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ABSTRACT
A fundamental and very useful operation in graphs is the
computation of the proximity between nodes, i.e., the de-
gree of dissimilarity (or similarity) between two nodes v and
u. This is an important tool both in graph databases and
graph mining applications, because it provides the base to
support more complex tasks such as graph partitioning, clus-
tering, classification, to name a few. All methods proposed
in the literature assume that proximity is computed on a sin-
gle graph by using a single distance measure. In addition,
most of them focus on the proximity between node pairs. In
this work, we present for the first time, scalable algorithms
that: (i) they support proximity computation in multiple
graph instances, (ii) they enable the utilization of several dis-
tance measures, (iii) they support proximity queries around
a source node without limiting to node pairs and (iv) they
support extensions for metric-based and skyline query pro-
cessing. The main result of our work is the design of Thresh-
old Algorithms for Graphs (denoted as TAGs), which are
studied and evaluated experimentally by using real-life as
well as synthetic graphs, based on both the G(n, p) Erdõs-
Rényi model and power law degree distributions.

Categories and Subject Descriptors
H.2 [Database Management]: Systems; H.2.8 [Database
Management]: Database Applications—Data Mining ; G.2.2
[Discrete Mathematics]: Graph Theory—Graph Algo-
rithms

General Terms
Algorithms
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graph databases, proximity query processing
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1. INTRODUCTION
Graph mining is an important research direction [1, 3, 6]

that recently has attracted significant interest. The main
reason for this trend, is that real-life networks have grown
in size and therefore scalable mining tasks are required for
network analysis purposes. Node proximity [5] is a funda-
mental operation that is required by complex mining tasks,
such as partitioning, clustering and outlier detection. In its
simplest form, node proximity is requested for a particular
pair of entities (nodes) s and t, which generally do not have
a direct connection between them. The way node proximity
is computed depends on application requirements and also
on the data representation and data semantics.

As an example, consider a co-authorship network, where
nodes represent authors and a connection between two au-
thors declares that they have a paper in common. In this
application, one may be interested in the similarity between
authors s and t, who may not have a common paper. The
larger the proximity between s and t in the co-authorship
network, the larger the similarity of their research interests.
As a second example, assume an information retrieval ap-
plication where nodes represent named entities (e.g., place
names) extracted from a text collection, and two entities are
directly connected if they appear in the same document, in
the same section or in the same paragraph (according to ap-
plication needs). The network-based proximity between two
entities s and t quantifies the semantic similarity between
these entities.

Different techniques have been proposed to determine prox-
imity in networks [5, 21]. However, previously proposed
methods are characterized by three important limitations.
First, proximity computation is supported for a specific ver-
tex pair s, t. In many applications, like graph-based in-
formation retrieval for example [25], there is a need to sup-
port additional operations that are considered important: (i)
given a query entity s determine all entities with distance at
most r from s, and (ii) given a query entity s determine the k
most proximal entities to s. A second limitation of proposed
methods is that they are based on a single distance mea-
sure to compute proximity (e.g., random walk with restart,
shortest path, maximum flow). Finally, a third shortcom-
ing is that only a single graph has been used to determine
proximity. However, entities may be associated in many dif-
ferent ways [26] resulting in many graph instances. In such
a case, multiple graphs are required for proximity computa-
tion, and therefore distance measures must be combined in a
convenient way to obtain a semantically meaningful result.
For example, researchers may form a graph G with paper
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Figure 1: Query processing with multiple graphs
and multiple distance measures.

co-authorship information and also may formulate another
graph H capturing their cooperation in project proposals.
Both graphs should be utilized to compute the similarity
between two researchers regarding their research interests
in general.

Figure 1 depicts a bird’s eye view of a system offering
query processing services in multiple graphs with multiple
distance measures. The illustrated query types are just a few
examples of selection-based queries that may be supported,
since more complex queries may be defined on the input
graphs (e.g., joins). Among these query types we focus on
top-k queries, whereas skyline queries are briefly discussed
in Section 5.

Figure 2 depicts two graphs G and H. For G we assume
that the distance between two entities is given by the short-
est path distance, whereas for H proximity is determined
according to the maximum flow that can be pushed between
the nodes. We are interested in determining the k = 3 nodes
that are closer to a source node s, by considering both graphs
and both distance measures. To provide a global distance
measure we must combine the two measures in a meaningful
way. Note that using shortest paths the smaller the distance
the larger the proximity between the nodes. On the other
hand, the smaller the maximum flow the smaller the prox-
imity. In fact, we are searching for nodes such that their
shortest path distance to s is minimized whereas the corre-
sponding maximum flow is maximized. One way to provide
the answer set is to use a ranking function that combines the
two measures. In this example, we choose to use the function
F (s, t) = sp(s, t, G) ·(nh−mf(s, t, H)), where sp(G, s, t) de-
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Figure 2: Graphs G and H. The source node v1 is
shown black.

notes the shortest path distance between s and t in graph G,
mf(s, t, H) denotes the maximum flow between s and t in H
and nh is the number of vertices of H. Note that we subtract
the maximum flow value from nh, in order to convert it to
a distance measure since the maximum flow is by definition
a similarity measure. It is evident, that the derived ranking
function assumes values in the interval [0, (n − 1)2]. Based
on Figure 2, if v1 is selected as the source node, the score of
each node v1, ..., v8 is 0, 6, 6, 10, 6, 12, 12, 18 respectively.
Therefore, the k = 3 most proximal nodes to v1 according
to the ranking function F () are v2, v3 and v5 with score 6.

The focus of this paper is to study efficient techniques
for fast proximity computation, when multiple, and gener-
ally different, proximity measures should be combined in
a synergetic manner towards processing queries in multiple
graphs. To the best of our knowledge, this is the first work
investigating the concept of proximity computation in mul-
tiple graph instances. In summary, our contributions have
as follows:

• We focus on proximity queries around a source node,
whereas the majority of previous work in the area has
focused on proximity computation between node pairs.

• Proximity computation is based on multiple graph in-
stances that may be available. Each of these graphs
captures different relationships among the entities of
interest and therefore all of them must be used to pro-
duce a concrete answer.

