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Abstract

In several applications, data objects move on predefined spatial networks such as road seg-
ments, railways, and invisible air routes. Many of these objects exhibit similarity with respect
to their traversed paths, and therefore two objects can be correlated based on their motion
similarity. Useful information can be retrieved from these correlations and this knowledge
can be used to define similarity classes. In this paper, we study similarity search for moving
object trajectories in spatial networks. The problem poses some important challenges, since
it is quite different from the case where objects are allowed to move freely in any direction
without motion restrictions. New similarity measures should be employed to express similar-
ity between two trajectories that do not necessarily share any common sub-path. We define
new similarity measures based on spatial and temporal characteristics of trajectories, such
that the notion of similarity in space and time is well expressed, and moreover they satisfy
the metric properties. In addition, we demonstrate that similarity range queries in trajecto-
ries are efficiently supported by utilizing metric-based access methods, such as M-trees.

Keywords: spatial networks, moving objects, trajectories, similarity search

1 Introduction

In location-based services it is important to query the underlying objects based on their location
in space, which may change with respect to time. To support such services from the database
point of view, specialized tools are required which enable the effective and efficient processing
of queries. Queries may involve the spatial or temporal characteristics of the objects, or both
(spatio-temporal queries) [26, 22]. Evidently, indexing schemes are ubiquitous to efficiently
support queries on moving objects, by quickly discarding non-relevant parts of the database.

We distinguish between two different research directions towards query processing in moving
objects, which differ both in the type of queries supported and the characteristics of the indexing
schemes used in each case:

[I] Query processing techniques for past positions of objects, where past positions of moving
objects are archived and queried, using multi-version access methods or specialized access
methods for object trajectories [13, 15, 17, 20, 21]. By studying the past positions of
objects, important conclusions can be obtained regarding their mobility characteristics.

1



The difficulty in this case is that the database volume increases considerably, since new
positions are tracked and recorded.

[II] Query processing techniques for present and future positions of objects, where each moving
object is represented as a function of time, giving the ability to determine its future
positions according to the current motion characteristics of objects (reference position,
velocity vector) [8, 9, 27, 18, 10]. These methods are mainly used to support queries
according to the current positions and enable predictions of their future locations. The
difficulty in this case is to perform effective predictions, which is difficult taking into
consideration that some positions will be invalidated, due to changes in the speed and
direction of some objects in the near future.

A data set of moving objects is composed of objects whose positions change with respect to
time (e.g., moving vehicles). Since in many cases only the position of each object is important,
moving objects are modeled as moving points in 2-D or 3-D Euclidean space. Queries that
involve a particular time instance are characterized as time-slice queries, whereas queries that
must be evaluated for an interval [ts,te] are characterized as time-interval queries. The research
community has studied both types extensively. Examples of basic queries that could be posed
to such a data set include:

• Window query: given a rectangle R, which may change position and size with respect to
time, determine the objects that are covered by R from time point ts to te.

• Nearest-neighbor query: given a moving point P determine the k nearest-neighbors of P
within the time interval [ts,te].

• Join query: given two moving data sets U and V , determine the pairs of objects (o1,o2)
with o1 ∈ U and o2 ∈ V such that o1 and o2 overlap at some point in [ts,te].

Apart from the query processing techniques proposed for the fundamental types of queries
(i.e., window, k-NN and join), the issue of trajectory similarity has been studied recently. The
problem is to identify similar trajectories with respect to a given query trajectory.

The common characteristic of the aforementioned approaches and research works is that
objects are allowed to move freely in 2-D or 3-D space, without any motion restrictions. However,
in a large number of applications, objects are allowed to move only on predefined paths of
an underlying network, resulting in constraint motion. For example, vehicles in a city can
only move on road segments. In such a case, the Euclidean distance between two moving
objects does not reflect their real distance. Figure 1 shows such an example which illustrates
the differences between restricted and unrestricted trajectories. Objects moving in a spatial
network follow specific paths determined by the graph topology, and therefore arbitrary motion is
prohibited. This means that two trajectories which are similar regarding the Euclidean distance
may be dissimilar when the network distance is considered. The majority of existing methods
for trajectory similarity assume that objects can move anywhere in the underlying space, and
therefore do not support motion constraints. Most of the proposals are inspired by the time
series case, and provide translation invariance, which is not always meaningful in the case of
spatial networks. To attack this problem, the network is modeled as a directed graph, and the
distance between two objects is evaluated by using algorithms for shortest paths between the
nodes of the graph.

Therefore, the challenge is to express trajectory similarity by respecting network constraints,
which is also a strong motivation for the following real and practical applications:
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Figure 1: Trajectories in (a) 2-D Euclidean space, and (b) in a spatial network.

[I] By identifying similar trajectories, effective data mining techniques (e.g., clustering) can
be applied to discover useful patterns. For example, a dense cluster is an indication of
emerge traffic measures, future road expansions, traffic-jam detection, traffic predictions,
etc.

[II] Trajectory similarity can also help in several road network applications such as, routing
applications which support historical trajectories, logistic applications, city emergency
handling, drive guiding systems, flow analysis etc. In such applications, efficient indexing
and query processing techniques are required.

[III] Trajectory similarity of moving objects resembles path similarity of user click-streams in
the area of web usage mining. By analyzing the URL path of each user, we are able to
determine paths that are very similar, and therefore effective caching strategies can be
applied. In web usage mining, web pages and URL links are modeled as a graph. A node
in the graph represents a web page, and an edge from one page to another represents an
existing link between them. The time spent by each user to a page is also recorded, and it
is used in expressing path similarity, in addition to the number of common web pages along
each path. In the existing approaches, two paths are considered similar only if they share
at least one common web page, or if the paths contain web pages with similar concept. In
trajectory similarity on the other hand, two trajectories may be characterized similar even
if they do not share any nodes. Therefore, the existing web usage mining techniques are
not directly applicable, and the detection of network trajectory similarities can accelerate
the web usage mining queries.

The rest of the article is organized as follows. In the next section, we give the appropriate
background, we present related work. In Section 3, trajectory similarity search is presented by
investigating effective similarity measures between trajectories in a spatial network. Indexing
and query processing issues are covered in Section 4, whereas Section 5 offers experimental
results. Finally, Section 6 concludes the work.

2 Related Work

In several applications, the mobility of objects is constrained by an underlying spatial network.
This means that objects cannot move freely, and their position must satisfy the network con-
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straints. Network connectivity is usually modeled by using a graph representation, composed
of a set of vertices (nodes) and a set of edges (connections). Depending on the application,
the graph may be weighted (a cost is assigned to each edge) and directed (each edge has an
orientation). Figure 2 illustrates an example of a spatial network corresponding to a part of a
city road network, and its graph representation.
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Figure 2: A road network and its graph representation.

Several research efforts have been performed towards efficient spatial and spatio-temporal
query processing in spatial networks. In [19] nearest-neighbor query processing is achieved by
using a mapping technique. This mapping transforms the graph representation of the network
to a high-dimensional space, where Minkowski metrics can be used. Nearest-neighbor queries
in road networks have been also studied in [7], where a graph representation is used to model
the network. In [16] authors study query processing for stationary data sets, by using both a
graph representation for the network and a spatial access method. It is shown that the use of
Euclidean distance retrieves many candidates, and instead they propose a network expansion
method to process range, nearest-neighbor and join queries. In-route nearest-neighbor queries
have been studied in [29], where given a trajectory source and destination the smallest detour
is calculated.

