
CONTINUOUS RANGE QUERY PROCESSING
FOR NETWORK CONSTRAINED MOBILE OBJECTS

Dragan Stojanovic, Slobodanka Djordjevic-Kajan
Department of Computer Science, University of Nis

Aleksandra Medvedeva 14, 18000 Nis, SERBIA and MONTENEGRO
{dragans, sdjordjevic}@elfak.ni.ac.yu

Apostolos N. Papadopoulos, Alexandros Nanopoulos
Department of Informatics, Aristotle University

54124, Thessaloniki, GREECE
{apostol, alex}@delab.csd.auth.gr

Keywords: Mobile objects, location based services, continuous range query, query processing.

Abstract: In contrast to regular queries that are evaluated only once, a continuous query remains active over a period of
time and has to be continuously evaluated to provide up to date results. We propose a method for continuous
range query processing for different types of queries, characterized by mobility of objects and/or queries
which follow paths in an underlying spatial network. The method assumes an available 2D indexing scheme
for indexing spatial network data. An appropriately extended R∗-tree provides matching of queries and objects
according to their locations on the network or their network routes. The method introduces an additional pre-
refinement step which generates main memory data structures to support efficient, incremental reevaluation of
continuous range queries in periodically performed refinement steps.

1 INTRODUCTION

Advances in wireless communication technologies,
mobile positioning and Internet-enabled mobile de-
vices have given rise to a new class of mobile appli-
cations and services. Location-based services (LBS)
deliver geo-information and geo-processing services
to the users according to their current location, or
locations of the objects of their interests. Such ser-
vices, like automatic vehicle location, fleet manage-
ment, tourist services, transport management, traffic
control and digital battlefield are all based on mo-
bile objects and the management of their continuously
changing location data.

In several applications, the object movement is
constrained by an underlying spatial network, i.e., ob-
jects can not move freely in space, and their position
must satisfy the network constraints. Network con-
nectivity is usually modelled by a graph representa-
tion, comprising a set of nodes (intersections) and a
set of edges (segments). Depending on the applica-
tion, the graph may beweighted(a cost is assigned
to each edge) anddirected(each edge has an orienta-
tion).

Several types of location-dependent queries are sig-
nificant in LBS, such as range queries,k-nearest
neighbor (k-NN) queries, reverse neighbor queries,
distance joins, closest pair queries and skyline

queries. In this paper, we address the problem of pro-
cessing continuous range queries over mobile objects,
whose motion is constrained by a spatial network.
The query range represents the user-selected area, the
map window, the polygonal feature, or the area speci-
fied by the distance from a reference point of interest.
In contrast to regular queries that are evaluated only
once, a continuous query remains active over a period
of time. A major challenge for this problem is how
to provide efficient processing of continuous queries
with respect of CPU time, I/O time and main memory
utilization.

The rest of the article is organized as follows. The
next section presents related work in the area and de-
scribes our contributions. Section 3 describes in de-
tail the proposed framework, analyzing the methodol-
ogy, the data structures and the query processing algo-
rithms. Section 4 presents the performance evaluation
results, whereas Section 5 concludes the article.

2 RELATED WORK AND
CONTRIBUTION

Continuous spatiotemporal query processing in a
location-aware environment is an active area of re-
search, resulting in the proposal of many query pro-
cessing methods, techniques and indexing schemes.
In (Prabhakar et al., 2002), velocity constrained in-



dexing and query indexing (Q-index) has been pro-
posed for efficient evaluation of stationary continuous
range queries. According to the proposed method in-
memory data structures and algorithms are developed
and presented in (Kalashnikov et al., 2004). By in-
dexing queries, and not mobile objects, the Q-index
method avoids frequent updates of the index structure
and thus expensive maintenance of this structure.

The MQM method presented in (Cai et al., 2004)
focuses on stationary continuous range queries. It is
based on the partitioning the query space into rect-
angular sub-domains, and the assignment of the resi-
dent domain to each mobile object. A mobile object
is aware only of the range queries intersecting its res-
ident domain, and reports its current location to the
server only if it crosses the boundary of any of these
queries.