• Since each graph instance may require different prox-
imity measures, we study the use of two popular mea-
sures that have been used in the literature as stan-
dalone measures for proximity computation, namely
shortest path and maximum flow. We show that the
synergy of these measures provides a meaningful way
to calculate proximity. However, any other measure
may be used as long as some fundamental properties
hold, such as monotonicity.

• The first approach is based on the fact that no pre-
processing is allowed to the graphs, and may be used
in mining highly dynamic networks. If preprocessing
is allowed, we provide faster algorithms that take ad-
vantage of the preprocessing performed. To avoid ex-
cessive storage consumption, we allow only linear ad-
ditional space (with respect to the number of nodes)
to store precomputed results.

• Performance evaluation results are offered which are
based on real-life as well as synthetic networks. The
results show the efficiency and scalability of the pro-
posed algorithms.

The rest of the article is organized as follows. Section 2
presents research contributions related to our work and also
briefly summarizes fundamental concepts. The proposed
methodology is analyzed in Section 3, where four threshold-
based algorithms ate studied in detail. Performance evalu-
ation results based on real-life as well as synthetic networks
are offered in Section 4. A discussion of additional important
concepts and extensions is offered in Section 5. More specif-
ically, metric-based and skyline-based proximity queries are
discussed briefly. Finally, Section 6 concludes the work and
briefly presents future research in the area.



2. BACKGROUND
The role of this section is twofold: (i) to briefly discuss

related research in the area and (ii) to present some funda-
mental concepts regarding the algorithms studied.

2.1 Related Research
The problem of proximity computation in networks has

attracted significant interest due to its importance in more
complex data mining tasks. An interesting proposal for
proximity computation is offered in [20]. However, this method
cannot be used to answer neighborhood queries since it only
supports pair-wise proximity computation. The nice prop-
erty of this algorithm is that it does not require the inves-
tigation of the whole graph. However, in order to answer
neighborhood queries around a source vertex s, all node
proximities from s must be computed, leading to increased
computational cost.

Random walk with restart (RWR) has been used in [27] to
determine proximity. In fact, this method supports neigh-
borhood formation [25] around a source vertex since it com-
putes proximities in one-to-all fashion. To determine the
proximity between s and t, a random walk is performed,
and the proximity between the nodes is determined by using
the steady-state probability. This method can be easily in-
corporated in our proposal as a potential distance measure.
A limitation of RWR is that since the triangle inequality
does not hold, we cannot use metric-based access methods
to organize the nodes.

The main limitation with all proposed approaches is that
a single graph is assumed and only one distance measure is
applied to determine proximity. To support multiple graphs
and multiple distance measures we need efficient tools to
combine the graphs and provide efficient means of graph
search to get the final answer. Our work is inspired by Fa-
gin’s significant work [8] for threshold-based top-k compu-
tation in information retrieval. According to Fagin’s idea,
if multiple streams of object attributes are available sorted
in non-increasing order of significance, a global ranking may
be achieved by providing a monotone scoring function. In
our case, each node v may be represented as a tuple where
the i-th attribute corresponds to the distance between v and
the source s in the i-th graph. This observation allows the
use of threshold algorithms in our case.

Although many distance measures could have been used,
we focus on shortest paths and maximum flows, because of
their simplicity, their extensive use in diverse applications
and the nice properties that arise from their combination.
As we are going to demonstrate in the sequel, all maxi-
mum flow values between nodes can be recorded in a tree-
like structure, the Gomory-Hu tree [15], which can be con-
structed by executing n−1 maximum flow operations. This
structure allows for efficient sorted access around a source
node s, and saves computational cost since maxflow opera-
tions are expensive. The Gomory-Hu tree has been used also
in [12] for community discovery in networks and in [19] for
partitioning web graphs. In general, it may be used when
efficient maxflow computations are required.

Another work that motivated us to conduct this research is
[26], where the authors study graph clustering by taking into
consideration multiple graph instances. In this paper, we
describe threshold-based algorithms to allow for proximity
computation using multiple graphs and (where applicable)
multiple distance measures.

2.2 Fundamental Concepts
For the rest of the paper we assume that each network

is modeled by an undirected graph G, where VG is the set
of vertices (nodes) and EG the set of edges (direct connec-
tions). Moreover, without loss of generality we assume that
between two vertices vi and vj there could be at most one
connection, represented by the edge ei,j , which is possibly
weighted. Extensions for multigraphs are straight-forward.
The support of directed graphs is also possible, provided
that the absence of the symmetry property in node proxim-
ity does not pose any problems; otherwise, adaptations are
required. Table 1 shows the most frequently used symbols.

Symbol Interpretation

G an undirected (possibly weighted) graph
VG, EG nodes and edges of G
ng,mg number of nodes and edges of G
vi the i-th node of a graph
ei,j edge joining nodes vi and vj

k number of requested proximal nodes
w(vi, vj) weight of the edge between vi and vj

sp(vi, vj , G) shortest distance between vi, vj in G
mf(vi, vj , G) maxflow between vi, vj in G
T (G) the Gomory-Hu tree of graph G

Table 1: Frequently used symbols.

Without loss of generality, we assume that the relation-
ships of our entities (represented as graph vertices) are cap-
tured by two graphs G and H (generalizations for any num-
ber of graphs are straight-forward) where multiple vertex
proximity measures are available. In addition, we assume
that both graphs contain the same set of nodes. In a differ-
ent case, several approaches may be followed. For example,
if there is a node v contained in G but not in H then its dis-
tance from the source node may be set to infinite to exclude
it from the result set. It is evident that the source node s
must be present in both graphs.