The above contributions deal with efficient spatial or spatio-temporal query processing of
fundamental queries like range, nearest-neighbor and join. However, the issue of trajectory
similarity has not yet been studied adequately in the case of moving objects in spatial networks.
Let Ta and Tb be the trajectories of moving objects oa and ob respectively, and D(Ta, Tb) a
function that expresses their dissimilarity in the range [0, 1]. If the two objects have similar
trajectories we expect the value D(Ta, Tb) to be close to zero. On the other hand, if the two
trajectories are completely dissimilar, we expect the value D(Ta, Tb) to be close to one.

An example is illustrated in Figure 3, where four trajectories are depicted in the 2-D Eu-
clidean space. A circle denotes the position of each moving object at the corresponding time
instance (t1,...,t8). It is evident that one expects that the two gray-colored trajectories be very
similar, in contrast to the two black-colored trajectories.

In several research proposals, trajectory similarity is viewed as the multidimensional coun-
terpart of time series similarity. In [12] the authors study the problem of similarity search in
multidimensional data sequences, to determine similarities in image and video databases. A
similarity model based on the Minkowski distance is defined, and each sequence is partitioned
to subsequences by means of MBRs, to enable efficient indexing. This work can be viewed as
an extension of the method proposed in [3] for time series data.

In [28] a similarity distance between trajectories is defined, which is invariant to translation,
rotation and scaling. Again, the distance calculation is based on the Minkowski distance. Objects
are allowed to move freely in the address space.
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Figure 3: Example of four trajectories in the 2-D Euclidean space.

In [14] an approach is studied to aggregate similar trajectories using a grid-based spatial
unit aggregation. The notion of spatial similarity lies on the neighboring cells of the grid in a
standard 2-dimensional Euclidean space. Many problems can be arisen with how the grid must
be defined, what the cell dimensions must be, and in objects and clusters identification.

In [11] an efficient algorithm for trajectories similarity calculation is presented. But all
distance calculations through trajectories are based on Euclidean metrics and spaces (Lp norms).

The method proposed in [24, 25] employs a similarity distance based on the longest common
subsequence (LCS) between two trajectories. This approach proposes a distance measure, which
is more immune to noise than the Minkowski distance, but does not satisfy the metric space
properties, and therefore it is difficult to exploit efficient indexing schemes. Instead, hierarchical
clustering is used to group trajectories. Moreover, the similarity measure depends heavily on two
parameters, namely δ and ε, which must be known in advance, and cannot be altered dynamically
without reorganization. These values determine the maximum distance between two locations of
different trajectories, in time and space respectively, to be characterized as similar. Trajectories
that differ more are characterized as dissimilar and therefore their similarity is set to zero. This
approach does not permit the use of ranking or incremental computation of similarity nearest-
neighbor queries.

To the best of the authors’ knowledge, the only research work studying trajectory similarity
on networks is the work in [5, 6]. The authors propose a simple similarity measure based on
POIs (points of interest). They retrieve similar trajectories on road network spaces and not
in Euclidean spaces. They propose a filtering method based on spatial similarity and refining
similar trajectories based on temporal distance. In order to determine the spatial similarity
between trajectories, they define that two trajectories are similar in space by a set of pre-
defined points of interest P if all points of P lie in both trajectories, otherwise they define the
two trajectories as dissimilar. There are several drawbacks using this approach:

• The set of points of interest must be pre-defined and controlled by the user which is very
restrictive.

• A simple wrong point selection in P can harm trajectory spatial similarity and the derived
similarity clusters, so points in P must be selected very carefully and by an expert of the
used road network.

• The similarity in space with such definition (1=similar, 0=dissimilar) does not take into
account any notion of similarity percentage or similarity range. Therefore, we cannot
determine how similar two trajectories are in space.
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• The spatial similarity of two trajectories is based only into the fact that they share common
points, and not into the general network space. Therefore, many similarities excluded.
For example, trajectories that have parallel edges with only a city block distance and no
common points, are considered completely dissimilar.

In addition, no details are given with respect to the access methods required to provide efficient
similarity search. Moreover, no discussion is performed regarding the metric space properties of
the proposed distance measures. Our approach avoids all these drawbacks.

In the sequel, we study in detail the proposed similarity model for trajectory similarity search
in spatial networks aiming at: (i) the definition of similarity and distance measures between
trajectories that satisfy the metric space properties, (ii) the exploitation of the distance between
two graph nodes, which is used as a building block for the definition of trajectory similarity,
(iii) the incorporation of time information in the similarity metric, and (iv) the efficient support
of similarity queries by exploiting appropriate indexing schemes and applying fast processing
algorithms.

3 Trajectory Similarity Measures

Let T be a set of trajectories in a spatial network, which is represented by a graph G(V, E),
where V is the set of nodes and E the set of edges. Each trajectory T ∈ T is defined as:

T = ((v1, t1) , (v2, t2) , ..., (vm, tm)) (1)

where m is the trajectory description length, vi denotes a node in the graph representation of
the spatial network, and ti is the time instance (expressed in time units, e.g., seconds) that the
moving object reached node vi, and t1 < ti < tm , ∀1 < i < m. It is assumed that moving
from a node to another comes at a non-zero cost, since at least a small amount of time will be
required for the transition. Table 1 gives the most important symbols and the corresponding
definitions that are used in our study.

3.1 Expressing Trajectory Similarity

We will follow a step-by-step construction of the similarity measure by first expressing similarity
taking into account only the visited path, ignoring time information. Time information will be
considered in a subsequent step.

We begin our exploration by assuming that any two trajectories have the same description
length. This assumption will be relaxed later. Let Ta and Tb be two trajectories, each of
description length m. By using our trajectory definition and ignoring the time information, we
have: Ta = (va1, va2, ..., vam) and Tb = (vb1, vb2, ..., vbm), where ∀i, vai ∈ V and vbi ∈ V .

Note that, to characterize two trajectories as similar it is not necessary that they share
common nodes. Therefore, the similarity measure must take into account the proximity of the
trajectories (how close is one trajectory with respect to the other).

Due to motion restrictions posed by the spatial network, measuring trajectory proximity
by means of the Euclidean distance is not appropriate. Instead, it is more natural to use the
cost associated with each transition from a graph node to another. For example, in Figure 4
we observe that two trajectory parts can be similar regarding the Euclidean distance, but may
be dissimilar regarding the shortest path distance (network-distance). Thus, for every pair of
points between these two trajectory parts, the Euclidean distance is small, but the corresponding
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Symbol Description
T set of trajectories
S set of sub-trajectories
T , Ta, Tb trajectories
Tq a query trajectory
m trajectory description length
G(V, E) graph representation of the spatial network
DG graph diameter
DEG maximum Euclidean node distance
vi a node in the graph representation
ti time instance that the object reached node vi

e an edge of the graph
T [i].v the i-th node of the trajectory
T [i].t the time instance that the object reached the i-th node
d(vi, vj) network-based distance between two nodes
de(vi, vj) Euclidean distance between two nodes
DnetX(Ta, Tb) network-based distance between trajectories
Dtime(Ta, Tb) time-based distance between trajectories
Enet query radius for network-based similarity
Etime query radius for time-based similarity

Table 1: Basic notations used throughout the study.