Gedik and Liu in (Gedik and Liu, 2004) propose
a method and a system for distributed query process-
ing, called Mobieyes. Mobieyes ships some part of
the query processing to the mobile clients while the
server mainly acts as a mediator between mobile ob-
jects. The method tries to reduce the load on the
server and save communication costs between mobile
objects and the server. In the paper (Gedik et al.,
2004) the authors propose a scheme called Motion
Adaptive Indexing (MAI) which enables optimization
of continuous query evaluation according to the dy-
namic motion behavior of the objects. They use the
concept of motion sensitive bounding boxes (MSB)
to model and index both moving objects and moving
queries.

Mokbel et al. in (Mokbel et al., 2004) present
SINA, a server-side method based on shared execu-
tion and incremental evaluation of continuous queries.
Shared execution is achieved by implementing query
evaluation as a spatial join between the mobile objects
and the queries. Incremental evaluation means that
the query processing system produce only the posi-
tive or negative updates of the previously reported an-
swer, not the complete answer for every evaluation of
the query. Both the object and query indexes are im-
plemented as disk based regular grids.

Hu et al. (Hu et al., 2005) propose a generic frame-
work for monitoring continuous spatial queries over
moving objects, both range andk-NN queries. Two
index structures for indexing the past trajectories of
mobile objects in networks have been proposed.

The Fixed Network R-tree (FNR-tree) (Frentzos,
2003) consists of a top level 2D R-tree to index
the edges of the network, whose leaf nodes contains
pointers to 1D R-trees indexing the time interval of
each objects movement within the line segments of
the network. Almeida and Guting in (de Almeida and
Guting, 2005) propose the MON-tree, to manage ob-
jects moving in a spatial network. They describe two
network models (edge and route oriented) that can be

indexed by the MON-tree. Both approaches deal with
past positions of objects.

In this work, we propose a framework for continu-
ous range query processing for objects moving on net-
work paths. The framework introduces the methodol-
ogy, the data structures and the query processing algo-
rithms for processing continuous range queries over
mobile objects, when queries may be both stationary
and mobile. Our methodology is based on an exten-
sion of R∗-tree index, that indexes network data in
main memory. It introduces an additional step in tra-
ditional spatiotemporal query processing strategy (fil-
ter refinement), namely, the pre-refinement step. The
filter step selects the candidate objects according to
fulfillment of the spatial query condition using an ex-
tended R∗-tree index on the spatial network. The pre-
refinement step is performed after the filter step, to
further refine the mobile objects obtained by the filter
step and to build the main memory data structures to
support periodical and incremental refinement steps.
The filter and pre-refinement steps are performed only
once, unless the reference query object changes its
underlying network segment. The refinement step is
performed periodically by processing in-memory data
structures generated by the pre-refinement step. To
the best of our knowledge, there is no reported work
on query processing of continuous range queries over
mobile objects whose motion is constrained by a spa-
tial network.

3 PROPOSED FRAMEWORK

The methodology for processing continuous range
queries in a mobile environment is developed as a
part of ARGONAUT, a service framework for mo-
bile object data management (Predic and Stojanovic,
2005). We base our approach on the application sce-
nario appropriate in LBS for monitoring and tracking
mobile objects. In this scenario, users have wireless
devices (e.g., mobile phones or PDAs) that are online
via some form of wireless communication network.
We assume that users can obtain their positions using
Global Positioning System (GPS) technology. A set-
ting is assumed in which a central database at the LBS
server stores a representation of each mobile object’s
current position. Each mobile object stores locally
its position assumed by the server. Then, an object
updates the database whenever the deviation between
its actual position (as obtained from a GPS device)
and the local copy of the position that the server as-
sumes exceeds the uncertainty threshold. The mobile
objects move along the paths in an underlaying spa-
tial network. In order to perform tracking with as few
updates as possible, the LBS server matches the po-
sition received from the mobile object to the network



segment, by a map matching technique. Knowing the
mobile object’s speed and the time of the position up-
date, the server determines the current position of the
object till the next intersection (node) assuming that it
moves at a constant speed. Reduction of updates re-
duces communication between clients and the server,
as well as server side update processing.