We focus on two very popular distance measures that
have been used in the literature for proximity computation,
namely the shortest path (applied on G) and the maximum
flow (applied on H). The use of these two measures is quite
intuitive. In an undirected and unweighted graph, the short-
est path distance between nodes s and t captures how far
or near t lies with respect to the source node s. In fact, the
shortest path distance equals the minimum number of hops
required to reach t starting at s. The smallest the shortest
path the larger the similarity between s and t. According
to Menger’s theorem [23], the maximum flow between s and
t equals the number of edge disjoint paths connecting s and
t. This measure captures the number of different ways one
can use to reach t from s (and vice versa). The more paths
available the stronger the connection between s and t. The
problem tackled in this work has as follows:

PROBLEM DEFINITION
Given two graphs G and H, where proximity in G is mea-
sured by using the shortest path and proximity in H is given
by the maximum flow, determine an efficient method to com-
pute the k vertices that are closer to a source vertex s, by
taking into account both measures.
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Figure 3: Vertices with different proximities.

A justification regarding the usefulness of a synergetic com-
bination of shortest path and maximum flow is illustrated in
Figure 3. Recall that the best proximity between two nodes
is achieved when the shortest path distance is as minimum
as possible and the maximum flow similarity is as maximum
as possible. There are four possible cases: (i) small shortest
path distance and large max flow similarity (e.g., nodes v1,
v2), (ii) small shortest path distance and small max flow sim-
ilarity (e.g., nodes v5, v6), (iii) large shortest path distance
and large max flow similarity (e.g., nodes v3, v4) and (iv)
large shortest path distance and small max flow similarity
(e.g., nodes v5, v4). For example, the proximity between v1

and v2 should be larger than the proximity between v3 and
v4, because although the maximum flow between the two
pairs is 4, the shortest path distance between v1 and v2 is
smaller than the one between v3 and v4. For the rest of the
work we assume that the score of a node v is computed by
taking the product score(v) = sp(s, v, G)·(nh−mf(s, v, H)),
where sp(s, v, G) is the shortest path distance between s and
v in graph G, and mf(s, v, H) is the maxflow between s and
v in graph H. Although the two measures if they are used
alone are not adequate [10] their synergy is very important.
The product enforces that both factors should be minimized
to get the best result [28]. Alternative ranking functions as
well as different approaches are discussed in Section 5.

A simple technique that can be used to solve the problem
is to compute the score for each node and then select the
k nodes with the best scores. Although this algorithm is
simple to implement, it suffers from performance degrada-
tion, especially in large graphs. For this reason, we exclude
this naive solution from the subsequent study. In the se-
quel, we describe in detail the TAG (Threshold Algorithms
in Graphs) family of algorithms, which use thresholding with
the necessary early-termination conditions, to avoid unnec-
essary computational costs. The algorithms presented in
the sequel, differ in the following aspects: (i) the degree
of preprocessing of the input graphs and (ii) the degree of
intermediate result materialization that may be used.

3. THRESHOLD ALGORITHMS
In this section, we develop our proposal for proximity

computation using threshold-based algorithms. The funda-
mental differences among the techniques presented lie in the
preprocessing requirements and the materialization of inter-
mediate results.

3.1 TAG-I
In this section, we present the basic version of the threshold-

based algorithm which is applied when no time-consuming

Algorithm TAG-I (s, k, G, H)
Input. G, H: input graphs, s: source, k: num of results
Output. Ak: k vertices with the best scores

1: init priority queue minheap; init Ak ← ∅
2: done ← false;
3: while (not done)
4: if (minheap.isEmpty()) then
5: done ← true; exit loop;
6: entry ← minheap.removeTop();
7: u ← entry.vertex; sp(u) = entry.distance;
8: if (|Ak| = k) then
9: bestScore ← sp(u) · (nh - degree(s,H));
10: if (bestScore > largest score in Ak) then
11: done ← true; exit loop;
12: else
13: remove the pair with the worst score from Ak;
14: if (u != s) then
15: score(u) ← sp(u) · (nh −maxflow(s, v, H));
16: insert the pair u, score(u) into Ak;
17: for (each neighbor v of node u) do
18: if (v has not been deheaped from minheap) then
19: alt ← sp(u) + weight(u,v);
20: if (alt < sp(v)) then
21: sp(v) ← alt;
22: update minheap;
23: return Ak;

Figure 4: Outline of TAG-I algorithm.

preprocessing is allowed to the input graph1. Such a case
is frequent in modern applications dealing with fresh data
(e.g., time-evolving data), where processing must be applied
without any prior knowledge about the input.

We define two operations on graphs G and H: (i) a graph
expansion operation involves the computation of the next
most proximal node of the source node s of graph G with
respect to the shortest path distance, (ii) a maximum flow
operation involves the computation of the maximum flow be-
tween two nodes s and t of graph H. These operations are
related to the sorted access and random access respectively
proposed in [8]. An expansion is executed on G by request-
ing the next proximal node u with respect to the source s.
Then, a lower bound is computed for the best possible score
that u may have. If this bound is larger than the k-th score
determined so far, then the algorithm terminates. Other-
wise, a maxflow operation is executed on H for nodes s and
u and if the determined score is better than the current k-th
best score, a substitution is performed.

The outline of TAG-I algorithm is shown in Figure 4. The
main loop is executed until either all nodes have been exam-
ined (line 4) or the termination condition is met (line 10).
The nodes of G are organized in a minheap data structure
allowing the progressive scanning of proximal nodes with re-
spect to the source s. The set Ak contains pairs of the form
< u, score(u) >, where u is a node and score(u) the current
score of u. Therefore, if the best possible score of a node is
larger than the k-th score in Ak, the algorithm may termi-
nate because it is impossible to discover a node with a better
score. The key issue in this threshold is that the maximum

1In many cases, preprocessing requiring linear time and lin-
ear additional space is acceptable.



flow between two nodes s and t is bounded by the minimum
degree among the two nodes. This is easily obtained taking
into account that the maximum value of a mincut in a graph
is bounded by the minimum degree of the graph [30].

Lemma 3.1. Let sk be the k-th best score determined so
far, u the node at the top of the minheap and bs(u) the best
possible score that node u may achieve. If bs(u) > sk then
the algorithm may terminate since it is impossible to improve
further the result set Ak.