Figure 4: Trajectory proximity.

network-distance is large because the long edges must be crossed. Therefore, it is important in
network applications to use the network-distance metric instead of the Euclidean metric.

Let c(vi, vj) denote the cost function to travel from a source node vi to a destination node vj .
As we have already mentioned, this cost for the most network based applications is defined as the
shortest path distance (network-distance) between the two nodes. In this paper we fix this cost
to be the network-distance. We also fix the following requirements for the graph representation
of the network G: G must be a directed or non-directed, positive weighted and strongly connected
graph. These cases represent successfully the most real network applications (road networks,
etc.).
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The cost function (network distance) satisfies the following properties:

Property I: The cost function c(vi, vj) gives zero values if and only if vi ≡ vj .

It is obvious that c(v, v) = 0 for any node v in the graph representation. It also holds that
c(vi, vj) = 0 ⇒ vi ≡ vj , because it has been assumed that any transition between nodes
comes at a non-zero cost (positive weighted graphs).

Property II: The cost function c(vi, vj), definitely satisfies the positivity property and the
triangular inequality:

• c(vi, vj) ≥ 0

• c(vi, vj) ≤ c(vi, vx) + c(vx, vj)

Property III: The cost function c(vi, vj), does not satisfy in general the symmetric property,
therefore it is not definitely a metric function:

• c(vi, vj) 6= c(vj , vi)

But how does this reflect reality? Consider a directed road network with many one-way
road segments, which is quite common. Then, it is clear that if a car goes from a source
node vi to a destination node vj , it will cover a distance generally different than its way
back from vj to vi, as it has to pass through different nodes with different weights.

3.1.1 Network Distance Measure 1

The first network distance measure Dnet1 that we propose uses network-based computations.
The distance d(vi, vj) between any two nodes vi and vj , belonging to trajectories Ta and Tb

respectively, is given by the following definition.

Definition 1
The distance d(vi, vj) between two graph nodes vi and vj is defined as follows:

d (vi, vj) =

{
0 , if vi = vj
c(vi,vj)+c(vj ,vi)

2DG
, otherwise

(2)

where DG = max {c (vi, vj) , ∀vi, vj ∈ V (G)} is the diameter of the graph G of the spatial network
and is a global constant for the applications. Its value can be computed taking the overall
maximum of possible values of the cost function.

Proposition 1
The distance function d(vi, vj) assumes values in the interval [0,1].

Proof
This is obvious when the function returns a zero value. Otherwise it returns the ratio c(vi,vj)+c(vj ,vi)

2DG
.

But, clearly we have: c(vi, vj) ≤ DG and c(vj , vi) ≤ DG, and by summation we get: c(vi, vj) +
c(vj , vi) ≤ 2DG. Therefore, by division we get: d (vi, vj) = c(vi,vj)+c(vj ,vi)

2DG
≤ 1. In addition, we

have always c (vi, vj) ≥ 0 and c (vj , vi) ≥ 0 (positivity), thus d (vi, vj) ≥ 0. 2

Proposition 2
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The distance function d(vi, vj) satisfies the metric properties.

Proof
We need to prove the following properties for every graph nodes vi, vj , vx:
(i) d(vi, vj) ≥ 0
(ii) d(vi, vj) = d(vj, vi)
(iii) d(vi, vj) ≤ d(vi, vx) + d(vx, vj)

Clearly, property (i) is true by Proposition 1. Property (ii) is always true if vi = vj . Otherwise,
if vi 6= vj , we have:

d(vi, vj) =
c(vi, vj) + c(vj , vi)

2DG
=

c(vj , vi) + c(vi, vj)
2DG

= d(vj , vi)

Thus, it is true in any case.
Property (iii) is obvious if vi = vj or vi = vx or vj = vx. Otherwise, if vi 6= vj 6= vx by

substitution we get:

c(vi, vj) + c(vj , vi)
2DG

≤ c(vi, vx) + c(vx, vi)
2DG

+
c(vx, vj) + c(vj , vx)

2DG
(3)

Due to the fact that the cost function satisfies the triangular inequality, we have:

c(vi, vj) ≤ c(vi, vx) + c(vx, vj)

c(vj , vi) ≤ c(vj , vx) + c(vx, vi)

By summation and by division with 2DG we take Inequality (3), thus property (iii) has been
proven. 2

Definition 2
The network distance Dnet1(Ta, Tb) between two trajectories Ta and Tb of description length m
is defined as follows:

Dnet1 (Ta, Tb) =
1
m

m∑

i=1

(d (vai, vbi)) (4)

Proposition 3
The distance measure Dnet1(Ta, Tb) assumes values in the interval [0,1].

Proof
Omitted 2

Proposition 4
The distance measure Dnet1(Ta, Tb) satisfy the metric properties.

Proof
We need to prove the following properties for every trajectories Ta, Tb, Tx of description length
m:
(i) Dnet1(Ta, Tb) ≥ 0
(ii) Dnet1(Ta, Tb) = Dnet1(Tb, Ta)
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(iii) Dnet1(Ta, Tb) ≤ Dnet1(Ta, Tx) + Dnet1(Tx, Tb)
Clearly, property (i) is true by consulting Proposition 3. Property (ii) is true because is also
true for the distance function d (Proposition 2), so:

Dnet (Ta, Tb) =
1
m

m∑

i=1

(d (vai, vbi)) =
1
m

m∑

i=1

(d (vbi, vai)) = Dnet (Tb, Ta)

Property (iii) is written equally by substitution:

1
m

m∑

i=1

(d (vai, vbi)) ≤ 1
m

m∑

i=1

(d (vai, vxi)) +
1
m

m∑

i=1

(d (vxi, vbi)) ⇔

⇔
m∑

i=1

(d (vai, vbi)) ≤
m∑

i=1

(d (vai, vxi)) +
m∑

i=1

(d (vxi, vbi)) (5)

From Proposition 2 we have the following inequalities:

d (vai, vbi) ≤ d (vai, vxi) + d (vxi, vbi) , ∀i ∈ {1, 2, ..., m}

By summation we get (5). 2

Figure 5 shows two trajectories Ta, Tb for which we are interested to calculate their distance.
Assuming that DG = 100, we have the following calculations:

d(vai, vbi) =
{

17
200

,
16
200

,
9

200
,

7
200

, 0,
5

200
,

13
200

}

Dnet1 (Ta, Tb) =
1
7

(
17
200

+
16
200

+
9

200
+

7
200

+ 0 +
5

200
+

13
200

)
=

1
7

67
200

= 0.047857

3.1.2 Network Distance Measure 2

The second distance measure, Dnet2, that we propose uses an Euclidean-based distance function
(de) in combination with the previous global constant DG (the graph diameter by the network
distance). It can be used for fast calculations only for graphs where the coordinates of the nodes
are available. In fact, in many cases the Euclidean distance results in poor performance regarding

Figure 5: Trajectory similarity example.
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the quality of results. However, as it will be described later, it offers a “quick-and-dirty” view
of the results.

