1,
end

Answer := Uk Ly;

Figure 2: Apriori Algorithm

2. Use the frequent itemsets to generate the desired rules. The general idea is that if, say, ABCD and AB
are frequent itemsets, then we can determine if the rule AB = CD holds by computing the ratio conf =
support(ABC D) /support(AB). If conf > minimum confidence, then the rule holds. (The rule will have

minimum support because ABCD is frequent.)

Much of the research has been focussed on the first subproblem as the database is accessed in this part of
the computation and several algorithms have been proposed [1] [3] [6] [8] [9] [11]. We review in Section 2.2 the

apriori algorithm [3] on which our parallel algorithms are based.

2.2 Apriori Algorithm

Figure 2 gives an overview of the Apriori algorithm for finding all frequent itemsets, using the notation given in
Figure 1. The first pass of the algorithm simply counts item occurrences to determine the frequent l-itemsets.
A subsequent pass, say pass k, consists of two phases. First, the frequent itemsets Ly_; found in the (k—1)th
pass are used to generate the candidate itemsets Cy, using the apriori candidate generation procedure described
below. Next, the database is scanned and the support of candidates in Cj, is counted. For fast counting, we need
to efficiently determine the candidates in Cy contained in a given transaction ¢. A hash-tree data structure [3]

1s used for this purpose.

Candidate Generation Given Lj_1, the set of all frequent (k—1)-itemsets, we want to generate a superset
of the set of all frequent k-itemsets. The intuition behind the apriori candidate generation procedure is that if
an itemset X has minimum support, so do all subsets of X. For simplicity, assume the items in each itemset are
in lexicographic order.

Candidate generation takes two steps. First, in the join step, join Lg_1 with Lg_;:



insert into Cx

select p.item;, p.itemsy, ..., p.itemg_1, g.itemg_1
from Lx_1 p, Lk—1 g
where p.item; = g.item;, ..., p.itemg_2 = g.itemg_2, p.itemg_1 < g.itemp_1;

Next, in the prune step, delete all itemsets ¢ € C, such that some (k—1)-subset of ¢ is not in L_1.

For example, let Lz be {{1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {2 3 4}}. After the join step, Cs will be {{12 3
4}, {1 3 45} }. The prune step will delete the itemset {1 3 4 5} because the itemset {1 4 5} is not in Lz. We
will then be left with only {1 2 3 4} in Cj.

3 Parallel Algorithms

We first present three parallel algorithms for the first subproblem — the problem of finding all frequent itemsets.
We then give a parallel algorithm for the second subproblem — the problem of generating rules from frequent
itemsets. Refer to Figure 1 for a summary of notation used in the algorithm descriptions. We use superscripts
to indicate processor id and subscripts to indicate the pass number (also the size of the itemset).

The algorithms assume a shared-nothing architecture, where each of N processors has a private memory
and a private disk. The processors are connected by a communication network and can communicate only by
passing messages. The communication primitives used by our algorithms are part of the MPI (Message Passing
Interface) communication library supported on the SP2 and are candidates for a message-passing communication
standard currently under discussion [4]. Data is evenly distributed on the disks attached to the processors, i.e.
each processor’s disk has roughly an equal number of transactions. We do not require transactions to be placed

on the disks in any special way.

3.1 Algorithm 1: Count Distribution

This algorithm uses a simple principle of allowing “redundant computations in parallel on otherwise idle pro-
cessors to avoid communication”. The first pass is special. For all other passes £ > 1, the algorithm works as

follows:

1. Each processor P’ generates the complete Cy, using the complete frequent itemset Ly_; created at the end
of pass k — 1. Observe that since each processor has the identical Lj_;, they will be generating identical

Ck.

2. Processor P? makes a pass over its data partition D’ and develops local support counts for candidates in

Ck.

3. Processor P? exchanges local Cy counts with all other processors to develop global Cy counts. Processors

are forced to synchronize in this step.
4. Each processor P* now computes Ly from Cy.

5. Each processor P* independently makes the decision to terminate or continue to the next pass. The decision

will be identical as the processors all have identical L.