3.1 Methodology Overview

The ARGONAUT methodology employs an incre-
mental continuous query evaluation paradigm. The
methodology is based on a main memory R∗-tree in-
dex structure and network connectivity graph struc-
ture, which support the filter step of query process-
ing algorithm and the map matching procedure. The
methodology introduces an additional step in query
processing scheme, a pre-refinement step, that creates
additional main memory data structures and support
subsequent incremental refinement steps. Since both
objects and queries move on a spatial network, their
spatial properties (location or partial route) are in-
dexed within the same index structure. The leaf nodes
of the R∗-tree is appropriately modified to enable in-
dexing of both mobile objects and queries. The leaf
node entry of the general R* tree (Beckmann et al.,
1990)has the form (IDseg, MBR), whereIDseg
is an unique identifier of the network segment, and
MBR is its minimal bounding rectangle. The entry is
extended by two new elements and is represented as a
quadruple (IDseg, MBR, Olist, Qlist). They con-
tains the pointers to the list of objects IDs (Olist) and
queries IDs (Qlist) that move along or reside on that
network segment.

The connectivity graph of the spatial network
is maintained by the Network Connectivity Table
(NCT) which stores information about the connectiv-
ity of network segments. A NCT entry is described
as (IDseg, ptrRTEntry, segLength, startCon,
endCon), where ptrRTEntry is the pointer to
the R∗-tree leaf node entry for this segment and
segLength is the length of the segment. The ta-
ble is indexed on theIDseg attribute. The elements
startCon and endCon are pointers to the lists of
records described as (IDseg, dir), where IDseg
represents the ID of the segment connected to the
start/end node anddir is the direction of that seg-
ment in the connection. The NCT is maintained to
improve the updating of the index structure when mo-
bile object/query issue a location update after chang-
ing its network segment. The NCT also improves
map matching performed at the server in order to find
network segment according to the current location
of a mobile object. Also, the connectivity structure
maintained in NCT is more effective for LBS queries
(range,k-NN, etc.) over objects on the spatial net-
work, where distance between two objects is not de-

termined in Euclidean space (Euclidean distance), but
as network distance.

The insertion of the object into the index structure
and the generation of the object list attached to the leaf
node entries are performed according to the following
rules:

• A stationary object ID is inserted in theOlist at-
tached to the leaf node entry of the R∗-tree index
that corresponds to the network segment at which
such object resides,

• A mobile object ID is inserted in theOlist attached
to the leaf node entry of the R∗-tree index that cor-
respond to the network segment along which the
object currently moves (the segment is the known
route of the mobile object).

The insertion of the query in the same index struc-
ture is performed according to following rules:

• A stationary range query is inserted in eachQlist
attached to the leaf node entry of the R∗-tree index
if its range overlaps the MBR of the corresponding
network segment.

• A mobile range query is inserted in eachQlist at-
tached to the leaf node entry of the R∗-tree index
if its known route overlaps with the MBR of the
network segment. The known route of the mobile
query is defined by the network segment of the ref-
erence mobile object and the query range.

The index structure performs the matching between
mobile objects and mobile/stationary queries accord-
ing to their spatial relations and fulfillment of the spa-
tial condition of a query. It enables the calculation
of the initial result set of the query (filter set). Since,
the index structure maintains only the spatial proper-
ties of objects and queries, it is not selective enough,
and the initial result set contains false positive results.
The pre-refinement step refines the initial query result
set with regard to temporal information of objects and
queries motion, as well as their exact geometries. The
pre-refinement step creates the data structures in main
memory to support incremental refinement steps.