Proof. By the definition of the expansion operation, it is
guaranteed that nodes in G are discovered in non-decreasing
distance from the source node s. This is because the main
loop of TAG-I is similar to Dijkstra’s algorithm. Therefore,
every time we get the next node from minheap, we are
sure that its shortest path distance from s will be larger
or equal to that of the previously discovered node (see [7]
for a thorough study of this issue). According to the way
the best score of u is computed, it holds that bsu = sp(u)
· (n − mindegree(s)). The only factor that depends on
u is the shortest path distance sp(u). The second factor
(n − mindegree(s)) depends only on the number of nodes
and the degree of the source node. Therefore, if we discover
a node u such that the value bs(u) is larger than the k-th
score contained in Ak, we are sure that u as well as all nodes
discovered after u cannot contribute to the final result. The
opposite would suggest that if node v is discovered after u
then bs(v) < bs(u), meaning that sp(v) < sp(u) which is a
contradiction.

To illustrate the way TAG-I works an example is given based
on the graphs shown in Figure 2. We run a top-3 proximity
query starting at node v1. The first deheaped node is v1

and therefore its neighbors v2, v3 and v5 are checked and
the appropriate decrease-key operations are performed. The
next deheaped node is v2. It holds that sp(v2) = 1 and since
|Ak| < 3 a maxflow operation is performed. The score of v2

is score(v2) = sp(v2) · (n −mf(v1, v2)) = 1 · 6 = 6. In the
same way, the scores of v3 and v5 are also set to 6. The
next deheaped node is v4. Since |Ak| = 3 we check the best
possible score of v4, which is bs(v4) = 2 · (8− 5) = 6. This
means that a maxflow computation will be performed for
v4 as well as for v6 and v7. However, when v8 is deheaped,
its best score is set to bs(v8) = 3 · 3 = 9. Since bs(v8) > 6
this means that the termination condition is satisfied and
the algorithm terminates since no further improvement on
Ak may be achieved. The final answer comprises the pairs
< v2, 6 >, < v3, 6 > and < v5, 6 >.

Lemma 3.2. Let α(s) denote the number of nodes of G
reached through expansion operations starting at source node
s (evidently α(s) > k). Then, the worst case complexity of
TAG-I algorithm is:

O
(
mg log ng + α(s)(log ng + mhnh log(n2

h/mh))
)

Proof. As in the case of Dijkstra’s algorithm, at most
mg decrease-key operations are required, due to the loop
of Figure 4. By assuming an ordinary binary heap, this
cost is O(mg · log ng). In addition, the complexity of a
maxflow computation by using the push-relabel algorithm
of Goldberg and Tarjan [13] which uses dynamic trees, is
O(nh · mh log(n2

h/mh)). A maxflow operation is required

for every deheaped node, until the termination condition is
met. Since the number of deheaped nodes is α(s) the result
follows.

The previous lemma suggests that the most important factor
affecting the performance of TAG-I algorithm is the number
of maxflow computations involved, which depends on the
value of α(s). In addition, every maxflow computation on
graph H requires O(nh ·mh log(n2

h/mh)) cost which is sig-
nificant. In the sequel, we investigate techniques that lead
to more efficient processing, by introducing some form of
preprocessing on the input graphs.

3.2 TAG-II
Recall that algorithm TAG-I does not use any kind of pre-

processing and therefore, it can be applied immediately to
the input graphs. However, in many cases we are allowed to
apply preprocessing towards speeding up subsequent prox-
imity computations. Based on this fact, we perform pre-
processing to the input graph H where maxflow computa-
tions are performed. Our goal is to provide a boost on the
performance of maxflow computation by using only linear
additional space, offering at least linear time on the applica-
tion of each maxflow computation. The resulting algorithm
is termed TAG-II, and it is based on the concept of flow-
equivalent trees.

Evidently, a straight-forward way to speed-up maxflow
operations, which are invoked in line 15 of Figure 4, is to
precompute the maxflow values for each pair of nodes and
store them in a matrix. Although this offers O(1) time for
maxflow computations, it requires O(n2

h) space, which is not
acceptable for large graphs. Note that this matrix is dense
(all cells are full) and therefore, techniques used for sparse
matrices cannot be applied. According to [15], for any graph
H one can build a flow-equivalent tree T (H), such that the
maxflow between two nodes in H equals their maxflow in
T (H). Such a tree is termed Gomory-Hu tree or mincut tree.
Essentially, the existence of a flow-equivalent tree suggests
that for a graph H with nh nodes there are at most nh−1
different maxflow values between node pairs. This is a direct
consequence of the fact that the Gomory-Hu tree contains
exactly nh − 1 edges, since it is connected (assuming that
the input graph is also connected).

Using the Gomory-Hu for maxflow computations is quite
easy. The maxflow between two nodes s and t equals the
minimum weight contained in the unique path connecting s
and t. More formally, if p(s, t) denotes the path joining s
and t, e is an edge and w(e) the edge weight, then:

mf(s, t) = min{w(e), e ∈ p(s, t)}
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(b) a flow equivalent tree

Figure 5: Gomory-Hu tree example.
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Figure 6: Worst, best and typical tree formation.

Figure 5 depicts an example of a graph and its associated
flow-equivalent Gomory-Hu tree. According to the proper-
ties of Gomory-Hu trees, the maxflow between nodes v1 and
v7 is 1, since it is the minimum edge weight in the path from
v1 to v7 (shown with dashed lines). This may be easily val-
idated by inspecting the graph in Figure 5(a) and verifying
that indeed the maxflow is 1, since if the bold line is deleted
then v1 and v7 become disconnected.

Since there is a unique path joining any pair of nodes s, t in
a Gomory-Hu tree, maxflow computations may be supported
in linear (worst case) time with respect to the number of
nodes if no specialized data structures are being used and
no preprocessing has been applied to the Gomory-Hu tree.
In such a case, the performance of the maxflow computation
is directly dependent on the structure of the tree. The worst
case for the maxflow computation (which is O(n)) happens
when the tree is degenerated to a single path as shown in
Figure 6(a). On the other hand, the best tree formation that
guarantees a constant time maxflow computation is the star
formulation, shown in Figure 6(b). In this case, at most two
tree edges need to be checked. In a typical case however,
the shape of the tree is arbitrary, as shown in Figure 6(c).