Definition 6
The distance de(vi, vj) between two graph nodes vi and vj is defined as follows:

de (vi, vj) =
euclidean(vi, vj)

DG
=

√(
xvi − xvj

)2
+

(
yvi − yvj

)2

DG
(6)

where xvi , yvi are the coordinates of node vi, and xvj , yvj are the coordinates of node vj .

Proposition 7
The distance function de(vi, vj) assumes values in the interval [0,1].

Proof
Let DEG be the maximum Euclidean distance between all nodes of the graph representing the
spatial network: DEG = max {euclidean(vi, vj), ∀vi, vj ∈ V (G)}. Then it is obvious that:

euclidean(vi, vj) ≤ DEG ≤ DG, ∀vi, vj ∈ V (G)

The last inequality holds because all network distances are always greater than or equal to the
corresponding Euclidean distances. Therefore, we have:

euclidean(vi, vj)
DG

≤ 1 ⇔ de(vi, vj) ≤ 1

Moreover, as all distances are positive (or zero when vi = vj), we have always: de(vi, vj) ≥ 0. 2

Proposition 8
The distance function de(vi, vj) satisfies the metric properties.

Proof
Due to the fact that the Euclidean distance euclidean(vi, vj) satisfies the metric properties
and de(vi, vj) is the Euclidean distance divided by the positive constant DG, it is evident that
de(vi, vj) also satisfies the metric properties. 2

Definition 7
The network distance Dnet2(Ta, Tb) between two trajectories Ta and Tb of description length m
is defined as follows:

Dnet2 (Ta, Tb) =
1
m

m∑

i=1

(de (vai, vbi)) (7)

Proposition 9
The distance measure Dnet2(Ta, Tb) assumes values in the interval [0,1].

Proof
Omitted 2

Proposition 10
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The distance measure Dnet2(Ta, Tb) satisfy the metric properties.

Proof
Omitted 2

3.2 Incorporating Time Information

The similarity measures defined in the previous section take into consideration only the traveling
cost information, which depends on the spatial network. In applications such as traffic analysis,
the time information associated with each trajectory is also very important.

Definition 8
Given two trajectories Ta ∈ T and Tb ∈ T of description length m, their distance with respect
to time Dtime(Ta, Tb) is given by:

Dtime (Ta, Tb) =
1

m− 1

m−1∑

i=1

|(Ta [i + 1] .t− Ta [i] .t)− (Tb [i + 1] .t− Tb [i] .t)|
max {(Ta [i + 1] .t− Ta [i] .t) , (Tb [i + 1] .t− Tb [i] .t)}

Essentially, the time similarity between two trajectories, as it has been defined, measures
their resemblance with respect to the time required to travel from one node to the next (inter-
arrival times).

Figure 6 depicts some examples for the time similarity calculations, where we have three
trajectory parts Ta, Tb, Tc with the same description length and the inter-arrival times appear
next to their directed edges.

Figure 6: Time similarity calculation example.

With the previous definition we have the following calculations:

Dtime (Ta, Tb) =
1
4

(
1
5

+
0
7

+
1
4

+
0
2

)
= 0.1125

12



Dtime (Ta, Tc) =
1
4

(
0
5

+
4
7

+
2
6

+
2
4

)
= 0.35119

We observe that Ta is more similar to Tb than Tc and this happens because the corresponding
inter-arrival times of the pair Ta, Tb are much closer.

Proposition 11
The distance measure Dtime(Ta, Tb) assumes values in the interval [0,1].

Proof
Omitted 2

Proposition 12
The distance measure Dtime(Ta, Tb) satisfy the metric properties.

Proof
We need to prove the following properties for any trajectories Ta, Tb, Tx of description length m:

(i) Dtime(Ta, Tb) ≥ 0

(ii) Dtime(Ta, Tb) = Dtime(Tb, Ta)

(iii) Dtime(Ta, Tb) ≤ Dtime(Ta, Tx) + Dtime(Tx, Tb)

Clearly, property (i) is true by Proposition 11. Let us denote the inter-arrival times of all
trajectory parts Ta, Tb and Tx as follows: δai = Ta[i + 1].t− Ta[i].t, δbi = Tb[i + 1].t− Tb[i].t and
δxi = Tx[i + 1].t− Tx[i].t, for all i=1,2,...,m-1. Then, property (ii) is true because we have:

Dtime (Ta, Tb) =
1

m− 1

m−1∑

i=1

|δai − δbi|
max {δai, δbi} =

1
m− 1

m−1∑

i=1

|δbi − δai|
max {δbi, δai} = Dtime (Tb, Ta)

By substitution, property (iii) is written as:

1
m− 1

m−1∑

i=1

|δai − δbi|
max {δai, δbi} ≤

1
m− 1

m−1∑

i=1

|δai − δxi|
max {δai, δxi} +

1
m− 1

m−1∑

i=1

|δxi − δbi|
max {δxi, δbi} ⇔

⇔
m−1∑

i=1

|δai − δbi|
max {δai, δbi} ≤

m−1∑

i=1

|δai − δxi|
max {δai, δxi} +

m−1∑

i=1

|δxi − δbi|
max {δxi, δbi} (8)

It is sufficient to prove the following inequalities ∀ i = 1, . . . , m-1:

|δai − δbi|
max {δai, δbi} ≤

|δai − δxi|
max {δai, δxi} +

|δxi − δbi|
max {δxi, δbi} (9)

To prove 9 it is enough to prove that for every positive numbers a, b, c the following holds:

|a− b|
max {a, b} ≤

|a− c|
max {a, c} +

|c− b|
max {c, b} (10)

But, this inequality is obvious if a = b, or a = c, or b = c, and for all other ordering cases of
the numbers a, b, c also holds:
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• if a < b < c then it gives:

b− a

b
≤ c− a

c
+

c− b

c
⇔ c(b− a) ≤ b(c− a) + b(c− b) ⇔ (b + a)(c− b) ≥ 0

which it holds as a, b are positive and b < c.

• if a < c < b then it gives:

b− a

b
≤ c− a

c
+

b− c

b
⇔ c(b− a) ≤ b(c− a) + c(b− c) ⇔ (c− a)(b− c) ≥ 0

which it holds as a < c and c < b.

• if b < a < c then it gives:

a− b

a
≤ c− a

c
+

c− b

c
⇔ c(a− b) ≤ a(c− a) + a(c− b) ⇔ (a + b)(c− a) ≥ 0

which it holds as a, b are positive and a < c.

• if b < c < a then it gives:

a− b

a
≤ a− c

a
+

c− b

c
⇔ c(a− b) ≤ c(a− c) + a(c− b) ⇔ (c− b)(a− c) ≥ 0

which it holds as b < c and c < a.

• if c < a < b then it gives:

b− a

b
≤ a− c

a
+

b− c

b
⇔ a(b− a) ≤ b(a− c) + a(b− c) ⇔ (a + b)(a− c) ≥ 0

which it holds as a, b are positive and c < a.