3.2 Access Methods

The two tables and associated lists are created in
main memory by the pre-refinement step. Contin-
uous Range Query Table (CRQT) stores informa-
tion regarding continuous queries. A CRQT entry
is described as (QID, OID, range, resultSet) and
stores information regarding continuous queries. The
table is indexed on theQID attribute which is the
unique query identifier.OID is the identifier of the
reference object of the query andrange defines the
shape of the spatial query range around the reference
query object.resultSet is the initial query result set
obtained by the filter step with additional, temporal



information about satisfaction of a query condition.
The initial result is a list of elementsCQResult de-
fined as (RID, OID, resPeriod, status), where
RID is the result identifier,OID is the unique
identifier of the object which is the result of the
query during periodresPeriod, while its status in
the query result is described by thestatus attribute.
The values of thestatus attribute are INITRESULT,
NEW RESULT, OLD RESULT, NORESULT. In the
simplified case, when the resulting period is single
time period, the resulting object, during its motion
and/or query motion, change all status values sequen-
tially. Thus, an object has INITRESULT status when
it will be the result of the query in some period(s) in
the future. The status NEWRESULT is associated
to an object, when it becomes the new result of the
query. The status OLDRESULT is associated to an
object when it is the member of the current query re-
sult, as well as was a member of the query result in
the previous evaluation of the query. An object has
status NORESULT when it is not a member of the
current query result, nor will be in the future, but was
the member of previous query results. Due to time
progress, any resulting object changes its status in a
strict sequence [INITRESULT→ NEW RESULT→
OLD RESULT]n→ NO RESULT, where[...]n indi-
cates that the status sequence can be repeated if the
resulting period of an object is a multi period.

For each mobile object in the system, an in-
memory Mobile Object Table (MOT) is created and
maintained. The mobile object entry is described as
(OID, loc, time, speed, route, querySet), where
OID is the unique mobile object identifier,loc is the
last received location,time is the time instant of the
location update andspeed is the last received speed.
The route represents the pointer to the ordered list
of records described as (IDseg, dir) which is the
known route of the mobile object. When the route
(whole or partial) is not known in advance, the route
list contains only one element denoting the current
network segment of the mobile object. ThequerySet
attribute represents the list of queries in which such
object participates, either in a query result, or as a ref-
erence object of a query. Each query in this list is
represented by aQueryRef element which contains
two attributes:QID, the query identifier andresID,
the reference to the appropriateCQResult element
of this query maintained for the mobile object. If a
mobile object is the reference object of a query, this
reference is set to NULL.

3.3 Algorithms

The periodic, incremental evaluation of continuous
range queries is performed by scanning and examin-
ing the CRQT, while location update for each mo-
bile object requires scanning and updating both ta-

bles. The algorithms for creating these tables are
slightly different for the cases of stationary and mo-
bile continuous queries. The input argument of the
algorithms is the set of mobile object OIDs that rep-
resent the potential query results obtained by the filter
step, by the examination of the R∗-tree index. The
pre-refinement algorithm is performed on exact spa-
tial and temporal geometries of mobile objects and
mobile/stationary queries and creates necessary data
structures. The algorithm for stationary queries over
mobile objects is given in Figure 1.

Algorithm Pre-refinement step for stationary queries over mobile objects

Input : filterSet: a set of OIDs

1. add new entrysmquery in CQRT;

2. for eachOID in filterSet

3. if (not existmo in MOT with such OID)then
4. add new entrymo in MOT;

5. else
6. find entrymo in MOT;

7. end if
8. if mo.route() intersectssmquery.range then
9. rp ∈ TimePeriod andrp = when (mo.loc

within smquery.range);

10. if rp.end > currentT ime then
11. cqres← new CQresult(RID, mo.OID, rp,

INIT RESULT);

12. smquery.resultSet.add(cqres);

13. qr← new QueryRef(smquery.QID, cqres.RID);

14. mo.querySet.add(qr);

15. end if
16. end if
17. end for

Figure 1: Pre-refinement step for stationary query - mobile
objects.