If more sophisticated techniques based on the concept of
nearest common ancestor [18] are used, then the complexity
may drop to O(1) for finding the maxflow value between any
pair of nodes [4]. This very efficient method requires only
linear preprocessing to the input tree and it is very simple
to implement. More specifically, the problem of determin-
ing the smallest value along any path in the tree is reduced
to the problem of determining the nearest common ances-
tor of the two nodes. Therefore, with an additional linear
preprocessing applied to the Gomory-Hu tree the maxflow
value between two nodes may be computed in constant time,
which is excellent compared to the O(nh · mh log(n2

h/mh))
time required by the push-relabel algorithm.

We note that for a graph with n vertices and m edges the
Gomory-Hu tree can be built in O(n · F (n, m)) time [15],
where F (n, m) is the cost of executing a maxflow computa-
tion on a graph with n vertices and m edges. Therefore, if
the push-relabel algorithm is being used, the tree construc-
tion complexity becomes O(n2 · m log(n2/m))). As it has
been shown in the literature [14] Gusfield’s algorithm [16] is

easier to implement than the original proposal by Gomory
and Hu [15], although the two algorithms have the same
complexity. Based on the previous discussion, and substitut-
ing the maxflow complexity with O(1), the following result
follows easily:

Lemma 3.3. If the Gomory-Hu tree T (H) is used on graph
H and the nearest common ancestor method is used to com-
pute the maxflow between pairs of nodes, then the running
time of algorithm TAG-II is given by:

O(mg · log ng + α(s) log ng)

3.3 TAG-III
Algorithms TAG-I and TAG-II perform sorted accesses on

graph G by using network expansion operations and random
accesses on graph H by computing the maxflow between
nodes. Algorithm TAG-III, studied in the sequel, operates
in the opposite way and it utilizes the Gomory-Hu tree of
graph H for expansion operations (sorted accesses), whereas
shortest path computations are performed on G upon re-
quest (random accesses).

TAG-III utilizes a heap data structure to prioritize nodes
in T (H). Prioritization is based on the edge weights as-
sociated with each node (emanating edges). In addition,
nearest common ancestors and DFS are used as tools for ef-
ficient determination of the next node that must be checked.
When the next candidate node is determined, the termina-
tion condition is checked first, and if necessary a shortest
path computation is performed on G.

According to a well-known result regarding shortest paths,
the worst case complexity of the one-to-all shortest path
problem is the same to that of the one-to-one version [7].
This observation suggests that it is not efficient to exe-
cute from scratch a node-to-node shortest path operation
for node pairs. Instead, a one-to-all shortest path operation
is executed on G and the result is maintained, enabling the
efficient computation of subsequent operations in constant
time. This approach, however, has the additional constraint
that the shortest path distances from s to all nodes in G
need to be materialized for the duration of query execution.
Although this is not a problem for small graphs, for large
graphs there may be an issue, taking into account that many
queries with potentially different source nodes may be run-
ning concurrently. An alternative is to use preprocessing on
G in order to efficiently support shortest path queries. How-
ever, usually these techniques require superlinear additional
space and significant preprocessing time. Since we are in-
terested in solutions with linear additional space we do not
elaborate more in these alternatives.

Lemma 3.4. If the Gomory-Hu tree is used for sorted ac-
cesses, and β(s) is the number of nodes scanned through ex-
pansions in the tree, then the running time of TAG-III is given
by:

O (mg log ng + ng log ng + β(s) log nh)

Proof. The result follows by considering that expansions
in T (H) are performed by means of a heap, and that a one-
to-all shortest path is executed on G.



3.4 TAG-IV
The main property of the previously studied algorithms is

that sorted accesses are performed to one of the two graphs,
whereas random accesses are performed on H for maxflow
computation (for TAG-I, TAG-II algorithms) and on G for short-
est path computation (for TAG-III algorithm). A natural ex-
tension is to consider a more general scheme, where a syn-
chronized traversal is used to control sorted and random
accesses. Algorithm TAG-IV, described in the sequel, does
exactly this.

TAG-IV works as the threshold algorithm (TA) proposed
in [8]. More specifically, a buffer of k slots is maintained
hosting the k best nodes determined so far. In each sorted
access, two expansion operations are performed, one in G
and one in T (H). If different nodes are retrieved, then two
random accesses are performed to fill-in the missing values,
one in G to compute the shortest path distance and one in
T (H) to compute the maxflow distance. If the score of the
newly discovered nodes is better than the k-th best score
found in the buffer, then a substitution is performed, oth-
erwise the buffer remains as it is. Then, a threshold th is
computed by computing the scoring function for the values
seen in the last sorted access. If all scores in the buffer are
better than the current threshold, then the algorithm termi-
nates since it is not possible to improve the results further.
Otherwise, another sorted access is performed, a new value
for the threshold is determined and the algorithm continuous
as previously. The following lemma follows from the previ-
ous discussion, where γ(s) is the number of sorted accesses
performed by the algorithm.

Lemma 3.5. If γ(s) is the number of sorted accesses per-
formed, then the running time of TAG-IV is given by:

O (mg log ng + ng log ng + γ(s) log nh)

TAG-IV is the most general algorithm since in addition to
the flexibility regarding the synchronization of sorted and
random accesses, it can be adapted to operate as any of the
previously studied algorithms. The pseudocode of TAG-IV is
given in Figure 7.

Algorithm TAG-IV (s, k, G, H)
Input. G, H: input graphs, s: source, k: num of results
Output. Ak: k vertices with the best scores

1: execute a one-to-all shortest path on G starting at s;
2: init priority queues; init Ak ← ∅
3: done ← false;
4: while (not done)
5: v = get the next best node of G; /* sorted access */
6: u = get the next best node of T (H); /* sorted access */
7: compute sp(u, s) and mf(v, s); /* random accesses */
8: compute score(v) and score(u);
9: if (score(v) < largest score in Ak) then update Ak;
10: if (score(u) < largest score in Ak) then update Ak;
11: threshold ← sp(v, s) · mf(u, s);
12: if (all values in Ak < threshold) then done ← true;
13: return Ak;

Figure 7: Outline of TAG-IV algorithm.