In the first pass, each processor P® dynamically generates its local candidate itemset C: depending on the
items actually present in its local data partition D*. Hence, the candidates counted by different processors may

not be identical and care must be taken in exchanging the local counts to determine global C;.



Thus, in every pass, processors can scan the local data asynchronously in parallel. However, they must

synchronize at the end of each pass to develop global counts.

Performance Considerations Steps 1-2 and 4-5 are similar to that of the serial algorithm. The non-obvious
step 1s how processors exchange local counts to arrive at global Cy counts. Since each processor has the exact
same C}, each processor puts its count values in a common order into a count array. All that is needed now is
to perform a parallel vector sum of the arrays. This only requires communicating count values and can be done
in O(log(n)) communication steps. It also avoids any time-consuming logic that would otherwise be needed to
assure that we only combine counts that belong to the same candidate. The full details of this process including

the MPI communication primitives used are described in [2].

3.2 Algorithm 2: Data Distribution

The attractive feature of the Count distribution algorithm is that no data tuples are exchanged between processors
— only counts are exchanged. Thus, processors can operate independently and asynchronously while reading
the data. However, the disadvantage is that this algorithm does not exploit the aggregate memory of the system
effectively. Suppose that each processor has memory of size | M|. The number of candidates that can be counted
in one pass is determined by |M|. As we increase the number of processors from 1 to N, the system has N x | M|
total memory, but we still count the same number of candidates in one pass, as each processor is counting identical
candidates. The Count distribution algorithm counts no more candidates per pass than the serial algorithm.
The Data distribution algorithm is designed to exploit better the total system’s memory as the number of
processors is increased. In this algorithm, each processor counts mutually exclusive candidates. Thus, as the
number of processors is increased, a larger number of candidates can be counted in a pass. On an N-processor
configuration, Data will be able to count in a single pass a candidate set that would require N passes in Count.
The downside of this algorithm is that every processor must broadcast its local data to all other processors in

every pass. Therefore, this algorithm can become viable only on a machine with very fast communication.
Pass 1: Same as the Count distribution algorithm.

Pass k > 1:

1. Processor P* generates Cj from Lj_1. It retains only 1/Nth of the itemsets forming the candidates subset
C’i that it will count. Which 1/N itemsets are retained is determined by the processor id and can be
computed without communicating with other processors. In our implementation, itemsets are assigned in

a round-robin fashion. The C} sets are all disjoint and the union of all C}, sets is the original Cj.

2. Processor P’ develops support counts for the itemsets in its local candidate set C}; using both local data

pages and data pages received from other processors.

3. At the end of the pass over the data, each processor P? calculates LZ using the local C’i. Again, all LfC sets

are disjoint and the union of all LZ sets 1s Ly.

4. Processors exchange L! so that every processor has the complete Lj for generating Cji1 for the next
pass. This step requires processors to synchronize. Having obtained the complete L, each processor can

independently (but identically) decide whether to terminate or continue on to the next pass.



The interesting step is Step 2 in which processors develop support counts for local candidates C’,i asyn-
chronously. During this step, processors are broadcasting their local data as well as receiving the local data
of other processors. We must be careful to avoid network congestion and use asynchronous communication to

overlap communication time with the counting of support. See [2] for full details.

3.3 Algorithm 3: Candidate Distribution

One limitation of both the Count and Data distribution algorithms is that since any database transaction could
support any candidate itemset, each transaction must be compared against the entire candidate set. This is
what requires Count to duplicate the candidate set on every processor and Data to broadcast every database
transaction. Additionally, both Count and Data distribution algorithms require processors to synchronize at the
end of each pass to exchange counts or frequent itemsets respectively. If the workload is not perfectly balanced,
this can cause all the processors to wait for whichever processor finishes last in every pass. These problems
are due to the fact that neither Count nor Data exploit problem-specific knowledge; data tuples and candidate
itemsets are partitioned merely to equally divide the work. All processors must be consulted and all information
gathered before they can proceed onto the next pass.