After updating the CQRT and MOT tables, the al-
gorithm examines the spatial relationintersects on a
mobile objects route (the geometry of the current net-
work segment) and the stationary query range. This
step enables removing false spatial positives obtained
by the filter step. For those objects satisfying the spa-
tial relation intersects, the time period (multi time
period) in which the mobile object is (was, will be)
within the query range is calculated, based on cur-
rent motion parameters (speed, route) of the mobile
object. The operators for spatiotemporal geometric
calculations and topological relations in space+time
(such asintersects, within, when, etc.) are de-
veloped and integrated in the ARGONAUT mobile
object data management framework (Stojanovic and
DjordjevicKajan, 2003). For objects whose result-
ing period ends somewhere in the future, the new
CQResult andQueryRef elements are created and



added to the lists of corresponding CQRT and MOT
entries.

For the mobile query over mobile objects the algo-
rithm for the pre-refinement step is slightly different,
because the relationship between two moving objects
is not linear and it is impossible to exactly determine
the resulting period for each mobile object a poten-
tial result of the mobile query. Therefore, for mobile
queries, the spatial condition given in line 8 of the
previous algorithm is changed. Instead of examining
the query range in lines 8 and 9, the query route is
examined, which is determined as a buffer around the
query’s network segment defined by the range.

The refinement step is performed periodically and
evaluates the temporal query condition. It deter-
mines the final result set and the incremental result
in regard to the previous evaluation (refinement step),
which is sent to the mobile client issuing a continu-
ous query. The incremental result represents the set of
IncResult elements containing the OID of the object
and the Boolean attribute resUpdate indicating that
the object becomes the part of the result of the query
(true value), or that it is not the result any longer
(false value). The refinement step is performed for
all continuous queries active in the system, according
to the algorithm shown in Figure 2.

If a mobile object enters the query range several
times during its motion (the result period is a set of
time periods), when one period from the set is ex-
pired, the objects status is INITRESULT again, until
the beginning of the next time period. If the result
period of an object expires, the negative query result
update is generated and the corresponding element is
removed from the query result set. The refinement
step for the case of mobile queries over mobile ob-
jects must include an additional test of the spatial con-
dition on exact mobile object and query location, for
those objects that already satisfy the temporal condi-
tion. Thus, the line 4 of the algorithm in (Figure 2)
introduces an additional condition and becomes:
4. if cqres.resPeriod containscurrentT ime and

mo.currentLoc()within cq.currentRange()then

The functionscurrentLoc() andcurrentRange()
calculate the location/range of the mobile ob-
ject/query at the current time, given the last received
location, time and speed of the object/query refer-
ence object, as well as its current route (network seg-
ment). As mentioned previously, a mobile object
moves on its network segment with the last reported
speed. When its predicted location (obtained by the
currentLoc() function) differs form the exact location
by the specified threshold, the object must send lo-
cation, time and speed updates. Upon receiving up-
dates, the server must determine if the mobile ob-
ject changes its network segment using map matching
techniques on segments that are connected to the pre-

Algorithm Refinement step for stationary queries over mobile objects

Output : incResultSet, a set ofIncResult

1. for eachcq in CQRT

2. if cq.period containscurrentT ime then
3. for eachcqres in cq.resultSet

4. if cqres.resPeriod containscurrentT ime then
5. if cqres.status == INIT RESULTthen
6. cqres.status← NEW RESULT;

7. ir← new IncResult (cqres.OID, true);

8. incResultSet.add(ir);

9. else
10. cqres.status← OLD RESULT;

11. end if
12. else ifcqres.status == OLD RESULT;then
13. if cqres.period is aTimePeriodSet and

hasperiodsinthefuture then
14. cqres.status← INIT RESULT;

15. else
16. cqres.status← NO RESULT;

17. ir← new IncResult (cqres.OID, false);

18. incResultSet.add(ir)

19. removecqres from cq.resultSet;

20. end if
21. end if
22. end for
23. end if
24. end for

Figure 2: Refinement step for the set of stationary continu-
ous queries over mobile objects.

vious one using NCT. If the mobile object remains on
its network segment, the update algorithm scans the
pre-refinement data structures and updates the corre-
sponding MOT entry, as well as all CQRT entries of
the affected queries and their result sets using the sim-
ple expressions (Figure 3). If the mobile object leaves
its network segment and starts moving along a new
one, the pre-refinement data structures (querySets,
resultSets) related to the mobile object and the new
set of queries obtained by the new R∗-tree Qlist,
should be updated or new entries should be added ac-
cording to the algorithms for the pre-refinement steps
depicted in Figure 1. If a mobile object is also a
reference object of the mobile query, the new R∗-
treeOlists must be examined and the corresponding
querySets andresultSets should be updated.