• if c < b < a then it gives:

a− b

a
≤ a− c

a
+

b− c

b
⇔ b(a− b) ≤ b(a− c) + a(b− c) ⇔ (a + b)(b− c) ≥ 0

which it holds as a, b are positive and c < b.

Therefore, Inequality (10) is true, and property (iii) has been proven. 2

3.2.1 Spatio-temporal Similarity Measures and Methods

We have at hand different distance measures, Dnet and Dtime, that can be used to compare tra-
jectories of the same length in space and time. Several applications may require both similarity
measures to extract useful knowledge.

There are three different methods in order to retrieve similar trajectories in space-time as
proposed in [5]: (i) Searching similar trajectories with direct application of spatio-temporal
distance measures, (ii) Filtering trajectories based on temporal similarity and refining similar
trajectories based on spatial distance, (iii) Filtering trajectories based on spatial similarity and
refining similar trajectories based on temporal distance.

Here we suggest the methods (i) and (iii), due to the fact that method (ii) can hardly be
found in practical applications.
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To implement method (i) we can combine the two distance measures Dnet and Dtime into a
single one. For example, the two distances may be weighted with parameters Wnet and Wtime

such that Wnet+Wtime=1. The total (combined) distance can then be expressed as follows:

Dtotal (Ta, Tb) = Wnet ·Dnet (Ta, Tb) + Wtime ·Dtime (Ta, Tb)

It is evident that the distance measure Dtotal satisfies the metric space properties. However,
this approach poses a significant limitation, since the values of Wnet and Wtime must be known
in advance.

Consequently we propose method (iii) using Dnet and Dtime separately, where the distance
Dnet making the filtering step in space and the distance Dtime making the refinement step in
time. In this way, two parameter distances are required to be posed by the query. The distance
Enet expresses the desired similarity with respect to the Dnet distance measure, whereas the
distance Etime expresses the desired similarity regarding the Dtime distance measure. If the user
wishes to focus only on the network distance, then the value of Etime may be set to 1. Otherwise,
another value is required for Etime, which determines the desired similarity in the time domain.
By allowing the user to control the values of Enet and Etime a significant degree of flexibility is
achieved, since the “weight” of each distance can be controlled at will.

4 Indexing and Query Processing Issues

In this section, we study some important issues regarding trajectory similarity. Firstly, we
discuss the problem of handling trajectories of different description length, by decomposing a
trajectory to sub-trajectories. Then, we study the use of indexing schemes for sub-trajectories.
Finally, we study some fundamental query processing issues.

4.1 Trajectory Decomposition

Up to now we have handled the case where all trajectories are of the same description length.
We proceed now to relax this assumption, by considering trajectories of different lengths. In
fact, this is the more general case that reflects reality. First of all, two trajectories may involve
a different number of visited nodes, and therefore their description length will be different.
Furthermore, we cannot always guarantee that moving objects report their positions at fixed
time intervals. Due to noise, several measurements may be lost, or different moving objects
report their positions at different time intervals. In these cases, two trajectories may have
different description lengths.

Let T be a trajectory of description length m. Moreover, let µ denote an integer such
that µ ≤ m. T is decomposed into m-µ+1 sub-trajectories, by using a window of length µ, and
progressively moving one node at a time from left to right. Each of the resulting sub-trajectories
has a length of µ. Figure 7 illustrates an example of the decomposition process, where m=6 and
µ=3.

By following the same process for all trajectories we get a new set of sub-trajectories S, all
of description length µ. Moreover, we have already defined a distance measure for trajectories
of the same description length in the previous section given by either Dnet or Dtime which both
satisfy the metric space properties.
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Figure 7: Trajectory decomposition example for m = 6 and µ = 3.

4.2 Indexing Schemes

Our next step involves indexing the set S of sub-trajectories, enabling efficient query processing.
Towards this direction, we propose two schemes, which are both based on the M-tree access
method [2]. Note that since a vector representation of each sub-trajectory is not available,
techniques like R-trees [4] and its variants are not applicable. Recall that, the M-tree is already
equipped by the necessary tools to handle range and nearest-neighbor queries, as it has been
reported in [2]. The only requirement for the M-tree to work properly is that the distance used
must satisfy the metric space properties. Since both Dnet and Dtime satisfy these properties,
they can be used as distance measures in M-trees. Note that, among the metric indexing schemes
we choose the M-tree because of its simplicity. However, other secondary memory schemes for
metric spaces or any other metric access method can been applied equally well (e.g., SlimTrees
[23]). Two alternatives are followed towards indexing sub-trajectories:

• M-treeI method. In this scheme, only the NET-M-tree is used to check the constraint
regarding Enet. Then, in a subsequent step the candidate sub-trajectories are checked
against the time constraints. This way, only one M-tree is used.

• M-treeII method. In this scheme, two M-trees are used to handle Dnet and Dtime

separately. These trees are termed NET-M-tree and TIME-M-tree respectively. Each M-
tree is searched separately using Enet and Etime respectively. Then, the intersection of
both results is determined to get the sub-trajectories that satisfy the network and time
constraints.
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4.3 Query Processing Fundamentals

A user query is defined by a triplet < Tq, Enet, Etime > where Tq is the query trajectory, Enet is
the radius for the network distance and Etime is the radius for the time distance. For the query
processing to be consistent with the proposed framework, each query trajectory Tq must be of
at least description length µ. If this is not true, padding is performed by repeating, for example,
the last node of the trajectory several times, until the description length µ is reached. In the
general case where the description length of Tq is greater than µ, the decomposition process is
applied to obtain the sub-trajectories of Tq. Finally, if the description length of Tq is equal to
µ, then only one sub-trajectory is produced.

Let p denote the number of sub-trajectories of Tq determined by the trajectory decomposition
process. The next step depends on the indexing scheme we utilize, i.e. either M-treeI or M-treeII
as they have been described previously. A trajectory is part of the answer if there is at least
one of its sub-trajectories that satisfy the network and time constraints for at least one query
sub-trajectory. In the sequel, we analyze the whole process in detail:

• Having a query trajectory Tq of description length l and the Enet, Etime parameters, we
decompose Tq into p = l - µ + 1 sub-trajectories (if l > µ) with the window method and
then we construct their set QS(Tq).

• For every query sub-trajectory qs ∈ QS(Tq), we execute a simple range query to NET-M-
Tree with radius Enet and collect related sub-trajectories into the set Cnet.

• If M-treeII method is used then we execute another simple range query to TIME-M-Tree
with radius Etime and collect related sub-trajectories into the set Ctime.

• If M-treeI method is used then we check every sub-trajectory in Cnet against Etime and
from the selected results we construct the set AS. Otherwise, If M-treeII method is used,
the results’ set AS is constructed with the common sub-trajectories of the sets Cnet and
Ctime. In both cases, the set AS contains the resulted sub-trajectories ID’s.

• From the set AS we take the corresponding trajectories ID’s and we construct the final
result set AT .