4. PERFORMANCE EVALUATION
All algorithms are implemented in C++ and all exper-

iments have been performed on an Intel Core Duo @ 2.2
GHz, with 2GB RAM running Windows Vista. The per-
formance evaluation study is based on real-life graph data
sets, as well as on synthetically generated ones. To simplify
the experimentation process, in each experiment the same
graph is being used as G and H (i.e., H is a copy of G). The
synthetic graphs are basically used to have control upon the
basic parameters of the graph, such as order, size and de-
gree sequence, towards investigating performance by varying
these parameters. Two types of synthetic graphs have been
used:

• Random graph (RA), which is generated based on the
Erdõs-Rényi model by fixing the number of vertices
and then by deciding the existence of each edge with
probability p.

• Power-law graph (PL), where node degrees follow a
power law distribution [9]. More specifically, the prob-
ability that a node has degree deg is proportional to
deg−ε, where ε is the power-law exponent, which is
usually set between 1.5 and 3. We have used the
GenGraph tool to generate power-law graphs, which
is based on the work reported in [29].

We have used several real-life graphs from different appli-
cation domains. The data sets are summarized in Table 2
and are briefly described as follows:

• The Gene Expression (GE) graph represents coexpres-
sion of human genes. Each vertex corresponds to a
gene and an edge between two genes denotes a high co-
expression level. In [31] the coexpression level between
two genes vi and vj , denoted by ri,j , is measured by
using the minimum of the absolute values of leave-one-
out Pearson correlation coefficient. Then, statistics are
used to determine the p-value of a coexpression. An
edge is formed between the genes if the p-value is less
than a specified threshold (usually 0.01).

• The San Francisco (SF) graph represents the road net-
work of San Francisco. Vertices correspond to road
intersections and edges correspond to connections be-
tween intersections. Multiple edges between vertices
have been removed.

• The Web Links (WL) graph, used in [2], containing
web links in the domain nd.edu (University of Notre
Dame). For the purposes of our work, the graph has
been converted to an undirected one, by ignoring link
directionality and loops that may exist.

• The Reuters News (RN) graph is based on all stories
released during 66 consecutive days by the news agency
Reuters concerning the attack of September 11. The
vertices of RN are terms and there is an edge between
two terms u and v iff they both appear in the same sen-
tence. We have used the largest connected component
of the network containing 13,308 nodes and 148,045
edges.

• The Enron Emails (EE) graph contains information
regarding email messages. There is an edge between
nodes v and u if there was at least a message exchange



Graph #nodes #edges min degree max degree avg degree availability

Reuters News (RN) 13,308 148,035 1 2265 22.24 http://vlado.fmf.uni-lj.si/pub/networks/data/
Microarray (MA) 8791 314,816 1 409 71.62 thanks to Xifeng Yan [31]
San Francisco (SF) 174,956 221,802 1 7 2.54 http://www.rtreeportal.org
Web Links (WL) 325,729 1,497,135 1 10,721 9.19 http://vlado.fmf.uni-lj.si/pub/networks/data/
Enron Emails (EE) 36,692 367,662 1 1385 11.57 http://snap.stanford.edu/data/index.html
Co-Authors (CA) 18,772 396,160 1 504 22.53 http://snap.stanford.edu/data/index.html

Table 2: Real-life graphs from different domains used in performance evaluation.
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Figure 8: Running time (sec.) vs k for real-life graphs.
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Figure 9: Number of sorted accesses vs k for real-life graphs.

between them. This data set has been also used in [22]
to explore graph properties over time.

• The Co-Authors (CA) graph has been extracted from
arXiv and represents scientific collaborations between
authors regarding papers submitted to Astro Physics
area. There is an edge between authors u and v iff
they both appear as co-authors in at least one paper.
This data set has been also used in [22].

In all experiments, the proximity measure between nodes
is expressed by the product of the shortest path and the
maxflow distance. Extensions for other proximity measures
are discussed briefly in the next Section 5. In the first series
of experiments, we compare the performance of the algo-
rithms by executing proximity queries on the real-life graphs,
modifying the number of proximal nodes k. The results are
illustrated in Figure 8, which shows the average running
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Figure 10: Running time (sec.) vs k for Erdõs-Rényi random graphs.
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Figure 11: Running time (sec.) vs k for power-law graphs.

time of 200 queries. For each run, a different source node
is selected randomly. As expected, TAG-I is inferior to the
other approaches, since it does not use any kind of prepro-
cessing on the input graphs. More specifically, TAG-II shows
the best overall performance regarding running time, being
more than an order of magnitude more efficient than the
baseline algorithm. Moreover, TAG-II is consistently more
efficient than TAG-III and TAG-IV. The main reason for this
behavior is that maxflow computations are performed very
efficiently by using the Gomory-Hu tree, whereas sorted ac-
cesses performed for shortest path computations are fast.
On the other hand, TAG-III performs sorted accesses on the
Gomory-Hu tree, and executes a one-to-all shortest path
computation which is responsible for the major part of the
running time. Regarding the relative performance of TAG-III

and TAG-IV, in some cases the two algorithms have similar
running times (e.g., Figure 8(b)), in some cases TAG-III out-
performs TAG-IV (e.g., Figure 8(d) and (e)) and finally in
some other cases TAG-IV is faster than TAG-III (e.g., Figure
8(a, (c) and (f))). Another observation is that all algorithms,
except TAG-I, show excellent scalability with respect to the
number of the requested proximal nodes.

Regarding the previous results, Figure 9 shows the num-
ber of sorted accesses vs the parameter k for three real-life
graphs, namely Reuters News, Gene Expression and Enron
Emails. The number of sorted accesses performed is an im-
portant cost factor, since it gives an indication regarding
the performance of the algorithms. Algorithm TAG-I is not
shown because the number of sorted accesses is identical to
that of TAG-II. As observed, TAG-III is outperformed by both

TAG-II and TAG-IV, since it requires a significant number of
sorted accesses before the thresholding criterion is satisfied.
The explanation for this behavior is that sorted accesses are
performed on the Gomory-Hu tree. Since for n nodes there
are only n-1 different maxflow values between node pairs,
meaning that maxflow values increase slowly, which delays
the satisfaction of the threshold. On the other hand, TAG-II

and TAG-IV manage to keep the number of sorted accesses
low. In some cases TAG-IV outperforms TAG-II whereas in
other cases TAG-II is better (see Figure 9).