The Candidate distribution algorithm attempts to do away with these dependencies by partitioning both the
data and the candidates in such a way that each processor may proceed independently. In some pass [, where [
1s heuristically determined, this algorithm divides the frequent itemsets L;_; between processors in such a way
that a processor P* can generate a unique C?, (m > [) independent of all other processors (C:, NCJ, = 0, i # j).
At the same time, data is repartitioned so that a processor can count candidates in C? independent of all other
processors. Note that depending upon the quality of the itemset partitioning, parts of the database may have
to be replicated on several processors. The itemset partitioning algorithm considers this aspect by identifying
segments of L;_; that are likely supported by different database transactions. The choice of the redistribution
pass is a tradeoff between decoupling processor dependence as soon as possible and waiting until the itemsets
become more easily and equitably partitionable. The partitioning algorithm exploits the semantics of the Apriori
candidate generation procedure described in Section 2.2.

After this candidate distribution, each processor proceeds independently, counting only its portion of the
global candidate set using only local data. No communication of counts or data tuples is ever required. The only
dependence that a processor has on other processors is for pruning the local candidate set during the prune step
of candidate generation. However, this information is sent asynchronously, and processors do not wait for the
complete pruning information to arrive from all other processors. During the prune step of candidate generation,
1t prunes the candidate set as much as possible using whatever information has arrived, and opportunistically
starts counting the candidates. The late arriving pruning information can instead be used in subsequent passes.

The algorithm is described below.
Pass k <1: Use either Count or Data distribution algorithm.

Pass k =1

1. Partition Lg_; among the N processors such that Ly_; sets are “well balanced”. We discuss below how
this partitioning is done. Record with each frequent itemset in Lji_; which processor has been assigned

this itemset. This partitioning is identically done in parallel by each processor.



2. Processor P’ generates C?, logically using only the Ly_; partition assigned to it. Note that P* still has

access to the complete Ly_;, and hence can use standard pruning while generating C’i in this pass.

3. P develops global counts for candidates in C} and the database is repartitioned into DR’ at the same

time.

4. After P’ has processed all its local data and any data received from all other processors, it posts N — 1
asynchronous receive buffers to receive Li from all other processors. These Li are needed for pruning Cli+1

in the prune step of candidate generation.

5. Processor P’ computes Li from C’}; and asynchronously broadcasts it to the other N — 1 processors using

N — 1 asynchronous sends.

Pass k > [:

1. Processor P* collects all frequent itemsets that have been sent to it by other processors. They are used
in the pruning step of the candidate generation, but not the join step. Itemsets received from processor j
could be of length k — 1, smaller than k — 1 (slower processor), or greater than k — 1 (faster processor). P*
keeps track for each processor PJ the largest size of the frequent itemsets sent by it. Receive buffers for

the frequent itemsets are reposted after processing.

2. P! generates C} using the local L} ,. Now it can happen that P’ has not received Li_l from all other
processors, so P needs to be careful at the time of pruning. It needs to distinguish an itemset (a k — 1
long subset of a candidate itemset) which is not present in any of Li_l from an itemset that is present in
some Li_l but this set has not yet been received by processor P*. It does so by probing L;_; (remember
that repartitioning took place in pass [) using the [ — 1 long prefix of the itemset in question, finding the

processor respounsible for it, and checking if Li_l has been received from this processor.

3. P? makes a pass over DR’ and counts Cli. It then computes Li from Cli and asynchronously broadcasts

Lfc to every other processor using N — 1 asynchronous sends.

As in the Data distribution algorithm, Step 3 of pass & = [ requires communicating local data while support
counts are being developed. The one difference here is that local data need not be broadcast to every other
processor — because of the candidate partitioning, processors have some information about which transactions
are useful in developing support counts on other processors. This allows processors to send less data through

the network. Full details of this filtering are described in [2].