In any case, a trajectory T ∈ T will appear in the result set, if and only if there exists at
least one sub-trajectory ts of T which is similar to at least one sub-trajectory qs of the query
trajectory Tq, and also satisfies the network and time constraints. More formally:

T is similar to Tq ⇔ ∃ts ⊆ T,∃qs ⊆ Tq : Dnet(ts, qs) ≤ Enet ∧Dtime(ts, qs) ≤ Etime

Figure 8 presents an outline of the algorithm. Taking into account that the consecutive
sub-trajectories of Tq have (µ - 1) common nodes, most calculations and requests can be already
in the memory, as we check one sub-trajectory after another, so it is strongly recommended to
use an LRU memory buffer.

4.4 Distance Buffering

The distance measure Dnet1 uses the shortest path distance between graph nodes. These com-
putations can be performed more efficiently by using an LRU buffer. The LRU buffer maintains
a constant amount of distance values into main memory. In the experimental results section we
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Algorithm SimilaritySearch(Tq, Enet, Etime, µ)
Input
Tq: query trajectory
Enet: network distance radius
Etime: time distance radius
µ: minimum description length of query sub-trajectory
Output
AS: set of sub-trajectory IDs
AT : set of trajectory IDs

1. QS(Tq) = all sub-trajectories of Tq of description length µ
2. for each query sub-trajectory qs ∈ QS(Tq)
3. if method M-treeI is used then
4. search NET-M-tree using qs and Enet

5. Cnet = candidate sub-trajectories from NET-M-tree
6. check every sub-trajectory in Cnet against Etime

7. update AS
8. else if method M-treeII is used then
9. search NET-M-tree using qs and Enet

10. Cnet = candidate sub-trajectories from NET-M-tree
11. search TIME-M-tree using qs and Etime

12. Ctime = candidate sub-trajectories from TIME-M-tree
13. AS = Cnet ∩ Ctime

14. end if
15. end for
16. calculate AT from AS
17. return(AS,AT )

Figure 8: Outline of similarity search algorithm.

show that only a relatively small buffer size is adequate to accelerate performance, offering a
good hit-ratio.

If the network graph has at most a few thousand nodes, it is suggested to precompute all
distances c(vi, vj) between nodes and to put them into a hash-based file. Then, the LRU memory
buffer can cooperate with this file during the request procedure for even better performance.
Later, we discuss the alternative of storing only a subset of precomputed distances on the disk,
to handle large graphs.

The algorithm in Figure 9 illustrates the process of retrieving a distance c(vi, vj). The
variables requests, hits, and misses are used to test buffer performance.

It is important to remind that the LRU memory buffer and the precomputed distances disk
file, are used only with Dnet1. They are not necessary for Dtime calculations and in Dnet2

measure which does not use network distances at all.

4.5 Combining Measures Dnet1 and Dnet2 (Filtering and Refinement)

Due to network restrictions, a similarity range query using the Dnet2 distance measure may
return some trajectories that are not similar regarding distance measure Dnet1 (false alarms).
This effect is more significant when the shortest path distance between nodes is considerably
higher than their Euclidean distance. Therefore, we need to detect these trajectories using
another measure, which respects the network restrictions in space, and use it in a refinement
step during query processing. For this reason, we can select the distance measure Dnet1 to handle
false alarm detection. This procedure will give correct results if and only if we prove that every
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Algorithm RetrieveDistance(vi, vj)
Input
vi: source node
vj : destination node
Output
c(vi, vj): value of the cost function between nodes vi and vj

1. requests++
2. search in LRU memory buffer for distance c(vi, vj)
3. if distance found in buffer then
4. return(c(vi, vj))
5. hits++
6. else
7. if a precomputed distances disk file is used then
8. open disk file
9. find record with distance c(vi, vj)
10. return(c(vi, vj))
11. insert distance c(vi, vj) in memory buffer with LRU rule
12. misses++
13. else
14. compute the distance c(vi, vj)
15. return(c(vi, vj))
16. insert distance c(vi, vj) in memory buffer with LRU rule
17. misses++
18. end if
19. end if

Figure 9: Outline of distance retrieval algorithm.

trajectory that appears in the result set of Dnet1 measure, appears also in the result set of Dnet2,
when we apply an Enet range query.

Proposition 13
For every two trajectories Ta, Tb the following inequality always holds:

Dnet2 (Ta, Tb) ≤ Dnet1 (Ta, Tb)

Proof
As the shortest path distance c(vi, vj) between two graph nodes vi, vj is always greater than or
equal to their corresponding Euclidean distance, it always holds that:

euclidean(vi, vj) ≤ c(vi, vj), ∀vi, vj ∈ V

By dividing with the constant DG we get:

euclidean (vi, vj)
DG

≤ c(vi, vj)
DG

⇔ de (vi, vj) ≤ d (vi, vj) , ∀vi, vj ∈ V

Therefore, for every two trajectories Ta = (va1, va2, ..., vam) and Tb = (vb1, vb2, ..., vbm), where
vai∈ V and vbi∈ V , (∀i=1,. . . ,m), we have the following inequalities:

de (vai, vbi) ≤ d (vai, vbi) ,∀i = 1, ...,m
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By summation, we get:

m∑

i=1

(de (vai, vbi)) ≤
m∑

i=1

(d (vai, vbi))

⇔ 1
m

m∑

i=1

(de (vai, vbi)) ≤ 1
m

m∑

i=1

(d (vai, vbi))

⇔ Dnet2 (Ta, Tb) ≤ Dnet1 (Ta, Tb)

and the proposition has been proven. 2

Following Proposition 13, when we have a query trajectory Tq and a network query range Enet,
all trajectories returned by Dnet1 measure will appear in the result-set of Dnet2, because:

Dnet2 (Tq, T ) ≤ Dnet1 (Tq, T ) ≤ Enet , ∀T ∈ T

Figure 10 illustrates the outline of the similarity search algorithm including the refinement
step. Dnet2 is used as the filtering distance measure, whereas Dnet1 is used for refinement, to
eliminate false alarms. An important observation is that this scheme can be applied to both
M-treeI and M-treeII methods, and moreover, it can be used with any well-defined distance
measure, as long as the following lower-bounding property holds:

Dfiltering (Ta, Tb) ≤ Drefinement (Ta, Tb) , ∀Ta, Tb ∈ T

5 Performance Evaluation

In this section, we give information about the implementation of the proposed approach in C++
and the results of experiments that confirm and evaluate all previous algorithms, procedures and
techniques. All experiments have been conducted on a Pentium IV running Windows XP, with
1GB of RAM, and a 320GB-SATA2-16MB hard disk. First, we present the construction of
used spatial network and trajectory data set. Then, we present the construction of M-Trees for
each defined measure and how the proposed measures express well the notion of similarity in
space and time. At the main part, we present the evaluation results of all proposed methods for
similarity range queries.