In the sequel, we study the performance of the algorithms
for the synthetic networks. Figure 10 shows the running
time vs k for Erdõs-Rényi random graphs with various or-
ders and sizes. Figure 10(a) contains the results for 20,000
nodes with p=0.01 and around 1M edges. In Figure 10(b)
we give the results for 50,000 nodes with p = 0.01 contain-
ing approximately 6.5M edges, whereas Figure 10(c) shows
the results for 100,000 nodes with p = 0.001 containing ap-
proximately 2.7M edges. Moreover, Figure 11 shows the re-
sults for graphs with a power-law degree distribution. Again,
the generated graphs contain 20K, 50K and 100K nodes re-
spectively whereas the number of edges are 1M, 2.5M and
5M. The power-law exponent was set to 2.3 in all cases.
We observe the same performance in both Figures 10 and
11. More specifically, TAG-II remains the most efficient al-
gorithm, whereas TAG-III and TAG-IV show a similar perfor-
mance (with a small lead for TAG-IV). Again we observe the
excellent scalability of the algorithms. In fact TAG-II, TAG-III

and TAG-IV remain almost unaffected by increasing k up to
500. In all cases tested, TAG-II shows the best performance
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Figure 12: Running time (sec) vs number of nodes.

in terms of running time.
The last experiment shows the running time for answer-

ing proximity queries with k = 100, by increasing the num-
ber of graph nodes in the case of power-law degree distri-
butions. The corresponding results are given in Figure 12,
where the number of nodes varies from 10K to 100K, keeping
the power-law exponent fixed at 2.3. As previously, the fig-
ure shows the average running time of 200 proximity queries.
Notice that TAG-I is not shown, because of the significant dif-
ference in comparison to the other algorithms. TAG-II shows
the best scalability in running time by increasing the number
of nodes, being several times faster than TAG-III and TAG-IV.

In conclusion, TAG-II shows the best overall performance,
both regarding the running time and the number of probes.
The materialization performed by TAG-III and TAG-IV does
no pay off, since it is expected that the network expansion
will terminate without the requirement to check all nodes.
On the other hand, algorithms TAG-III and TAG-IV require a
one-to-all shortest path computation which is more expen-
sive than the consecutive network expansions used by TAG-II.
Note that these observations hold for the case where shortest
paths and maximum flows are used as the available distance
measures. More investigation is needed in order to test the
performance of the methods when other distance measures
are applied (e.g., random walks) and also when more than
two graphs are given in the input.

TAG-I TAG-II TAG-III TAG-IV

sorted access sp yes yes no yes
sorted access mf no no yes yes
random access sp no no yes yes
random access mf yes yes no yes
graph preprocessing no yes yes yes
materialization no no yes yes
adaptivity no no no yes

Table 3: Summary of algorithm characteristics.

Among the studied algorithms, TAG-IV is the most general
one, since it can operate as any of the other algorithms and
moreover, may work as an adaptive technique, by changing
its strategy according to the problem parameters. On the
other hand, the rest of the algorithms do not show any flex-
ibility since their query processing strategy is fixed: they
perform sorted access on one graph and probe the other.
TAG-IV is the only algorithm that may accept optimizations
regarding the scheduling of probes, since it combines sorted
and random accesses on the input graphs. This means that

according to the processing cost of the distance measures
and statistics collected at runtime, a different synchroniza-
tion between sorted and random accesses may be proven
more efficient. Table 3 shows the basic characteristics of the
studied algorithms.

5. EXTENSIONS
In this section, we investigate briefly two query processing

alternatives that are easily supported by the TAG family of
algorithms. More specifically, we center our attention to (a)
metric-based query processing, where the scoring function
used in proximity computation respects the metric proper-
ties and (b) skyline-based query processing where there is no
need for a scoring function.

5.1 Metric-based proximity computation
An important property of the proposed framework is that

it provides flexibility regarding the scoring function that may
be used to combine the different distance measures. The
previous discussion was based on the fact that the scoring
function is the product of the two distances, providing AND
semantics. It is not hard to prove that generally the product
of distances does not respect the metric properties, and more
specifically, triangular inequality. However, since triangular
inequality is the basic search mechanism in metric access
methods, in many cases it is highly appreciated. To support
this property, alternative distance functions are required.

When multiple distance measures are available, they may
be combined by using a linear combination (i.e., weighted
sum). In our case, the shortest path and maximum flow
measures may be combined as follows:

F (s, t) = w1 · sp(s, t, G) + w2 · (n−mf(s, t, H)) (1)

where w1 and w2 are weights, that usually 0 6 w1, w2 6 1,
and w1+w2=1. As the following lemma shows, this distance
function respects all metric space properties.

Lemma 5.1. The distance function F (s, t) as defined in
Equation 1 respects the metric space properties (positivity,
symmetry and triangular inequality).

Proof. It is not hard to prove that if two or more dis-
tance measures respect the metric space properties then so
does any linear combination of them. Based on this re-
sult, and taking into consideration that the distance mea-
sure sp(s, t, G) respects the metric space properties in undi-
rected graphs, all we have to prove is that the measure
n − mf(s, t, H) satisfies positivity, symmetry and triangu-
lar inequality. Let G be an undirected graph and T (G) a
Gomory-Hu tree of G. Since G is flow-equivalent to T (G),
the maxflow in G may be computed by using the maxflow in
T (G). Thus, in the sequel we focus on T (G). Let v, u be two
nodes of T (G). It is evident that if v 6= u then the maxflow
value is non-zero, thus positivity is satisfied. Moreover, since
we deal with an undirected graph, the maxflow from v to u
equals the maxflow from u to v, thus symmetry is also satis-
fied. It suffices to prove that triangular inequality also holds,
i.e., n − mf(v, u, G) 6 n − mf(v, x, G) + n − mf(x, u, G),
∀v, u, x. Let p(v, u) denote the unique path joining v and
u in T (G). By the definition of T (G), the maxflow be-
tween v and u is given by the edge with the minimum
weight contained in p(v, u). Therefore, since maxflow val-
ues are subtracted from n, the maxflow distance between v
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x relative to nodes v and u in a Gomory-Hu tree.

and u is given by the edge with the maximum weight con-
tained in p(v, u). For convenience we set MF (v, u, G) =
n −mf(v, u, G). We will prove that for any node triplet v,
u and x such that v 6= u, x 6= v and x 6= u it holds that:

MF (v, u) 6 MF (v, x) + MF (x, u) (2)

Figure 13 depicts all possible cases regarding the location
of node x in relation to v and u. We examine each case sep-
arately, showing that in any case triangular inequality does
hold. Let wmax denote the maximum weight along the path
p(v, u).

Case 1. In this case, which is depicted in Figure 13(a), node
x lies on the unique path p(v, u) joining v and u. Without
loss of generality, assume that the maximum weight appears
in the path p(v, x). Therefore, the inequality MF (v, u, G) 6
MF (v, x, G)+MF (x, u, G) is satisfied since by substitution
we get wmax 6 wmax + C, where C is the maximum weight
along the path p(x, u), which is always true since all weights
are positive numbers.

Case 2. This case, shown in Figure 13(b), assumes that
node x lies in a tree branch emanating from one of the nodes
of p(v, u) (node y in our case). Without loss of generality, we
assume that the maximum weight between v and u appears
in the path p(v, y). Thus, the inequality MF (v, u, G) 6
MF (v, x, G)+MF (x, u, G) becomes wmax 6 MF (v, x, G)+
MF (x, u, G). However, the value of MF (v, x, G) is at least
wmax, since the subpath p(x, y) may contain an edge with
a weight larger than wmax, and this means that again the
inequality is satisfied.

Case 3. In this case, shown in Figure 13(c), node x lies in a
subtree emanating from node u. Since the path p(x, v) con-
tains wmax it is evident that MF (v, u, G) 6 MF (v, x, G) +
MF (x, u, G), since MF (v, u, G) = wmax and MF (v, x, G) >
wmax.

Case 4. It is symmetric to the previous case, and thus,
we do not elaborate.

Therefore, in any case triangular inequality is satisfied,

which means that the maxflow distance respects all metric
space properties. Therefore, metric access methods may be
used to organize the nodes, which is important consider-
ing the size of graphs required by modern applications. It is
noted that there is no restriction on the selection of the scor-
ing function, except from the requirement that the function
must be monotone, in order for the threshold algorithms to
work correctly.

5.2 Skyline-based proximity computation
In several cases, the selection of an appropriate scoring

function is difficult. In such a case, an alternative proximity
computation method may be applied which does not require
the use of a scoring function and it is based on the concept
of Pareto dominance. The main idea is to return to the user
the nodes, called skyline nodes, that are not dominated by
other nodes. If s is the source node, then each node v is rep-
resented as a record r(v) =< v1, v2 >, with two attributes v1

and v2 corresponding to the shortest path and the maxflow
distance respectively. A node v dominates node u (v ≺ u),
iff v is at least as good as u in every dimension, and it is
strictly better that u in at least one of them, formally v ≺ u
⇐⇒ ∀i, vi 6 ui ∧∃j : vj < uj . Therefore, the skyline nodes
corresponding to the source node s is given by SKY (s) =
{v : @u, u ≺ v}.

According to the previous discussion it is evident that our
techniques can handle proximity computation even if there
is no scoring function provided. This feature is extremely
useful in cases where the selection of a scoring function is
difficult. The set of skyline nodes is easily provided by the
proposed algorithms by performing minor modifications to
the threshold-based algorithms. An important issue that
must be considered in this case is to prevent result overflow,
since the number of different proximity measures or input
graphs is directly related to the number of skyline nodes.

6. CONCLUSIONS
Proximity computation in graphs is an important problem

in graph mining. In this work, we introduce threshold-based
algorithms to compute the most proximal nodes around a
source node s by using multiple graph instances and mul-
tiple distance measures. More specifically, we have focused
on the synergy between shortest path and maximum flow to
derive intuitive proximity measures. Four algorithms have
been studied. The first one, TAG-I enables proximity compu-
tation without the need for preprocessing, which is an im-
portant property for time-evolving data. Algorithm TAG-II

may be applied if preprocessing is allowed to the graph where
maxflow operations are applied and provides significant per-
formance boost. TAG-III changes the way sorted accesses are
performed by executing expansions on the Gomory-Hu tree
of H and random accesses on G. Finally, TAG-IV performs a
synchronized traversal by executing sorted accesses on G and
T (H) and filling missing values by executing shortest path
computations on G and maxflow computations on T (H).
In general, TAG-II is the most efficient variation regarding
running time, followed by TAG-IV in most cases. However,
TAG-IV requires significantly less probes, and therefore is
very attractive for middleware-based proximity computa-
tion. There are several directions for future work:

• An interesting extension is to use randomized algo-
rithms for the computation of shortest path and maxflow



distances, to speed-up processing. Randomization may
be applied either on the strategy of performing sorted
and random accesses or on the computation of maxflow.
This could be a nice alternative when no preprocess-
ing is allowed to the input graphs, meaning that TAG-I

is the only alternative. The loss in accuracy should
be bounded in order to have probabilistic guarantees
(i.e., the result must be valid with high probability)
regarding effectiveness.

• A second direction is the investigation of the I/O and
communication cost incurred in distributed process-
ing of graph proximity queries. Reducing the I/O
cost requires efficient and effective graph partitioning
schemes to break the graph in disk pages. Reduc-
ing the communication cost requires careful schedul-
ing of sorted and random accesses when graphs are
distributed in multiple servers.

• Finally, a challenging problem is the adaptation of the
algorithms for dynamic graphs, where insertions and
deletions of nodes and edges are possible. In such a
case, all algorithms, except TAG-I, may face problems
because they require preprocessing. The challenge is
to adapt the algorithms in the dynamic case without
sacrificing result accuracy.
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