The update of the result period of an object issuing
location and speed updates at a certain time instance
is based on the threshold valueut, previous speedvo,
the new speedvn, and the timetn of the new update.
The update function (lines 31 and 34 of Figure 3)
updates the resulting periodrp of a mobile object (or
every time period in the set of time periods) according
to the following formulae:



Algorithm Location/speed/network segment update of a mobile object

Input : newloc, newspeed, newtime of the mobile object and eventually

newseg obtained using map matching and NCT

1. updateMOT entry formo.OID;

2. mo.loc← newloc;

3. mo.speed← newspeed;

4. mo.time← newtime;

5. if mo change network segmentthen
6. mo.route.IDseg ← newseg;

7. removemo.OID from the oldOlist;

8. addmo.OID to the newOlist;

9. for eachcq in newQlist

10. if cq.QID exist inmo.querySet then
11. Update corresponding CQResult and QueryRef elements;

12. else
13. Add new CQResult and QueryRef elements;

14. end if
15. end for
16. if mo is a reference object for querycq.QID then
17. removecq.QID from the oldQlist;

18. addcq.QID to the newQlist;

19. for eachmo in newOlist

20. if mo.OID exist incq.resultSet then
21. Update corresponding CQResult and QueryRef elements;

22. else
23. Add new CQResult and QueryRef elements;

24. end if
25. end for
26. end if
27. else
28. for eachqr in mo.querySet

29. cq ← CRQ withqr.qid;

30. if qr.resEntry != NULL then
31. update(cq.resulSet, qr.resEntry);

32. else
33. for eachres in cq.resultSet

34. update(cq.resultSet, all);

35. end for
36. end if
37. end for
38. end if

Figure 3: Location/speed/network segment update of a mo-
bile object.

rp.start =
v0 · (rp.start− tc)± ut)

vn
+ tc

rp.end =
v0 · (rp.end− tc)± ut)

vn
+ tc

The uncertainty threshold value in this formula is
added if the mobile object is advanced in regard to
its predicted location, and it is subtracted if it is late
in regard to its predicted location. Thus, the system

provides an up to date and accurate result set for ev-
ery continuous range query it maintains, according to
location/speed updates of mobile objects.

4 PERFORMANCE STUDY

We have used the Network-based Generator of Mov-
ing Objects (Brinkhoff, 2002) to generate a set of
10000 mobile objects and 1000 mobile queries. The
input to the generator is the road map of Oldenburg
(a city in Germany). The road network consists of
2873 intersections and 3803 segments. The output of
the generator is a set of moving objects that move on
the road network of the given city. We choose some
objects randomly and consider them as reference ob-
jects and centers of square range queries. All the ex-
periments have been conducted on an Intel Pentium
IV CPU 3.0 GHz with 512 MB RAM running Win-
dows XP Professional. The page size is set to 4KB.
We have implemented the extended R∗-tree based
on the original implementation of (Beckmann et al.,
1990). ARGONAUT continuous query processing al-
gorithms and main memory data structures have been
implemented using Microsoft Visual Studio C++ and
the STL library. Our performance measures are: i)
the CPU time required for the pre-refinement step and
the creation of in-memory data structures, ii) the CPU
time for the refinement step and the generation of in-
cremental results and iii) the CPU time for updating
the main memory data structures upon receiving lo-
cation/speed/network segment update of a mobile ob-
ject. Since the performance for access and update
of R∗-tree which index network segments highly de-
pends on size and characteristics of the underlying
spatial network, we do not present the results of those
experiments.