5.1 Spatial Network Data

All experiments have been conducted using a real-world spatial network, the road network of
Oldenburg city [1]. The cost function c(vi, vj) between two nodes of the graph representation is
the shortest path distance. The number of vertices in the Oldenburg data set is 6,105. Therefore,
the total number of precomputed distances among all possible pairs of vertices is 37,271,025.
These distances are stored in a hash-based file on disk (DISTfile), using the Hilbert space filling
curve as a hashing function. The Hilbert curve values are derived from the corresponding source
and target node ID’s of the distances, which are integers into the interval [0, |VG| − 1], (e.g.,
for the distance c(vi, vj) the value Hilbert(ID(vi), ID(vj)) is calculated). For the selected road
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Algorithm SimilaritySearchWithRefinement(Tq, Enet, Etime, µ)
Input
Tq: query trajectory
Enet: network distance radius
Etime: time distance radius
µ: minimum description length of query sub-trajectory
Output
ASF : final set of sub-trajectory IDs
ATF : final set of trajectory IDs

1. QS(Tq) = all sub-trajectories of Tq of description length µ
2. ASF=Ø
3. for each query sub-trajectory qs ∈ QS(Tq)
4. if method M-treeI is used
5. search NET-M-tree (constructed by the basic metric) using qs and Enet

6. Cnet = candidate sub-trajectories from NET-M-tree (using the Dnet distance of the basic metric)
7. check every sub-trajectory in Cnet against Etime

8. update AS
9. else if method M-treeII is used then
10. search NET-M-tree (constructed by the basic metric) using qs and Enet

11. Cnet = candidate sub-trajectories from NET-M-tree (using the Dnet distance of the basic metric)
12. search TIME-M-tree using qs and Etime

13. Ctime= candidate sub-trajectories from TIME-M-tree
14. AS = Cnet ∩ Ctime

15. end if
16. for each sub-trajectory Si in AS
17. compute the Dnet distance of Si from qs using the selected refinement metric
18. insert Si in ASF if that distance is less than or equal to Enet

19. end for
20. end for
21. calculate ATF from ASF
22. return(ASF ,ATF )

Figure 10: Outline of similarity search algorithm with refinement step.

network, the total time required for all precomputations and creation of DISTfile is 3,180.581
sec. The record length has been set to 16 bytes, so the final file capacity is 596,336,400 bytes
(285MB zipped).

An in-core LRU buffer has been used to keep a number of precomputed distances in main
memory (we initialized the buffer selecting some top-used distances through calculations which
actually are distances between nodes that included in the most trajectory parts). The size of
the buffer has been set to 2,000, which is a relatively small value compared to the total number
of pair-wise distances. We have computed the average number of network distance calculation
requests, the average number of hits and misses, in simple range queries in space using Dnet1

and Dnet2. The results show that almost 85% of the distance requests are absorbed by the main
memory buffer and therefore, we avoid fetching them from the disk. The more buffer pages are
available, the higher the hit ratio becomes.

The fast retrieval of shortest path distances is the most time consuming factor affecting the
performance of network-based distance calculations, the construction of M-Trees and finally in
the performance of similarity range queries.
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5.2 Construction of Trajectories and Sub-trajectories

The trajectory data set T we have used for the experiments consists of 3,797 trajectories of
objects moving on the road segments of Oldenburg city, using the generator developed in [1].
Each trajectory has a minimum description length of 10 and maximum description length of
100 nodes. A sliding window of description length µ = 10 has been used to generate the sub-
trajectories of each trajectory. Therefore, the total number of sub-trajectories produced (set S)
is 75,144.

Figure 11: (a) Distribution of nodes in trajectories (b) Top-100 most frequent nodes.

Moreover, it is important to study the distribution of the constructed trajectory data set
among the nodes of the road network. This will help to evaluate if the data set represents well
a real-world trajectory set of this town. So, we record in a new file all node ID’s used by the
trajectories, with the frequency that are being used (how many trajectories pass through) in
a descending order. Figure 11(a) gives the recorded distribution and Figure 11(b) depicts the
top-100 most used nodes in the network by the trajectories.

It is evident that we have a skew distribution of nodes in trajectories and this reflects reality:
there are some nodes that are being used very often which are center points of this town or
hard traffic points, and the most peripheral nodes are being used much rarely. Therefore, our
trajectory data set is a good representative of a real traffic condition.

5.3 M-tree Construction

We have constructed four different M-trees. The NET-M-trees which are implemented based on
the Dnet1,2,3 measures and the TIME-M-tree implemented based on the Dtime measure. Recall
that, all M-trees handle the same set S of sub-trajectories of description length µ=10 and not
the complete trajectories of moving objects.

We have utilized the bulk-loading method for the construction of all M-trees, and the fol-
lowing parameters values have been used: a page size of 4KB, 5% minimum node utilization,
minimum overlaps promote part and root functions, a general hyper-plane split strategy, and
radius function by average. Table 2 shows the total number of network distances computed dur-
ing the construction, the number of zero distances, the final file capacity of M-trees on disk and
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M-tree Distances Zeros Capacity Time
Dnet1 1,574,890 38,309 32.5MB 13min+7sec
Dnet2 1,494,416 37,761 32.1MB 35sec
Dtime 4,013,864 40,461 30.9MB 1min+46sec

Table 2: Information regarding the construction of M-trees.

the total construction time. Note that we have exploited precomputed distances (LRU-buffer
and DISTfile) during the construction procedure.

We observe that Dnet2 gives the smallest capacity and construction time, because network
distance computations are not required.

5.4 Evaluation of Similarity Measures

We have randomly selected several trajectories from different areas of Oldenburg and we have
performed similarity range queries by using all measures.

Figures 12 and 13 show the results of range queries with radius Enet = 0.01, 0.05, 0.10,
in a random selected query trajectory from our data set, using the available network distance
measures. By studying these figures we observe that:

• In all metrics, the resulted trajectories firstly appeared in the closest neighbor of query
trajectory and as the radius Enet increases, they expand into connected and almost rounded
areas, in which the query trajectory takes a central position.

• All query trajectory results of Dnet1 metric (using a constant Enet range) are included in
the results of Dnet2 metric, according to Proposition 9.

5.5 Performance Evaluation of M-treeI and M-treeII Methods

In this section, we study the performance of M-treeI,II methods using all the proposed metrics.
We selected randomly 100 trajectories from our data set and from different parts of the town and
we performed similarity range queries using the M-treeI,II methods. We gave all combination
values into the interval [0,1] with a step of 0.05 in Enet, Etime parameters. The final reported

Enet=0.01 Enet=0.05 Enet=0.10

Figure 12: Preview of range queries using distance measure Dnet1.
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Enet=0.01 Enet=0.05 Enet=0.10

Figure 13: Preview of range queries using distance measure Dnet2.

Variable Description
Nnet Number of similar sub-trajectories found in NET-M-tree
Dnet Number of network-based distance computations
Tnet Total searching time in NET-M-tree (sec)
MBFR Memory LRU Buffer Total Requests
MBFH Memory LRU Buffer Total Hits
MBFM Memory LRU Buffer Total Misses
DBFR Disk LRU Buffer Total Requests
DBFH Disk LRU Buffer Total Hits
DBFM Disk LRU Buffer Total Misses
Ntime Number of similar sub-trajectories found in TIME-M-tree
Dtime Number of time-based distance computations
Ttime Total searching time in TIME-M-tree (M-treeII) or in time calcula-

tions (M-treeI) (sec)
TT Total query time
AS Total number of common (M-treeII) or accepted (M-treeI) sub-

trajectories found (Net&Time)
AT Total number of similar trajectories found (final results)
FA False alarms for sub-trajectories in Dnet2+1 method

Table 3: Basic variables measured throughout experiments.

results correspond to the average values of these 100 queries. The basic parameters that are
studied are summarized in Table 3.

