
Reverse Nearest Neighbor Queries for Dynamic Databases �

Ioana Stanoi� Divyakant Agrawal� Amr El Abbadi

Computer Science Department� University of California at Santa Barbara

fioana�agrawal�amr�cs�ucsb�edug

Abstract

In this paper we propose an algorithm for answering reverse
nearest neighbor �RNN� queries� a problem formulated only
recently� This class of queries is strongly related to that
of nearest neighbor �NN� queries� although the two are
not necessarily complementary� Unlike nearest neighbor
queries� RNN queries �nd the set of database points that
have the query point as the nearest neighbor� There is no
other proposal we are aware of� that provides an algorithmic
approach to answer RNN queries� The earlier approach
for RNN queries ��KM���� is based on the pre	computation
of neighborhood information that is organized in terms of
auxiliary data structures� It can be argued that the pre	
computation of the RNN information for all points in the
database can be too restrictive� In the case of dynamic
databases� insert and update operations are expensive and
can lead to modi�cations of large parts of the auxiliary
data structures� Also� answers to RNN queries for a set
of data points depend on the number of dimensions taken
in considerations when initializing the data structures� We
propose an algorithmic approach that is
exible enough to
support a larger class of RNN queries� and� in order to
support them� we also extend the current method of nearest
neighbor search to that of conditional nearest neighbor�

� Introduction

The problem of answering Reverse Nearest Neighbor
�RNN� queries has been formally de�ned only recently
by �KM���� It is a complimentary problem to that
of �nding a Nearest Neighbor �NN� to a query point�
studied in the past few years �RKV�	� KSF��
� SR����
While NN queries �nd the point in the database that

�This work was supported in part by NSF under grant
numbers CCR�������� and EIA�������� and IIS�����	�� and
IIS��������

is the closest to a given query point according to a
speci�ed distance metric� RNN queries �nd the set
of database points that have the query point as the
nearest neighbor� The complexity of the RNN problem
arises from the fact that the NN�RNN relationship is
asymmetric� That is� the fact that a query point q has
a data point p as its nearest neighbor� does not imply
that p�s nearest neighbor is q and therefore does not
imply that q�s RNN is the data point p� For example�
let three points a� b� c be placed on a straight line in
this order� such that the nearest neighbor of a is b

and the nearest neighbor of b is c� Note that in this
case� although the nearest neighbor of a is b� a has
no reverse nearest neighbor� In this paper we present
an e
cient solution for RNN queries for ��dimensional
data� although our approach can be extended to data
sets of higher dimensions� For ��dimensional data� there
is a wide range of applications that can bene�t from
e
ciently implementing RNN queries�

Example� Consider a gas vendor company whose
marketing decision is to expand by opening a new gas
station in the same city� Given several choices for
its new location� the company�s strategy is to pick
the location that can attract customers from other gas
stations but� if possible� without negatively impacting
its existing gas stations� Having a database that stores
the location of all gas stations in the city together with
additional information on businesses� an approach is
to create a view that selects only the information on
gas stations� and query this view for the gas stations
that would be geographically closer to the new possible
locations� In this case� an RNN query would return the
set of gas stations that would be the most a�ected by a
competitor in the given location �the query point�� The
company can also easily analyze the e�ects of competing
with di�erent companies by looking at the RNN queries
of already existing locations�

In this paper we develop an algorithmic solution to
the RNN problem that uses a generic index structure�
which� in addition to searches for reverse nearest
neighbors� can be used to answer any of the standard
queries� The presentation is organized as follows� We

�rst present �Section �� previously developed methods�
compare them with our approach and summarize our
goals in Section �� In Section ��� we present the
underlying ideas behind the algorithmic solution we
propose for the problem of RNN queries� The algorithm
is based on existing solutions for nearest neighbor
queries� which in Section ��� we extend for the purpose
of RNN queries to conditional nearest neighbor queries�
We further present the details of the RNN algorithm
�Section ���� and we conclude with a summary of
possible extensions of our work in Section ��

� Background and Motivation

A solution for answering RNN queries for dynamic
databases was recently proposed in �KM���� This
solution is based on storing a list of all the data points
and their corresponding nearest neighbors in an NN�
tree� and the nearest neighborhood distance circles �for
��dimensional data� in an RNN�tree� RNN queries
become point enclosure queries over the RNN�tree� The
use of an RNN tree to store information on reverse
nearest neighbor may however be too rigid for querying
the database� As an example� let a relational database
contain tuples with multiple attributes� A tuple would
then become a data point in the multidimensional
space� but usually not all the available information
is necessary to answer a given query� If we revisit
the gas station example presented earlier� let the
database actually contain tuples with more than the
two attributes used to de�ne the point as a geographical
location� Assume tuples also include speci�c data on
the type of service they o�er� One dimension can
therefore store the levels of service as four choices� ��
gas only� �� mini market� �� automatic car�wash and ��
hand car�wash� For the purpose of the facility location
query this attribute represents information that is not
signi�cant and it should be ignored� The data set then
is actually projected on only one plane �spanned by the
two geographical direction axes�� In general� di�erent
queries applied to a data set should be able to project
the data points on the desired dimensions� and not be
restricted to a given set or subset of attributes� So far�
there has been no proposal for answering RNN queries
in such a �exible manner� Since the set of nearest and
reverse nearest neighbors to a query point may di�er
depending on how many dimensions are considered
for the same data set�a data structure constructed
speci�cally for answering RNN queries is too rigid�
Consider a query point q and the data set fp�� p�� p�g
illustrated in Figure �� If the query RNN�q� is de�ned
over all three dimensions �XY Z�� then the reverse
nearest neighbor of q is p�� However� if the queried
space is restricted to only two dimensions �XY �� then
RNN�q� will return data point p�� We believe that
to accommodate RNN queries spanning over a variable

subset of dimensions� an algorithmic approach is more
appropriate�

q

p2

p3

Z

X

Y

 RNN(q) = p2

 RNN(q) = p1

p1

Considering projection on axes (XY) only:

Considering axes (X,Y,Z):

Figure �� Example of varying nearest neighbor set
depending on number of dimensions

In this paper we consider dynamic databases� that
undergo inserts and deletes of data points due to
user updates� In �KM��� the update and query of
dynamic databases is much more expensive than in
the static case since insert and delete operations over
the database lead to the computation of changes and
to the modi�cation of the NN�tree and RNN�tree
indexing structures� In contrast� we are interested in
RNN queries in the context of data warehouses used
for decision support� where updates are frequent and
I�O performance is important� As underlying data
sources get updated frequently� the views in a data
warehouse should re�ect these changes and answer to
user queries based on data that must be as up�to�date
as possible� The update method therefore must be both
simple and e
cient� In this case� an algorithm based
on continuously maintaining a list of the data points
and their nearest neighbors is ine
cient� since both
inserting and deleting an element lead to the partial
recomputation of the list� For the type of decision
support queries we are interested in� combining the
information on the state of the database with auxiliary
information on pre�computed partial answers overloads
the maintenance task of the view itself�

� Our Solution

In this paper� we present our solution for answering
RNN queries in a two�dimensional space� First� we will
introduce the observations that lead to the proposed
technique� then give a simple algorithm for �nding
the reverse nearest neighbor RNN�q� to a query point
q� As we will show� our method is based on already

existing algorithms for answering nearest neighbor
queries� Applications that use our method can bene�t
from the following advantages�

� Our goal is to integrate RNN queries in the frame�
work of already existing database and access struc�
tures� The approach we are using is therefore al�
gorithmic and independent of data structures con�
structed speci�cally for a set of such queries�

� Updates to the database only impact performance
in the sense that they a�ect the size of the R�
tree used for indexing the data set for range and
spatial join queries� In the case of insert and delete
operations over the database� no computational or
storage cost will be imposed speci�cally to facilitate
RNN queries� However� we assume that NN queries
are supported in such systems�

� No additional data structures are necessary� and
therefore the space requirement does not increase�
The algorithm we propose is based on using the
underlying indexing data structure �R�tree�� also
necessary to answer NN queries� We assume that
a spatial data structure is necessary for many
applications that require the ability to answer range
queries� topological queries or nearest neighbor
queries�

� The solution we present facilitates �what if� queries�
based on RNN�q� queries where q is not constrained
to be one of the points in the data set� This class
of queries are especially useful for decision making
applications such as those involving summarization
and interpretation of data in data warehouse views�

��� Preliminaries

In this paper we assume that the distance between two
points p� � �p�� � p�� � � � � p�n� and p� � �p�� � p�� � � � � p�n�

is the Euclidean distance� dist�p�p��
� �
Pi��

i�n jp�i �
p�i j

�� The algorithm we propose however is not
dependent on this de�nition� and other distance metrics
�such as L�� can also be used�
Although the following results refer to data points

in a ��Dimensional space� they can easily be adapted
for higher dimensions� In the following� we use the
notation RNN�q� to denote the answer to reverse
nearest neighbor queries for point q� NN�q� returns the
set of points that satisfy the nearest neighbor condition
with respect to q� Note that both RNN�q� and NN�q�
are sets of points in the database� while query point q
may or may not correspond to an actual data point in
the data base�
Let query point q � �xq � yq� be de�ned as having

value xq on the x�coordinate and yq on the y�coordinate�
Moreover� let three lines l�� l�� and l� intersect at q� and
divide the space around it into six regions S�� S�� � � �S�

�Figure ��a��� We �x l� to be parallel to the x axis� and
the angle between l� and l�� l� and l�� l� and l� to be
exactly
�o� For the rest of the paper� we will refer to
l�� l� and l� as space dividing lines�

Proposition � � For a given ��dimensional dataset�
any query point q� RNN�q� will return at most six data
points �Smi�	� KM��
�

In higher dimensions the number of maximum data
points that satisfy RNN�q� is still a constant� whose
value depends on the number of dimensions considered�
The result stated by Proposition � is based on the

observation that the upper limit for the number of data
points in RNN�q� is given by the scenario where all
these points are on a circle with the center at q� The
distance between two consecutive points on the circle
must be the same as the radius of the circle� i�e�� the
distance between a point in RNN�q� and q�

line l_1

line l_3

q

S_1

S_2

S_3

S_4

S_5

S_6

line l_2

(a) Dividing the space around query point q.

line l_1
q

p1
S1

p2

line l_2

(b) Example for Proposition 3.

Figure ��

A consequence of this observation is the following�

Proposition � � Let the space around a query point
q be divided into six equal regions Si�� � i �
� by

straight lines intersecting q� Si therefore is the space
between two space dividing lines� Then�

�� There exist at most two RNN points in each region
Si

�� if there exist exactly two RNN points in a region Si�
then each point must be on one of the space dividing
lines through q delimiting Si�

Proposition � � Let p
 NN�q� in Si� If p is not on
a space dividing line� then either NN�p�
 q �and then
RNN�q�
p�� or � � RRN�q� � Si�

Proof� To show that Prop� � holds� assume w�l�o�g� that
there are two points in a region S� delimited by space
dividing lines l� and l�� Let point p� be an NN�q��
p� � Si �Figure ��b��� Let p� be another point in
Si such that p� is RNN�q�� We will show that either
dist�q� p�� � dist�q� p�� and p� on l�� p� on l� �or vice�
versa�� or p� and p� are the same data point� Assume
p� �� p�� Considering the triangle 	qp�p�� it must be
the case that p� is closer to q then to p�� That is�

dist�q� p�� � dist�p�� p�� �
 d�p�qp�� � d�qp�p�� �
�o�

and therefore angle d�qp�p�� �
�o� Since both p� and p�
are in S�� if the angle is
�

o� it is the case that p� is on l�
or l�� while� by construction of the space dividing lines�
p� must be on the opposite line delimiting Si �l� orl���
Eliminating this case� we look now at the scenario where
the angle between lines qp� and qp� is less than
�

o and
d�qp�p�� �
�o� Because now d�qp�p�� � d�qp�p�� then

it must be the case that dist�qp�� � dist�qp��� which
implies that NN�q��p� and ��NN�q��p��� However�
this consequence contradicts the initial hypothesis that
NN�q��p��
��
The above proposition simply states that for a query

point q and region Si either the nearest neighbor is also
the reverse nearest neighbor� or there is no RNN�q� in
Si �if NN�q� is not on the space dividing lines�� This
is a very important result� since it allows us to have a
criterion for limiting the choice of RNN�q� to one or
two points in each of the six regions Si� An algorithm
for answering an RNN�q� query then �rst �nds the
candidate set of data points� one or two points in each
region Si that satisfy the nearest neighbor condition
NN�q�� In the second step� these candidate points are
tested for the condition that their nearest neighbor is
q� The points that satisfy this condition are returned
as the answer to the RNN�q� query�

��� Algorithm Development

In the past years several papers developed index
structures based on R�trees� and discussed possible
optimizations ��SR��� Gut��� BKSS��� KF��� KF���
BKK�
� PF��� EKK���� �RKV�	� proposed a branch�
and�bound method to �nd the nearest neighbor to a

J

J K L

 A B C D E F G H I

S1
S2S3

S4 S5 S6

y

x

B

/A K

C

H

I L

/G

FEDq

Figure �� A section of an R�tree and the corresponding
regions Si and minimum bounding rectangles

query point� based on the traversal and pruning of the
R�tree indexing structure� The intuition behind it is
that points in a data space can be grouped in clusters
delimited by minimum bounding rectangles �MBR��
which in turn can be part of larger clusters� An MBR
is the smallest rectangle completely enclosing a set of
points� Every face on the MBR then contains at least
one data point� Since an MBR is rectangular in shape�
it can be described by the coordinates of two of its
opposite corners� A node in the R�tree then stores
these coordinates� and the levels of the R�tree re�ect
the granularity of the clusters considered �Figure ���
An algorithm to �nd NN�q� of a query point q searches
down the R�tree� by comparing the nodes at each level�
Only the nodes that can lead to nearest neighbor points
are further considered� while the rest of the tree is
ignored� In �RKV�	� the proximity comparison is based
on �mindist�� the shortest distance from the query point
to the rectangular cluster as well as the �minmaxdist�
�the minimum over all dimensions� of the distance from
the query point to the furthest point on the closest face
of the MBR�� �Mindist� guarantees that all points in
the MBR have at least �mindist� distance from the
query point� �Minmaxdist� ensures that there exists
at least one data point in the MBR whose distance to
the query point is at most �minmaxdist�� More details
are in Section ���� Also� �RKV�	� proposes to use the
square of the Euclidean distance as a distance measure�
because of the reduced computation cost�

Our approach for e
ciently answering RNN queries
builds upon the previous work on NN queries� Since
we believe that NN queries are frequent and related to

RNN queries� we can safely assume that a method for
answering NN queries is already implemented in most
systems� The solution described in this paper follows
the algorithm described in �RKV�	�� but it can be easily
modi�ed to make use of other techniques developed for
NN queries�

The method we propose �nds for each region Si�
� � i �
� �see Section ���� the points p � NN�q� that
satisfy the condition p � Si� The set of data points
p � NN�q� is the result of the algorithm for nearest
neighbor search applied to the data set� but considering
only the projections on the desired dimensions� Due
to Prop�� �see Section ����� in a ��Dimensional space
only one or two such points can satisfy the reverse
nearest neighbor condition� We modify the algorithm
used to �nd nearest neighbor points by introducing new
restrictions during the pruning of the indexing tree�
While traversing the R�tree� a node is �rst checked
for inclusion in Si� then it is checked for proximity to
query point q� The subtrees rooted at nodes that do
not satisfy both of these conditions are then pruned
from the node set of interest� Following the traversal
of the R�tree for each region Si in the data space� a
set of candidate RNN�q� points are returned� Not all
candidate points p are indeed reverse nearest neighbors
of q� i�e�� satisfy the condition that q�NN�p�� Since the
query point q is not necessarily one of the existing data
points� we test that q�NN�p� by comparing the distance
dist�q� p� with the distance between p and its nearest
neighbor dist�p�NN�p��� It is important to note that�
if a data point falls on one of the space dividing lines�
then it belongs to two of the Si�s� The same points
p � RNN�q� can therefore be returned by di�erent
iterations of the tree traversal� and a �ltering step is
needed to exclude such duplicates�
To summarize the above modi�cations to an algo�

rithm designed for NN queries� the following is an
overview� Let a query point be q � �xq � yq�

�
 Construct the space dividing lines l�� l� and l� such that�

�a
 l�� l� and l� intersect at the query point �xq � yq

�b
 angle�l�� l�
 � angle�l�� l�
 � angle�l�� l�
 � ��o

�
 For each Si �see Section �
�
 do

�a
 traverse R�tree using the conditional NN algorithm �Sec�
tion �
�
 That is� �nd p�NN�q
 such that p � Si