We start our performance consideration using the
set of objects produced by the filter step, which are
the candidates for the final result set according to
their spatial characteristics, i.e., location and range
for the stationary queries and routes for mobile ob-
jects/queries. We perform the experiments for 10000
mobile objects and 1000 mobile (stationary) queries
and measure the average CPU time (in milliseconds)
necessary for the pre-refinement step of a continu-
ous query and the generation of the necessary data
structures in main memory for refinement steps which
are performed periodically and produce incremental
query answers (Figure 4). We vary the query range
from 0.004 to 0.8 of each dimension of the data space.

The experiments show that the pre-refinement step
of the query requires a very small amount of CPU
time (milliseconds). More specifically, for 10000
mobile objects and 1000 continuous range queries,
the pre-refinement step needs 4.12 milliseconds for



4.12

2.89

1.68

0.78
0.40.260.210.17 0.18

0

1

2

3

4

5

0.004 0.01 0.02 0.04 0.1 0.2 0.4 0.6 0.8

Query range

C
P

U
 t

im
e 

(m
se

c)


Figure 4: The CPU time for the pre-refinement step per
query for 10000 MO / 1000 queries.

queries whose query range represents 0.64 of the data
space. The average number of mobile objects per
query obtained in the filter step for different query
ranges is given in Figure 5.

5.312.67 14.23 44.68 222.67 780.06

2553.25

4711.74

6720.41

0

2000

4000

6000

8000

0.004 0.01 0.02 0.04 0.1 0.2 0.4 0.6 0.8

Query range

N
u

m
b

er
 o

f 
m

o
b

ile
 

o
b

je
ct

s 
o

b
ta

in
ed

 b
y 

fi
lt

er
 

st
ep



Figure 5: The average number of mobile objects obtained
in the filter step for 10000 MO / 1000 queries.

During the refinement step an access to the main
memory data structures and the examination of the
temporal part of the query condition are performed.
The refinement step is performed periodically, i.e.,
once everyT seconds. For each object in the result set
of the continuous query, the refinement step should
select those objects that constitute the current result
of the query as well as to generate the incremental
result in regard to the previous refinement step and
evaluation of the query. We examine the duration of
the refinement step for 1000 continuous queries over
10000 objects, using different query ranges. Figure
6 depicts the CPU time required for the incremen-
tal evaluation of 1000 stationary and mobile contin-
uous queries over mobile objects depending on query
range, according to the algorithm shown in Figure 2
and its extension for mobile queries.

When the mobile object (query) issues a loca-
tion/speed/segment update, the main memory data
structures should be updated appropriately, to reflect
the new location and the motion parameters of the
mobile object/query, as well as its new route (net-
work segment). According to the algorithm shown in

8.76 11.3 18.23
56.12

152.24
528.45

934.56 1530.2

0.610.53
0.95 1.4

4.89
13.86

43.89 79.2 113.55

7.11

0.1

1

10

100

1000

10000

0.004 0.01 0.02 0.04 0.1 0.2 0.4 0.6 0.8

Query range

C
P

U
 t

im
e 

(m
se

c)


Stationary Queries Mobile Queries

Figure 6: The CPU time needed for refinement of 1000 mo-
bile/stationary queries over 10000 mobile objects.

Figure 3, a mobile object should update the resulting
periods for all continuous queries in which it partici-
pates, according to its new location and new reported
speed. When a mobile object is the reference object of
a query (queries) the resulting periods of all results in
the set should be updated accordingly. The CPU time
required for updating the main memory data struc-
tures, for 10000 mobile objects and 1000 continuous
queries is presented in Figure 7. The CPU time shown
represents the average time per object needed for the
update of main memory data structures that preserves
the consistency of the result sets. If a mobile object
changes its underlying network segment, it is neces-
sary to update the main memory data structures re-
lated to this object, and the queries which may be af-
fected, according to the pre-refinement algorithm. In
this case it is necessary to perform the filter and the
pre-refinement step for each such object and generate
the newquerySets andresultSets structures.

312.6 380.8 520.6 762.3 1402.5 2512.7 4700.3 8411.3

118.4186.8451.79
16.08

4.78
1.360.720.44 0.51

260.4

0.1
1

10

100

1000

10000

0.004 0.01 0.02 0.04 0.1 0.2 0.4 0.6 0.8

Query range

C
P

U
 t

im
e 

(m
ic

ro
se

c)


Remain on segment Change segment

Figure 7: The average CPU time needed for data structures
update upon location/speed/segment update of a mobile ob-
ject.