Partitioning L; We motivate the algorithm for partitioning Ly by an example. Let Lz be {ABC, ABD,
ABE, ACD, ACE, BCD, BCE, BDE, CDE}. Then Ly = {ABCD, ABCE, ABDE, ACDE, BCDE}, Ls =
{ABCDE?, and Lg = 0. Consider £ = {ABC, ABD, ABE} whose members all have the common prefix AB.
Note that the candidates ABC D, ABCE, ABDE and ABCDE also have the prefix AB. The apriori candidate
generation procedure (Section 2.2) generates these candidates by joining only the items in £.

Therefore, assuming that the items in the itemsets are lexicographically ordered, we can partition the itemsets
in Ly based on common k — 1 long prefixes. By ensuring that no partition is assigned to more than one processor,
we have ensured that each processor can generate candidates independently (ignoring the prune step). Suppose

we also repartition the database in such a way that any tuple that supports an itemset contained in any of the Ly



partitions assigned to a processor is copied to the local disk of that processor. The processors can then proceed
completely asynchronously.

The actual algorithm is more involved because of two reasons. A processor may have to obtain frequent
itemsets computed by other processors for the prune step of the candidate generation. In the example above,
the processor assigned the set £ has to know whether BCDE is frequent to be able to decide whether to prune
the candidate ABC DE, but the set with prefix BC' may have been assigned to a different processor. The other

problem 1s that we need to balance load across processors. Details of the full partitioning algorithm are given in

(2].
3.4 Parallel Rule Generation

We now present our parallel implementation of the second subproblem — the problem of generating rules from
frequent itemsets. Generating rules is much less expensive than discovering frequent itemsets as it does not
require examination of the data.

Given a frequent itemset [, rule generation examines each non-empty subset a and generates the rule a = (I—a)
with support = support(l) and confidence = support(l)/support(a). This computation can efficiently be done
by examining the largest subsets of / first and only proceeding to smaller subsets if the generated rules have the
required minimum confidence [3]. For example, given a frequent itemset ABCD, if the rule ABC = D does not
have minimum confidence, neither will AB = CD, and so we need not consider it.

Generating rules in parallel simply involves partitioning the set of all frequent itemsets among the processors.
Each processor then generates rules for its partition only using the algorithm above. Since the number of rules
that can be generated from an itemset is sensitive to the itemset’s size, we attempt equitable balancing by
partitioning the itemsets of each length equally across the processors.

Note that in the calculation of the confidence of a rule, a processor may need to examine the support of
an itemset for which it is not responsible. For this reason, each processor must have access to all the frequent
1temsets before rule generation can begin. This is not a problem for the Count and Data distribution algorithms
because at the end of the last pass, all the processors have all the frequent itemsets. In the Candidate distribution
algorithm, fast processors may need to wait until slower processors have discovered and transmitted all of their
frequent itemsets. For this reason and because the rule generation step is relatively cheap, it may be better in
the Candidate distribution algorithm to simply discover the frequent itemsets and generate the rules off-line,
possibly on a serial processor. This would allow processors to be freed to run other jobs as soon as they are done

finding frequent itemsets, even while other processors in the system are still working.

3.5 Discussion of Tradeoffs

Initially, it was not clear to us which of our three algorithms would win, or if there would even be a single over-all
winner. Count minimizes communication at the expense of ignoring aggregate memory. On a workstation-cluster
environment, this approach is probably ideal; it may not be so, however, on an SP2. Data distribution which fully
exploits aggregate memory at the cost of heavy communication will help us explore this issue. Also, Data’s ability
to count in a single pass N times as many candidates as Count could make this algorithm a strong contender.
With the third algorithm, Candidate distribution, we will see if incorporating detailed problem-knowledge can
yield the benefits of both the Count and Data distribution algorithms. We will also see how beneficial removing

processor dependence and synchronous communication can be.



4 Performance Evaluation

We ran all of our experiments on a 32-node IBM SP2 Model 302. Each node in the multiprocessor is a Thin
Node 2 consisting of a POWER2 processor running at 66.7MHz with 256MB of real memory. Attached to each
node is a 2GB disk of which less than 500MB was available for our tests. The processors all run AIX level 3.2.5
and communicate with each other through the High-Performance Switch with HPS-2 adaptors. The combined
communication hardware has a rated peak bandwidth of 80 megabytes per second and a latency of less than 40
microseconds. In our own tests of the base communication routines, actual point-to-point bandwidth reached

20MB/s. Experiments were run on an otherwise idle system. See [7] for further details of the SP2 architecture.