Figure 14(a) depicts the number of similar sub-trajectories found using all available network-
based distance measures. Recall, that the results are the same for both M-treeI and M-treeII
methods. As the Enet radius increases, Dnet2 first reaches the upper limit (75,144), followed
by Dnet1. Evidently, the distance measure Dnet2 gives more results than Dnet1 due to the
lower-bounding property.

Figure 14(b) depicts the total time spent for network-based computations using all network-
based distance measures. It is evident that Dnet2 is the less time-consuming measure since
distances are computed by using the Euclidean distance of the nodes. The results are similar
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Figure 14: Number of sub-trajectories (a) and search time (b) for NET-M-tree.
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Figure 15: Memory buffer activity for Dnet1.

for both M-treeI and M-treeII methods.
Figure 15 illustrates the memory LRU buffer activity using Dnet1. Note that Dnet2 does not

use the LRU buffer, since no network distance computations are performed. In both cases, the
total number of distance hits is about 85%, so with only 2000 buffer pages we have a satisfactory
hit ratio. Again, the results are similar for M-treeI and M-treeII methods.

Figure 16 depicts the number of time-based distance computations for M-treeI and M-treeII
methods. We observe that in M-treeII method the number of time-based distance computations
depends only on the Etime radius, whereas in M-treeI method this value depends on both Enet

and Etime parameters, because in this case the total number of computed distances is equal to
the number of sub-trajectory results returned by the NET-M-tree. Therefore, we expect less
time-based computations in the M-treeI method than in the M-treeII method. This results in
slightly better performance for the M-treeI method regarding time-based distance computation
overhead, as it is illustrated in Figure 17.

Figure 18 depicts the percentage of false alarms for Dnet2+1, for various values of parameters
Enet and Etime. In the left part of the figure, these parameters change freely, whereas in the
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Figure 16: Number of time-based distance computations in M-treeI and M-treeII methods.
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Figure 17: CPU time (in sec) required for time-based distance computations in M-treeI and
M-treeII methods.

right part always Enet equals Etime. It is evident, that the existence of false alarms can not
be avoided, due to the distance lower-bounding. However, the percentage of false alarms is
relatively small, and therefore effective filtering is performed by applying the Euclidean distance
prior to network distance computations. The maximum number of false alarms (around 25%)
appears when Enet = 0.25 and Etime = 0.30.

Figures 19(a) and 19(b) depict some representative results regarding the performance of
M-treeI and M-treeII methods for Enet = Etime, using all network distance measures. Dnet2

is the most efficient tool but needs validation of correctness, and Dnet2+1 method is the most
attractive alternative that can be used for trajectory similarity search, if efficiency is important.
However, care should be taken since the usage of Dnet2+1 involves determination of false alarms.
If the number of false alarms is large, performance degradation may appear.

In all the experiments conducted, the method that uses only one M-tree performs marginally
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Figure 18: Percentage of false alarms for Dnet2+1 method.

0

10

20

30

40

50

60

70

80

90

100

0 0,2 0,4 0,6 0,8 1

network and time distance (Enet and Etime)

to
ta
l 
ti
m
e
 (
s
e
c
)

Dnet1

Dnet2

Dnet2+1

(a)M-treeII

0

10

20

30

40

50

60

70

80

90

100

0 0,2 0,4 0,6 0,8 1

network and time distance (Enet and Etime)

to
ta
l 
ti
m
e

Dnet1

Dnet2

Dnet2+1

(b)M-treeI

Figure 19: Total running time (in sec) for M-treeII and M-treeI methods.

better than the method that utilizes two M-trees (one for Dnet and one for Dtime). However,
the existence of two M-trees offers a higher degree of flexibility during query processing, since
we can search for similar trajectories based: (i) only on network distance Dnet, (ii) only on
time distance Dtime and (iii) both on network and time distances Dnet and Dtime. Moreover,
different clustering schemes can be applied. More specifically, using the two separate M-trees,
a clustering algorithm can provide clusters for Dnet or Dtime. Finally, more choices for query
optimization are available if both indexes are utilized, since the query execution engine can form
an efficient query execution plan according to the selectivities of the search distances Enet and
Etime, and traverse the M-trees accordingly.

5.6 Impact of Precomputed Distances

The previous experiments have been conducted by having all network distances precomputed and
stored on disk. It has been observed that the precomputation reduces the required computational
costs during network-based distance calculations. However, the precomputation assumption may
not be realistic in very large spatial networks containing many thousands of nodes. However,
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Figure 20: Memory and disk buffer activity for variable disk buffer sizes.
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Figure 21: Total running time for Dnet2+1 for variable query radius and disk buffer sizes.

even for small spatial networks, if the main memory buffer fails to achieve an acceptable hit
ratio, many distance computations will be invoked, resulting in performance degradation.

Figures 20 and 21 show some interesting results regarding the performance of trajectory
similarity queries, when only a subset of the total distances are precomputed. The performance
of Dnet1 measure is illustrated in Figure 20, which depicts the activity of the memory-based (a)
as well as the disk-based buffer (b). It is evident that by increasing the number of precomputed
distances the total running time of trajectory similarity queries decreases but the cost is still
significant, raising problems for ad-hoc query processing. On the other hand, the use of the Eu-
clidean distance for filtering purposes results in a much more efficient scheme, as it is illustrated
in Figure 21.

6 Conclusions

Although there is significant research work performed on trajectory similarity on moving ob-
jects trajectories, the vast majority of the proposed approaches assume that objects can move
freely without any motion restrictions. In this paper, we have studied the problem of trajec-
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tory similarity query processing in network-constrained moving objects. We have defined two
concepts of similarity. The first is based on the network distance and the second is based on
the time characteristics of the trajectories. By using these concepts, we have defined distance
measures Dnet to capture the network similarity and a distance measure Dtime to capture the
time-based similarity of trajectories. All proposed measures satisfy the metric space properties,
and therefore, metric-based access methods can be used for efficient indexing and searching.

To support trajectories of different description lengths, a decomposition process is applied.
Each trajectory is split to a number of sub-trajectories, which are then indexed by M-trees.
The NET-M-tree is used for the Dnet measure, whereas the TIME-M-tree is used for the Dtime

measure. Two methods have been studied: (i) the M-treeI method, which uses only the NET-M-
tree and (ii) the M-treeII method, which utilizes both trees. Performance evaluation results show
that trajectory similarity can be efficiently supported by these schemes. In all the experiments
conducted, the method that uses only one M-tree performs marginally better than the method
which utilizes two M-trees. However, the existence of two M-trees offers a higher degree of
flexibility during query processing.

Future research may involve: (i) the investigation of alternative indexing schemes, (ii) the
study of approximate processing and (iii) the efficient support of trajectory-based k-nearest-
neighbor processing, and (iv) the utilization of the proposed similarity measures for data mining
(e.g., trajectory clustering).
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