With respect to the above results, the ARGONAUT
methodology offers acceptable performance in updat-
ing the resulting periods of the queries result sets,
when receiving new values for the location or speed
of a mobile object. Therefore, the proposed method-
ology can be used to solve real-life problems and aid



real-life applications which require the storage and
manipulation of mobile objects moving on a spatial
network.

5 CONCLUDING REMARKS

This paper introduces the ARGONAUT framework
and methodology for evaluating continuous range
queries over mobile objects moving on a spatial net-
work. We have performed comprehensive experi-
ments, measuring the required CPU time for the query
processing algorithms. The experimental results show
that the performance of the ARGONAUT query pro-
cessing methodology is satisfactory for real world set-
tings in LBS applications for monitoring and tracking
mobile objects.

We plan to continue working on continuous range
query processing, to further exploit indexing schemes
and the network connectivity graph (NCT) for range
queries whose range is not based on the Euclidean
distance. Also, we plan to consider the issues of
distributed and mobile query processing techniques
which ship some part of query processing to the mo-
bile objects which have the computational and storage
capabilities to perform some part of the query pro-
cessing algorithms.

6 ACKNOWLEDGEMENTS

Research supported by the 2003-2005 Serbian-
Greek joint research and technology program and
by ARCHIMEDES project 2.2.14, “Management of
Moving Objects and the WWW”, of the Technolog-
ical Educational Institute of Thessaloniki (EPEAEK
II).

REFERENCES

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger.,
B. (1990). The R*-tree: An efficient and robust ac-
cess method for points and rectangles. InSIGMOD,
pp.322-331.

Brinkhoff, T. (2002). A framework for generating network-
based moving objects. InGeoInformatica,Vol.6, No.2,
pp.153-180.

Cai, Y., Hua, K., and Cao, G. (2004). Processing range-
monitoring queries on heterogeneous mobile objects.
In Mobile Data Management, pp.27-38.

de Almeida, V. and Guting, R. (2005). Indexing the trajec-
tories of moving objects in networks. InGeoInformat-
ica, Vol.9, No.1, pp.33-60.

Frentzos, E. (2003). Indexing objects moving on fixed net-
works. In8th International Symposium on Spatial and
Temporal Databases, pp.289-305.

Gedik, B. and Liu, L. (2004). Mobieyes: Distributed pro-
cessing of continuously moving queries on moving
objects in a mobile system. InEDBT, pp.67-87.

Gedik, B., Wu, K., Yu, P., and Liu, L. (2004). Motion adap-
tive indexing for moving continual queries over mov-
ing objects. InCIKM, pp.427-436.

Hu, H., Xu, J., and Lee, D. (2005). A generic framework
for monitoring continuous spatial queries over moving
objects. InACM SIGMOD Conference.

Kalashnikov, D., Prabhakar, S., and Hambrusch, S.
(2004). Main memory evaluation of monitoring
queries over moving objects. InDistributed and Par-
allel Databases, Vol.15, No.2, pp.117135.

Mokbel, M., Xiong, X., and Aref, W. (2004). Sina: Scal-
able incremental processing of continuous queries in
spatio-temporal databases. InACM SIGMOD Confer-
ence, pp.623-634.

Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., and Ham-
brusch, S. (2002). Query indexing and velocity con-
strained indexing scalable techniques for continuous
queries on moving objects. InIEEE Transaction on
Computers,Special Issue on DBMS and Mobile Com-
puting, Vol.51, No.10, pp.1124-1140.

Predic, B. and Stojanovic, D. (2005). A framework for han-
dling mobile objects in location based services. InAG-
ILE, pp.419-427.

Stojanovic, D. and DjordjevicKajan, S. (2003). Modeling
and querying mobile objects in location based ser-
vices. InScientific Journal Facta Universitatis Series
Mathematics and Informatics, Vol.18, No.1, pp.59-80.