�b
 if NN�p
 � p� where dist�pp�
 � dist�pq
� add p to the list
of RNN�q

�
 Eliminate duplicates in RNN�q

Step ��a� is not straight�forward� since it entails
conditions �p � Si� on the algorithm that �nds p �
NN�q�� In the next section we present the modi�cations
imposed on the NN algorithm in order to support
conditional NN searches that �nd the nearest neighbor
data point restricted to a region of the space�

region S

p1

p2

p3

p4
p5

p6

p7

q

 (a) Find NN in region S

q

S1

S2

S3

S4

S5

S6

A
B

C

D

E

(b) Cases for MBR containment in a region S2

Figure ��

��� Conditional NN Queries

In this section we analyze nearest neighbor queries
constrained to a certain region� Although it is generally
an important problem to solve for di�erent types of
constraints� for the purpose of the RNN algorithm we
consider only linear constraints� We are interested in
the special case of �nding a nearest neighbor in each of
the six regions divided by space dividing lines through
a query point� A brute�force algorithm that �nds all
the nearest neighbors until there is one in the queried
region S� can be very ine
cient in scenarios like the one
described in Figure ��a�� In this case� since data point
p� in S is actually the furthest from the query point q�
a brute�force algorithm would �rst consider and then
discard all other points before �nding p��

A cluster or an equivalent MBR in the context of R�
trees� belongs to a region either fully or partially� In
Figure ��b� we show the �ve di�erent cases where an
MBR �minimum bounding rectangle� is considered to

overlap with a region S��

�� MBR A� fully contained in S�

�� MBR B� three vertices are in S�� Since B is a
minimum bounding rectangle� then there must be
some data points in B contained also in S�

�� MBR C� two of C�s vertices are in S�� This means
that an entire edge e of the MBR is in S�� which by
de�nition guarantees that at least one data point in
C is on e and therefore in S��

�� MBR D� only one vertex of D is in S�� It is
important to note that in this case there is no
implication on the existence of data points contained
both in D and in S��

	� MBR E� although no vertices are in S�� part of the
E minimum bounding rectangle overlaps with the
queried region S� Again� as in the previous case� we
cannot make any assumption that any of the data
points contained in E are also contained in S�

The approach we use to �nd a nearest neighbor in a
region Si is to traverse the indexing tree and prune out
sections of the tree that cannot lead to an answer either
because the MBRs do not belong to the queried region�
or because there is a guarantee that other points in Si
are closer to the query point�
If the space constraints are eliminated� the problem of

conditional nearest neighbor search is extended from a
region to the whole space� The traditional NN methods
are therefore only a special case of a more general
approach� We will show however that� with only minor
modi�cations� we can extend an NN search algorithm
�RKV�	� to satisfy conditional nearest neighbor queries�
The method described in �RKV�	� traverses recursively
the indexing tree in depth �rst order� At each non�
leaf level it creates a list of the node�s children and
sorts it according to the distance metric used� For
e
ciency� the subtrees rooted at nodes in the list will
be visited in the sorted order� Once the recursive
function on one of the children returns� a candidate
for the nearest neighbor is returned and the list of
remaining children to be visited is pruned accordingly�
The di�erence between the algorithm proposed by
�RKV�	� and a conditional nearest neighbor algorithm
resides only in the metric used to sort and prune the
list of candidate nodes� The idea behind the former
method is that if we de�ne the mindist�q�M� to be the
minimum distance from the query point to an MBR
M and minmaxdist�q�M� to be the minimum over
all dimensions� of the distance from q to the furthest
vertex on the closest plane of M � then it is guaranteed
that there exists at least a data point within the
�mindist�q�M�� minmaxdist�q�M�� range� Then another
MBR M � whose mindist�q�M �� � minmaxdist�q�M��

q

mindist(q,M)

 minmaxdist(q,M)

M

x

y

queried region S

q

mindist(q,M)

M

x

y

queried region S

 minmaxdist(q,M,S)