Name T
D3278K.T5.12 5
D2016K.T10.12 | 10
D2016K.T10.14 | 10
D1456K.T15.14 | 15
D1140K.T20.14 | 20
D1140K.T20.I6 | 20

D, Die Das
3278K | 52448K | 104896K
2016K | 32256K | 64512K T  Average transaction length
2016K | 32256K | 64512K I Average size of frequent itemsets
1456K | 23296K | 46592K D Average number of transactions
1140K | 18240K | 36480K
1140K | 18240K | 36480K

Table 1: Data Parameters

1= ST N ORIy T

We used synthetic datasets of varying complexity, generated using the procedure described in [3]. The
characteristics of the six datasets we used are shown in Table 1. These datasets vary from many short transactions
with few frequent itemsets, to fewer larger transactions with many frequent itemsets. All the datasets were
about 100MB per processor in size. We could not use larger datasets due to constraints on the amount of
storage available on local disks; the Candidate algorithm writes the redistributed database on local disks after
candidate partitioning, and we run out of disk space with the larger datasets. However, we include results of
sizeup experiments (up to 400 MB per processor) for the Count distribution algorithm to show the trends for
larger amounts of data per processor. Experiments were repeated multiple times to obtain stable values for

each data point.

4.1 Relative Performance and Trade-offs

Figure 3 shows the response times for the three parallel algorithms on the six datasets on a 16 node configuration
with a total database size of approximately 1.6GB. The response time was measured as the time elapsed from the
initiation of the execution to the end time of the last processor finishing the computation. The response times for
the serial version are for the run against only one node’s worth of data or 1/16th of the total database. We did not
run the serial algorithm against the entire data because we did not have enough disk space available. We obtained
similar results for other node configurations and dataset sizes. In the experiments with Candidate distribution,
repartitioning was done during the fourth pass. In our tests, this choice yielded the best performance.

The results are very encouraging; for both Count and Candidate distribution algorithms, response times are
close to that of the serial algorithm; this is especially true for Count. The overhead for Count is less than 7.5%
when compared to the serial version run with 1/N data. One third of that overhead, about 2.5%, was spend
wailting for the processors to synchronize.

Among the parallel algorithms, Data distribution did not fare as well as the other two. As we had expected,
Data was indeed able to better exploit the aggregate memory of the multiprocessor and make fewer passes

in the case of datasets with large average transaction and frequent itemset lengths (see Table 2). However, its
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Figure 3: Relative Performance of the Algorithms Figure 4: Communication Costs for Data Distribution
Name Serial | Count | Data | Candidate
D3278K.T5.12 7 7 7 7
D2016K.T10.12 7 7 7 7
D2016K.T10.14 11 11 11 11
D1456K.T15.14 13 13 11 13
D1140K.T20.14 21 21 11 21
D1140K.T20.16 23 23 14 23

Table 2: Number of Data Passes Required

performance turned out to be markedly lower for two reasons: extra communication and the fact that every node
in the system must process every single database transaction. Communication is the worst of these two problems
as show by Figure 4, even on a machine such as SP2 with very fast communication. The points labeled “Normal”
correspond to the response times for the normal Data distribution algorithm on a 16-node configuration, but
with the same 100MB of data replicated on each node. The points labeled “No Communication” correspond to
a modified version of the Data distribution algorithm where, instead of receiving data from other nodes, a node
simply processed its local data 15 more times. Since each node had the exact same data, this yielded the exact
same results with the only difference being no time was spent on communication or its management. We did
this for three of the six datasets and discovered that fully half of the time taken by Data distribution was for
communication. The algorithm was also almost entirely CPU-bound, making I/O savings due to Data making
fewer passes practically negligible.

We had hoped for better results from the Candidate distribution algorithm, considering that it is the one
that exploits the problem-specific semantics. Since the Candidate algorithm must also communicate the entire
dataset during the redistribution pass, it suffers from the same problems as Data. Candidate, however, only
performs this redistribution once. Also, unlike Data, processors may selectively filter out transactions it sends to
other processors depending upon how the dependency graph is partitioned. This can greatly reduce the amount
of data traveling through the network. Unfortunately, even a single pass of filtered data redistribution is costly.
The question is whether or not the subsequent passes where each processor can run completely independently
with smaller candidate sets can compensate for this cost. As the performance results show, redistribution simply
costs too much.

Also, unlike Data distribution, the Candidate algorithm was unable to capitalize on its more optimal use of

aggregate memory; the large candidate sets that force Count into multiple subpasses all occur before Candidate

10



takes over with its redistribution pass. Candidate thus makes just as many data passes as Count. These
insufficient gains coupled with a high redistribution cost allow Count with its small overhead to emerge as the
overall winner.

Although our experiments show Count’s overhead to be fairly small, synchronization costs can become quite
large if the data distributions are skewed or the nodes are not equally capable (different memory sizes, processor
speeds, I/O bandwidths and capacities). Investigation of these issues is a broad topic and it is in our future plans.
However, one can think of several alternatives for adding load balancing to the Count distribution algorithm that
do not require redistribution of the complete database as in the case of the Candidate distribution algorithm.
Extrapolating from the results of this study, our sense is that the Count distribution algorithm embellished with

an appropriate load balancing strategy is likely to continue to dominate.

4.2 Sensitivity Analysis

We examine below the scaleup, sizeup, and speedup characteristics of the Count distribution algorithm. We
do not report further the results of the Data and Candidate distribution algorithms because of their inferior

performance.

Scaleup To see how well the Count distribution algorithm handles larger problem sets when more processors are
available, we performed scaleup experiments where we increased the size of the database in direct proportion to
the number of nodes in the system. We used the datasets D2016K.7'10.12, D1456 K.T'15.14 and D1140K.720.16
from the previous experiments except that the number of transactions was increased or decreased depending
upon the multiprocessor size. The database sizes for the single and 32 node configurations are shown in Table 1.
At 100MB per node, all three datasets range from about 100MB in the single node case to almost 3.2GB in the
32 node case.

Figure b shows the performance results for the three datasets. In addition to the absolute response times as
the number of processors is increased, we have also plotted scaleup which is the response time normalized with
respect to the response time for a single processor. Clearly the Count algorithm scales very well, being able to
keep the response time almost constant as the database and multiprocessor sizes increase. Slight increases in
response times is due entirely to more processors being involved in communication. Since the itemsets found by
the algorithm does not change as the database size is increased, the number of candidates whose support must

be summed by the communication phase remains constant.

Sizeup For these experiments, we fixed the size of the multiprocessor at 16 nodes while growing the database
from 25 MB per node to 400 MB per node. We have plotted both the response times and sizeup in Figure 5.
The sizeup is the response time normalized with respect to the response time for 25MB per node. The results
show sublinear performance for the Count algorithm; the program is actually more efficient as the database size
1s increased. Since the results do not change as the database size increases neither does the amount or cost of
communication. Increasing the size of the database simply makes the non-communication portion of the code
take more time due to more I/O and more transaction processing. This has the result of reducing the percentage
of the overall time spent in communication. Since I/O and CPU processing scale perfectly with sizeup, we get

sublinear performance.
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Figure b: Performance of Count Distribution
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Figure 6: Effect of Hash Filtering

Speedup For our last set of experiments, we kept the database constant and varied the number of processors.
Because of the constraint on available disk space, the size of each of the three databases was fixed at 400MB.
Figure 5 shows the results of running the Count algorithm on configurations of up to 16 processors. We did
not run with larger configurations because the amount of data at each node becomes too small. The speedup
in this figure is the response time normalized with respect to the response time for a single processor. As the
graphs show, Count has very good speedup performance. This performance does however begin to fall short of
1deal at 8 processors. This is an artifact of the small amount of data each node processing. At only 25MB per
node, communication times become a significant percentage of the overall response time. This is easily predicted
from our sizeup experiments where we noticed that the more data a node processes, the less significant becomes
the communication time giving us better performance. We are simply seeing the opposite effect here. Larger

datasets would have shown even better speedup characteristics.

4.3 Effect of Hash Filtering

Recently, Park, Chen, and Yu [9] proposed the use of a hash filter to reduce the cost of Apriori, particularly in
the second pass by reducing the size of C3. The basic idea is to build a hash filter as the tuples are read in the
first pass. For every 2-itemset present in a tuple, a count is incremented in a corresponding hash bucket. Thus,
at the end of the pass, we have an upperbound on the support count for every 2-itemset present in the database.
When generating C, using L;, candidate itemsets are hashed, and any candidate whose support count in the
hash table is less than the minimum support is deleted.

Figure 6 compares the combined response times for Pass 1 and 2 for the Count algorithm and this Hash Filter
algorithm. The times for the remaining passes are identical. The Count algorithm beats Hash Filter because
Count never explicitly forms Cs; rather, it uses a specialized version of the hash-tree as was done in [3]. Since
nothing in C; can be pruned by the Apriori candidate generation algorithm, it is equal to L; x L;. Cy can thus
be represented by a simple two-dimensional count array, drastically reducing memory requirements and function
call overhead. Any savings from using the hash filter to prune C5 are lost due to the cost of constructing the
hash filter and the use a regular hash-tree for storing and counting Cs.

A parallel version of this Hash Filter algorithm called PDM has been presented in [10], along with per-
formance results from a simulation study. It uses a parallelization technique similar to that of Count, except

that entire candidate sets are exchanged rather than just the candidate counts. This is more expensive in both
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communication and CPU costs. The focus in PDM was on the efficient construction of the same hash-filter used
by the serial algorithm to speed up pass two. However, as in the serial algorithm, the hash-filter actually hurts

performance, resulting in a double performance hit in PDM.

5 Conclusions

We considered the problem of mining association rules on a shared-nothing multiprocessor on which data has
been partitioned across the nodes. We presented three parallel algorithms for this task based upon Apriori,
the best serial algorithms for mining association rules. The designs of these algorithms represent a spectrum of
trade-offs between computation, communication, memory usage, synchronization, and the use of problem-specific
information.

The Count distribution algorithms attempts to minimize communication by replicating the candidate sets
in each processor’s memory. Processors work only with local data and only communicate counts. The Data
distribution algorithm takes the counter approach where each processor works with the entire dataset but only
portion of the candidate set. This maximizes the use of aggregate memory, but requires high communication to
broadcast all the data. Again, while minimizing communication may be the best approach for a workstation-
cluster environment, this is not necessarily true for an SP2. Lastly, the Candidate algorithm incorporates
domain-knowledge to partition both the data and the candidates, allowing each processor to work on a unique
set of candidates without having to repeatedly broadcast the entire dataset. This maximizes the use of aggregate
memory while limiting heavy communication to a single redistribution pass. This also completely eliminates the
synchronization costs that Count and Data must pay at the end of every pass.

We studied the above trade-offs and evaluated the relative performance of the three algorithms by imple-
menting them on 32-node SP2 parallel machine. The Count distribution emerged as the algorithm of choice.
It exhibited linear scaleup and excellent speedup and sizeup behavior. When using N processors, the overhead
was less than 7.5% compared to the response time of the serial algorithm executing over 1/N amount of data.
The Data distribution algorithm lost out because of the cost of broadcasting local data from each processor to
every other processor. Our results show that even on a high-bandwidth/low-latency system such as an SP2, data
redistribution is still too costly.

The Candidate distribution algorithm is similarly edged out because of the cost of data redistribution; gains
from having each processor work independently on a different subset of the problem could not make up for
single pass of redistribution. While it may be disheartening to learn that a carefully designed algorithm such as
Candidate can be beaten by a relatively simpler algorithm like Count, it does at least illuminate the fact not all
problems require an intricate parallelization. By exploring the various possibilities, we have shown that this is

true for mining association rules.
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