Figure 	� minmaxdist�q�M� is modi�ed to
minmaxdist�q�M� S� for conditional NN queries

can be safely discarded� Following the same reasoning�
a data point p whose distance to the query point
dist�q� p� � minmaxdist�q�M�� can also be discarded
from the list of candidates to the nearest neighbor�
Finally� if there is a point p that satis�es the condition
that dist�q� p� � mindist�q�M�� then the minimum
bounding box M is discarded�
The method described above assumes that the entire

volume of a minimum bounding rectangle is contained
in the queried region� This is not the case for condi�
tional NN queries� and a few modi�cations are neces�
sary� In the table below we described �ve possible po�
sitions of MBRs with respect to a region S�� cases that
should be considered when trying to �nd NN�q� in S��
Our goal is to modify the notion of minmaxdist�q�M�
to have the same implications and therefore be used in
the same manner as proposed by �RKV�	�� Note that
the measureminmaxdist�q�M� may be irrelevant if the
MBR M is only partially contained by the the queried
region� Since we do accommodate these cases� we re�
de�ne minmaxdist�q�M� to be minmaxdist�q�M� S��
the distance from the query point to the furthest vertex
of M on its closest face included in S�
If an MBR M that intersects region S has one

or no vertices in S� then there is no guarantee that

there are data points in both M and S� We then set
minmaxdist �
 to capture this uncertainty� Another
case is ifM has two or three vertices in S� which implies
that at least an edge and therefore at least one data
point is in both M and S� This edge is not necessarily
the closest to the query point q� and consequently
we have to rede�ne minmaxdist as a function of the
distance from q to the furthest vertex of the closest face
in region S�

The computation of mindist�q�M� is valid for all
cases� since it provides a de�nite lower bound on the
location of data points inside an MBR� For cases where
this distance is measured to a point on the MBR that
falls outside of region S� themindist still gives a correct
although looser lower bound�

The use of a generic R�tree permits us to easily ignore
certain dimensions if the RNN query is not interested
in them� In particular� mindist�� and minmaxdist��
can be de�ned to simply consider distance to the
relevant dimensions only� Hence� depending on the
query� alternative dimensions can be considered� This
is much more �exible then an approach where a tree
is constructed based on the dimensions of interest
determined a�priori�

��� Algorithm

The RNN algorithm developed in this paper starts by
�nding one or two nearest neighbors in each of the six
regions Si� and then it tests if these data points indeed
satisfy the RNN condition� For clarity� we described
how to �nd the candidate points separately for each
region� In reality� the computation corresponding to
all the six regions can be done in one traversal of the
indexing tree� Separate priority lists should be created
for each region� but the information about the minimum
bounding rectangles will only be read once� Similarly�
the RNN candidates can be veri�ed in one traversal of
the indexing tree� We next present the algorithm for
�nding RNN points�

RNNsearch��� This is the main function that
�rst creates the structure that holds the information
on the query point in the necessary format� and
initializes nearest� the nearest neighbor list� It then
calls CondNNSearch which returns a list of nearest
neighbors for each of the regions� The duplicates
in this list are eliminated �EliminateDuplicates����
and the NNSearch function is used to check if
indeed these candidates are RNN points� That is�
we test if the query point is a nearest neighbor of
the points returned by CondNNSearch� For clarity
we only describe how the conditional nearest neighbor
search is done in parallel� However� in practice we
can use CondNNSearch for both conditional and
unconditional nearest neighbor searches� and use a

�ag condF lag to distinguish between the two� In the
algorithm below we do not integrate the two functions
and we do not show the details for running NNSearch

in parallel� but the method is very similar to that of
parallelizing CondNNSearch� The number of regions�
numSections� depends on the number of dimensions of
the queried space� which is inferred from the format
of the query point passed as an argument to the
function� Since this information is used to de�ne the
dimensions of the query space� the dimensions that are
not necessary are ignored during the computation of the
distance between two MBRs�
Search for Conditional Nearest Neighbor
�CondNNSearch�� This is a recursive method for
searching the conditional nearest neighbors of a query
point� and it is based on �RKV�	�� When the
function CondNNSearch is passed a pointer to a
node in the indexing tree� it builds a set of lists
branchList �branchList��� ��� branchList�numSections�
��� for each region that is searched� The branch lists
have pointers to the children of node� An additional list�
branchList�numSections� of pointers to the children
of node contains counters of pointers from the other
branch lists for each of the children� Children with a
higher count are visited �rst� since this step is required
by the search of most regions and the I�O overhead
can thus be reduced� The branch lists are �rst pruned
�CondDownPrune��� based on the nearest neighbor
found so far and also based on the relationship between
the MBRs contained by the respective children� In this
step� according to the distance metric used� the MBRs
that cannot contain nearest neighbors are excluded�
CondNNSearch is recursively called on the child with
a highest count� i�e�� that most of the branch lists point
to� The function will return an updated list of nearest
neighbors� with more than one element if the respective
data points are at the same distance from the query
point� The new nearest neighbor candidate will be used
again to prune the branch lists and refresh the count
list �CondUpPrune���� Both branch pruning functions
CondDownPrune and CondUpPrune use the distance
comparison criterion discussed in Section ���� If the
branch lists are not null� the next child in decreasing
order of the count in branchList�numSetions� will be
visited� If node is a leaf of the index tree� then
CondNNSearch only compares the distance from the
children to the nearest points and� if necessary� updates
the structure nearest that stores the list of nearest
neighbors�

� Conclusion

In the approach proposed by �KM���� an additional
tree is constructed to store a set of objects consist�
ing of the data points and their distance to the cor�
responding nearest neighbors� and an RNN�q� query is

Number of vertices in Si mindist�q�M� Si� minmaxdist�q�M� Si�

� �no intersection of M with Si�

� �M intersects Si� mindist�q�M�

�
� mindist�q�M� minmaxdist�q�M� Si� � distance to
� furthest vertex on closest face IN Si
�

Table �� De�nition of mindidst�q�M� Si� and minmaxdist�q�M� Si�

��

�� ���

�RNNsearch� returns a list of reverse nearest neighbors of a quey point �q�

���

struct Nearest RNNsearch�q	

struct Rectangle �q

�

struct Nearest �nearest� �newnearest� �RNNresult

int newRNN
 ��number of RNN candidates��

Initialize�nearest	

��return a list of RNN candidates��

NNCondSearch�TreeRoot�q� nearest� numSections� NODECARD�
	

��eliminate duplicates from the RNN list and return the count of remaining candidates��

numRNN � EliminateDuplicates�nearest	

for i�
 to numRNN do

�

NNSearch�TreeRoot�nearest�i��newnearest	

��if the candidate nearest�i� is indeed an RNN� add it to the list��

if Rect�Rectdistance�q� �newnearest�i���branch�
��rect	 �� Rect�Rectdistance�q�nearest��branch�
��rect	

Append�RNNresult� nearest�i�	

�

return RNNresult

�

��

Table �� Algorithm for Reverse Nearest Neighbor search

��

�� ���

�CondNNSearch� recursive conditional nearest neighbor search� Based

�on the query point ��point�	 and the number of dimensions� divide

�the space into a number numSections of regions and search in parallel

�for the nearest neighbors�

���

CondNNSearch�node�point�nearest�numSections�NODECARD�condFlag	

Node �node

Rectangle �point

struct Nearest nearest

int numSections�NODECARD
 ��NODECARD is the number of a node�s children��

boolean condFlag
 ��distinguishes between conditional and unconditional search� We

do not explicitly use it in this presentation��

�

branch�numSections����NODECARD� branchList

int i�j�k� dist� nearestDist

if �node��level ��
	 ��this is an internal node��

�

��generate the six branchLists��

for i��
 to NODECARD do

for k��
 to numSections do

Update�branchList�k�	

��perform downward pruning��

CondDownPrune�point� nearest� branchList	

��create branchList�numSections�� the ordered counter list��

UpdateCount�branchList	

for j��
 to NODECARD do

�

newnode � branchList�numSections��
���child

��recursively visit children��

CondNNSearch�newnode�point� nearest�numSections�NODECARD�condFlag	

��perform upward pruning of the branch lists��

CondUpPrune�point� nearest� branchList	

��update the ordered counter list� branchList�numSections���

UpdateCount�branchList	

�

�

else ��this is a leaf node��

for i��
 to NODECARD

if �node��branch�i��child �� NULL	

�

���dist� is the distance between node��branch�i��rect and query point��

dist � Rect�Rectdistance�point� �node��branch�i��rect	

nearestDist � Rect�Rectdistance�point� �nearest�
���branch�
��rect	

��if nearest has not been set yet or it represents a rectangle

further from the query point than node��branch�i���

if ��nearest�
��rect �� NULL	���dist � nearestDist		

��if branch�i��rect is a possible nearest neighbor� add it to the NN list��

else if �dist �� Rect�Rectdistance�point� �nearest��branch�i��rect		

Append�nearest� branch���i��rect	

�

�

��

Table �� Algorithm for Conditional Nearest Neighbor search

answered by testing the enclosure of q within these ob�
jects� Therefore� only one traversal of the RNN tree
is necessary to compute answers to RNN queries� How�
ever� the drawbacks to this approach arise if updates are
allowed to modify the database� To maintain the ad�
vantage of fast query answers� sections of both NN and
RNN trees should be modi�ed with every insert and
delete operation� We choose to develop an algorithmic
method� since we are speci�cally interested in dynamic
databases� where updates are frequent and queries have
the �exibility to refer only to a subset of the data space
dimensions� Our method does not require the construc�
tion and maintenance of any additional data structures
and only the underlying indexing tree is updated� We
believe that in dynamic databases the disadvantage of a
higher cost during query computation is outweighed by
the simplicity and e
ciency of updates� In our future
plans we include a performance comparison with the
original solution �KM���� Also� we are interested in ex�
ploring alternative implementations based on R�trees�
to concurrently evaluate a wider range of queries�

References

�BKK�
� S� Berchtold� D� A� Keim� and H� P�
Kriegel� The x�tree� An index structure
for high�dimensional data� In Proceedings of
the ��nd International Conference on Very
Large Databases �VLDB�� pages ����
� ���
�

�BKSS��� N� Beckmann� H� P� Kriegel� R� Schneider�
and B� Seeger� The r��tree� An e
cient and
robust access method for points and react�
angles� In Proceedings of the ACM SIGMOD
International Conference on Management of
Data� pages �������� May �����

�EKK��� M� Ester� J� Kohlhammer� and H� P� Kriegel�
The dc�tree� a fully dynamic index structure
for data warehouses� In Proceedings of
the ��th International Conference on Data
Engineering �ICDE�� March �����

�Gut��� A� Guttman� R�trees� A dynamic index
structure for spatial searching� In Proceed�
ings of the ACM SIGMOD International
Conference on Management of Data� pages
���	�� June �����

�KF��� I� Kamel and C� Faloutsos� On packing r�
trees� In Proceedings of the �nd International
Conference on Information and Knowledge
Management �CIKM�� pages �������� �����

�KF��� I� Kamel and C� Faloutsos� Hilbert r�
tree� An improved r�tree using fractals� In
Proceedings of the International Conference
on Very Large Databases� September �����

�KM��� F� Korn and S� Muthukrishnan� In�u�
ence sets based on reverse nearest neighbor
queries� Technical report� AT�T Labs Re�
search�
http���www�research�att�com�resources�trs��
�����

�KSF��
� F� Korn� N� Sidiropoulos� C� Faloutsos�
E� Siegel� and Z� Protopapas� Fast nearest�
neighbor search in medical image databases�
In Proceedings of the International Confer�
ence on Very Large Databases� September
���
�

�PF��� G� Proietti and C� Faloutsos� I�o complexity
for range queries on region data stored using
an r�tree� In Proceedings of the International
Conference on Data Engineering �ICDE��
March �����

�RKV�	� N� Roussopoulos� S� Kelly� and F� Vincent�
Nearest neighbor queries� In Proceedings
of the ACM SIGMOD International Confer�
ence on Management of Data� pages ������
May ���	�

�Smi��� M� Smid� Closest point problems in compu�
tational geometry� InHandbook on Computa�
tionl Geometry� Elsevier Science Publishing�
�����

�SR��� T� Sellis and N� Roussopoulos� The r��tree�
A dynamic index for multidimensional ob�
jects� In Proceedings of the ��th Interna�
tional Conference on Very Large Databases
�VLDB�� pages 	���	��� May �����

�SR��� T� Sellis and N� Roussopoulos� Distance
browsing in spatial databases� In ACM
Transactions on Database Systems �TODS��
������ June �����

