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ABSTRACT
Recent advances on tracking technologies enable the collec-
tion of spatio-temporal data in the form of trajectories. The
analysis of such data can convey knowledge in prominent ap-
plications, and mining groups of moving objects turns out
to be a valuable mean to model their movement. Existing
approaches pay particular attention in groups where objects
are close and move together or follow similar trajectories by
assuming that movement cannot change over time. Instead,
we observe that groups can be of interest also when ob-
jects are spatially distant and have different but inter-related
movements: objects can start from different places and join
together to move towards a common location. To take into
account inter-related movements, we have to analyze the ob-
jects jointly, follow their respective movements and consider
changes of movements over time. Motivated by this, we in-
troduce the notion of communities and propose a computa-
tional solution to discover them. The method is structured
in three steps. The first step performs a feature extraction
technique to elicit the inter-related movements between the
objects. The second one leverages a tree-structure in order
to group objects with similar inter-related movements. In
the third step, these groupings are used to mine communities
as groups of objects which exhibit inter-related movements
over time. We evaluate our approach on real data-sets and
compare it with existing algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Trajectories, Mining, Groups of Moving Objects.

1. INTRODUCTION
The tremendous advances in positioning technologies, such

as telemetry, GPS equipment and smart mobile phones, have
enabled tracking of any type of moving objects and collect-
ing spatio-temporal data into growing repositories. Some
example applications follow:
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• In location-based social networks, people travel in the
real world and leave their location history in the form
of a trajectory. These trajectories do not only connect
locations in the physical world but also bridge the gap
between people and locations [12].

• Portable GPS devices allow to record the correspond-
ing vehicle locations [11]. Such information often in-
cludes data for human mobility.

• Zoologists are investigating the impact of the levels of
urbanization on the migration, distribution and habi-
tat use of animals [9].

In the aforementioned applications, one can be interested
in the discovery of groups of objects which move together
or in a similar manner. For instance, in car pooling it could
be useful to determine people with the same route to share
the car. Such problems are not novel in the literature [5]
and most of the efforts result in mining groups of moving
objects, such as flocks [1], convoys [4] and swarms [8].

The spatio-temporal properties of these groups is the main
distinguishing aspect. In particular, a flock contains at least
m objects moving in the same direction within an circular
region with a user-defined radius. Variants of the flock in-
clude also a notion of time-interval (with minimum duration
defined by the user) according to which in each time-stamp
of the interval a disc containing m objects can be identified.
The rigid characteristic of fixed circular shape could miss
some groups of arbitrary form.

The introduction of the notion of density avoids this draw-
back and allows to discover groups, named as convoys, which
have no limitations on the shape and size. A convoy is de-
fined as a cluster of objects and it is identified by means
of a density-based clustering technique which checks for the
condition of density-connectedness on the objects and for all
the time-stamps of a time-interval [4].

A more general group type is represented by the swarm
concept, which, in contrast to flocks and convoys, it is not
required to hold for all time-stamps of a time-interval, but it
can occur more sporadically. In the classical notion of swarm
this temporal constraint corresponds to a minimum number
of time-stamps which are not necessarily consecutive.

Motivation. The algorithms to detect flocks, convoys and
swarms are designed to capture similarities among (sub)tra-
jectories but leave unexplored two interrelated aspects which
instead appear to be new sources of information to exploit:
i) movements may depent on each other and may hide inter-
actions among the objects, ii) movements can reflect changes
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Figure 1: Moving objects grouped using: (a) flocks, convoys and swarms and (b) communities.

of the motion of the objects and implicitly denote their dy-
namic behaviour. Interactions reflect the possible relation-
ships in which the objects can be involved in space and time,
they can provide a more complete description of the groups
by explaining even the cause of their formation. Interac-
tions can evolve because the objects can move near each
other and then move away. Indeed, moving objects intrinsi-
cally are dynamic, their motion is not necessarily linear and
it can be influenced by the properties or needs of each ob-
ject and by the interactions with other objects as well. For
instance, in social studies, we can observe individuals which
begin to move from different locations, they could come near
until to join together in proximity of a point of interest, they
could remain there for a time and then go away from each
other. So, those individuals can be members of a group even
without having followed similar trajectories.
In that kind of problems, a group can turn out to be in-

teresting not only when its members are spatially close and
move similarly, but also when they are far apart and have dif-
ferent but inter-related movements, or also when they have
different movements but are involved in the same type of in-
teractions. Existing approaches are not prepared to handle
this concept, mainly due to the following reasons:

• Most of the existing techniques rely on a static group
concept where objects have to always meet the same
spatio-temporal properties: for instance, the members
of a group are required to be close each other in each
time-stamp.

• The trajectory corresponds to a geometric abstraction
of the movement and is defined as a series of punc-
tual time-stamped observations that cannot indicate
neither how the object moves over time nor whether
there exists any form of relationship with other trajec-
tories.

Related Work and Contributions. In this paper, we
introduce the concept of community based on the concepts
of interaction among the objects and change in the move-
ments of the objects. The interaction between two objects
oi and oj is defined on the basis of the movement that an ob-
ject oi performs with respect to another object oj , while the
change concerns the variations of spatio-temporal character-
istics that can be observed in the movement of each object.

Therefore, changes of an object’s motion may influence or
determine its interaction with other objects.

A community consists of a set of objects in common to
a set of groups arranged in sequence. In its turn, a group
contains n− 1 pairs formed with objects taken from a set of
n elements: a pair is formed with one object in common to
all pairs (reference object) and the other object taken from
the remaining n − 1 (participants). The pairs of a group
exhibit very similar spatio-temporal features. Differently
from flock, convoy and swarm, the timing of a community is
based on time-intervals created from the time-stamps of the
positions. We clarify the difference between a community
and other group types in the following example.

Another notion of community, proposed in [10], models
the similarities of moving objects in four information sources,
namely semantic properties of the locations, temporal dura-
tion of the trajectory, spatial proximity and movement ve-
locity. This notion anyway requires that the objects move
similarly in all time-stamps whereas the result cannot in-
clude communities with discontinuities over time.

Example 1. In Figure 1(a), six objects are tracked and
have the positions in six time-stamps included in the time-
intervals [t0, t1], [t1, t2], [t2, t3], [t3, t4], [t4, t5], [t5, t6]. Let
k=3 the minimum number of objects required for the fi-
nal groups. Clusters {C3, C6, C7, C8, C9} share the objects
{o1, o2, o3} which form a flock in [t1, t2], [t2, t3], [t3, t4], [t4, t5],
[t5, t6]. The group {o1, o2, o3, o4} corresponds to a convoy
if we consider the notion of density-connectedness on the
clusters {C4, C6, C7, C8, C9}. Finally, with the objects
in common to the clusters {C2, C5, C10} we have the swarm
{o4, o5, o6}. In Figure 1(b), we have two communities, namely
{o1, o2, o3} and {o4, o5, o6} respectively. The first one is
composed of the objects in common to the sequence of the
groups {C1, C3, C4, C5, C6}, where the group C1 is collo-
cated into the time-interval [t0, t2], C3 is collocated into the
time-interval [t1, t3], C4 is collocated into [t2, t4], C5 is asso-
ciated with [t4, t6]. The group C1 is composed of the pairs
(o2, o1) (where o2 is the reference, o1 is the participant) and
(o2, o3) (where o2 in the reference, o3 is the participant).
The other groups can be interpreted in the same manner.
The motions of the pairs (o2, o1 )and (o2, o3) tells us that
they start far apart and tend to move near while observ-
ing a variation of the mutual distance (in [t0, t3]), then,
they move together without any variation of the distance



(in [t2, t5]), finally they move apart (in [t4, t6]). The commu-
nity {o4, o5, o6} is obtained from the non-consecutive groups
{C2, C7}: the first group is collocated into [t0, t2], the second
group in [t4, t6]. In this community, the pairs (o5, o4) and
(o5, o6) proceed by keeping the same distance in [t0, t2] while
they exhibit a reduction of the mutual distance in [t4, t6]. �

The previous example shows the difficulty of existing al-
gorithms to discover communities. Indeed, the algorithm
for finding flocks is inadequate since it works with clusters
in the strict form of a fixed disc. The method for detecting
convoys cannot be used since it operates on the density-
connectedness corresponding to the simultaneous applica-
tion of conditions on the size and closeness for each cluster,
which are criteria hard to be satisfied when considering dis-
tant objects. The difficulty of the algorithm for the discov-
ery of swarms [8] lies in the accommodation of the temporal
component and, specifically, in the fact that the members
of the swarms are required to stick together for a number of
possibly non-consecutive time-stamps. But this could mean
having insignificant swarms characterized by completely dis-
jointed time-stamps and fragmented movements. In sum-
mary, the contributions of this paper include:

• A new definition of group of moving objects which ex-
tends the classical notion of cluster based on the spatial
closeness and density-connectedness.

• The exploitation of two new sources of information cor-
responding to the interactions among the objects and
changes of their motions.

• The definition of spatio-temporal features able to model
the interactions and changes of the movements of pairs
of moving objects.

• The synthesis of a grouping technique which does not
rely on a distance/dissimilarity measure.

• A performance evaluation and experimental compari-
son with existing techniques.

Roadmap. The remainder of this work is organized as fol-
lows. The next section presents some fundamental concepts
related to our approach. Section 3 studies our proposal in
detail. Performance evaluation results are offered in Section
4 whereas Section 5 concludes our work and discuss briefly
future research directions.

2. FUNDAMENTAL CONCEPTS
In this section we present some fundamental concepts re-

lated to our proposal. Some frequently used symbols are
given in Table 1. Let O={o1, o2, . . . , on} be the set of all
moving objects and T = {τ1, τ2, . . . ,τm} be the set of all
time-stamps. The trajectory of an object o is a finite se-
quence of time-stamped locations denoted as t(o) : 〈(p1, τ1),
(p2, τ2), . . ., (pm, τm)〉 during the time-interval [τ1, τm], where
pi ∈ R2 is the geo-spatial position sampled at τi ∈ T . A tra-
jectory may have time-stamps not necessarily equally dis-
tanced, they can be different from those of another tra-
jectory as well as different trajectories may have different
lengths (number of geo-spatial positions).
In this work, we do not analyze the original trajectories

but we adopt a transformation technique which projects the

Table 1: List of symbols.
Symbol Explanation

O all moving objects
T all time-stamps

t(o) (t(ou)) trajectory of the object o (ou)
F set of descriptive features
Fl l-th features describing a pair of trajectories

F l
ou,ov

value of the l-th features for trajectories of ou, ov
[τ1, τm] time-interval containing time-stamps of T

G pair group
or reference object of a pair group
os participant object of a pair group
Gf feature group

εminl
(εmaxl

) min (max) value of feature Fl

εl fixed value of the categoric feature Fl

C a community

trajectory data into a descriptive space which includes a
finite set of features F={F1, . . . , Fl, . . . , Ff} which are the
real subject of our analysis. The features can take value in
categoric or numeric domains. In particular, for each pair
(ou, ov), the transformation technique returns a set of valued
features for the (sub)trajectories observed in two consecutive
time-intervals, which we denote as [τi, τj ] ∪ [τj+1, τk] and
name as feature time-intervals.

A simple illustration is reported in Figure 2. Consider
the trajectories of three objects o1, o2, o3. Let F

1
ou,ov ,F

2
ou,ov

be two features which describe the reciprocal movement be-
tween the objects ou, ov and their average mutual distance
respectively. The domain of the feature F 1

ou,ov has categoric
values {“const”,“far”,“close”} where “const” corresponds to
two objects that travel together by keeping constant their
distance, “away” corresponds to two objects that are moving
away, and “close” corresponds to two objects that are mov-
ing closer. The domain of the feature F 2

ou,ov has numeric
values in the set of natural numbers N. The values of F 1

and F 2 are computed on the feature time-intervals [τ1, τ2] ∪
[τ2, τ3], [τ3, τ4] ∪ [τ4, τ5], [τ5, τ6] ∪ [τ6, τ7]. So, for instance,
the value of the feature F 1

o1,o2 in the feature time-intervals
[τ1, τ2] ∪ [τ2, τ3] is “const”, while the value the feature F

2
o1,o2

is 20. Figure 2 reports the remaining values of the features.

Definition 1 (Pair Group). Given a subset of O with
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Figure 2: Feature generation from trajectories.



m objects, a pair group G consists of the (m−1) pairs of ob-
jects (or,os), where r ∈ {1, . . . ,m}, s = 1, . . . ,m, r 6= s. The
object or appears in all pairs and it is named as reference
object, while the objects os are named participant objects.

For readability, or is the first object of each pair in a pair
group and each participant corresponds to the second object
os.

Definition 2 (Feature Group). Given G a pair group,
F={F1, . . . , Fl, . . . , Ff} the set of features, a feature group
Gf consists of the pairs of G which, in the feature time-
intervals [τi, τi+k] ⊆ T , [τi+k+1, τi+2k] ⊆ T , . . ., [τp, τp+k]
⊆ T , [τp+k+1, τp+2k] ⊆ T , satisfy the following conditions

• ∀ (or, os) ∈ G: εminl ≤ F l
ojr ,ojs

< εmaxl , iff Fl has
numeric values,

where εminl ∈ R, εmaxl ∈ R are minimum and maxi-
mum values respectively for the feature Fl.

• ∀ (or, os) ∈ G: F l
or,os = εl, iff Fl has categoric values,

where εl is a fixed value in the domain of Fl.

The values of εminl , εmaxl , εl are specific for each feature
group. The feature time-intervals have identical width and
are arranged in chronological order.

Intuitively, a feature group is characterized by two compo-
nents, one of nature geo-spatial, the other one of nature tem-
poral. Definition 2 says that, in the time-intervals [τi, τi+k]
∪ [τi+k+1, τi+2k], . . ., [τp, τp+k] ∪ [τp+k+1, τp+2k], the pairs
of objects of G have the same value for each categorical fea-
ture and the same range for each numeric feature. For in-
stance in Figure 2, we have a feature group formed by the
pairs (o3, o2), (o3, o1) in the time-intervals [τ1, τ2] ∪ [τ2, τ3]
and [τ5, τ6] ∪ [τ6, τ7]. Indeed, considered ε1=“away” (εl for
F 1), εmin2=25, εmax2=50 (respectively, εminl and εmaxl for
F 2), the values of the feature F 1 are the same (“away”)
and the values of the feature F 2 have the same numeric
range. These conditions hold in the feature time-intervals
[τ1,τ2]∪[τ2,τ3] and [τ5,τ6] ∪ [τ6,τ7], but they do not hold in
the time-intervals [τ3,τ4] ∪ [τ4,τ5] because the value of the
feature F 1 is “close” which is different from “away”.

Definition 3 (Community). A set of feature groups
{Gf1 , Gf2 , . . ., Gfn} defines a community C iff:

• the feature groups Gf1 , Gf2 , . . ., Gfn consists of the
same pair group G=G1=G2 = . . .= Gn composed by
(m-1) pairs of objects with the same reference object
and the same set of m-1 participants.

• the feature time-intervals of two different feature groups
are disjointed ([τi, τi+k] ∪ [τi+k+1, τi+2k]

∩
[τp, τp+k]

∪ [τp+k+1, τp+2k])= � and chronologically ordered (i+
2k < p).

The sequence of the feature time-intervals associated with
the feature groups is called time-line.

For instance, in Figure 2, we have a community formed
by the pairs (o3, o2) and (o3, o1) in the time-line [τ1, τ3],
[τ3, τ5], [τ5, τ7], where o3 is the reference object, o2 and o1
are participant objects. In particular, in the feature time-
intervals [τ1, τ2] ∪ [τ2, τ3] and [τ5, τ6] ∪ [τ6, τ7], the feature
F 1 has value “away”, while the feature F 2 has values in the

range [25,50) (ε1=“away”, εmin2=25, εmax2=50). In the fea-
ture time-interval [τ3, τ4] ∪ [τ4, τ5], the feature F 1 has value
“close”, while the feature F 2 has values in the range [15,25)
(ε1=“close”, εmin2=15, εmax2=25).

To capture possible discontinuities, we should handle the
case in which i + 2k < p − 1, namely when the feature
time-intervals are separated over time. At this aim, we in-
troduce an input parameter γ which defines the maximum
temporal gap that can be admitted between two feature
time-intervals.

Now, we can give a formal statement of the problem of
discovering communities from trajectories:

Given a set of moving objects O and the corresponding tra-
jectories, a set of time-stamps T , the features F and the
width of the associated time-intervals ∆, Discover the com-
munities as formalized in Definition 3: for each community
C, the temporal gap in the time-line does not exceed γ and
the number of involved objects is greater than or equal to
the minimum input threshold minO.

3. PROPOSED METHOD
The proposed solution comprises three steps: i) trans-

formation of the original trajectories in descriptive spatio-
temporal features, ii) arrangement of the feature vectors
produced in the previous step in a tree-like structure in order
to generate feature groups and iii) discovery of communities
from feature groups.

3.1 Transformation of Trajectory Data
Tracking devices often record the positions of moving ob-

jects with irregularity and discontinuity, mainly due to phys-
ical and instrumental factors which can affect the data qual-
ity. To remove possible inconsistencies we have to handle
this kind of error sources. Moreover, the analysis of interac-
tions among objects, we intend to conduct, suggests that we
should apply a pre-processing step able to return positions
(of the objects) equally distanced over time, so that the tra-
jectories can be handled with regular timing. We adopt a
data transformation technique which first performs a tempo-
ral segmentation operation and then projects the segmented
trajectories into the descriptive space. Preliminarily, an out-
lier removal operation is applied on the trajectories.

The temporal segmentation performs a discretization step
on the set T and generates time-intervals [τi, τi+k], [τi+k+1,
τi+2k], . . ., [τp, τp+k], [τp+k+1, τp+2k] with width equal to ∆.
This allows to have a sort of re-sampling of the trajectories at
regular time-stamps. In particular, for each object a single
geo-spatial location is associated with the set of positions
observed in each time-interval (segment). This location is
determined by an aggregation operation applied to the orig-
inal positions in a time-interval. As aggregation operator we
prefer to use the geometric mean due to its simplicity and
because other pre-processing operations (such as, smoothing
and interpolation) could introduce data loss and potential
creation of artifact in the trajectory data.

The descriptive space includes spatio-temporal features
defined to model the interactions and changes of the move-
ments of pairs of objects. The use of new descriptors to rep-
resent the original trajectories is not novel. In the literature
we can find several types of features (also called movement



parameters) which have been defined basically for eliciting
information which the trajectories are not able to do directly
[3]. Typically, features are produced by simple feature ex-
traction algorithms applied to original trajectories and their
purpose is to model physical and spatial characteristics of
the movements, such as speed, acceleration, duration, direc-
tion, etc. In this work, the features are extracted from the
aggregate values computed in two consecutive time-intervals
(segments). More precisely, the value of a feature is com-
puted for each pair of objects and it is determined from
the two aggregate values computed in the respective time-
intervals for each object of the pair. We investigate six fea-
tures defined as follows (please refer to Figure 3):

Categoric Reciprocal Movement (CRM) is the feature which
represents the movement of an object with respect to the
movement of another one. It takes five possible categoric
values in function of the two aggregate locations. The set of
possible values was defined manually and comprises {“one away”,
“both away”,“const”,“one close”,“both close”}. More specif-
ically, ”const”corresponds to two objects that travel together
by keeping their distance constant. We have “one away”
when one of the two objects is moving away from the other
one while the latter does not change. The value “one close”
occurs when one of the two objects is moving close while the
trajectory of the other one remain unchanged. The value
“both away” corresponds to two objects that are moving
away from each other. On the other hand, when the tra-
jectories tend to move close we have “both close”.
Numeric Reciprocal Movement (NRM) is the feature which,

like CRM, represents the movement of an object relatively to
another one but with numeric values. The value of NRM is
derived from the distances computed, in each time-interval,
between the two aggregate locations of the pair of objects. It
is equal to the difference between these two distances. Thus,
when two objects are moving close to each other, NRM has
a negative value, while, otherwise the value is positive.
Displacement (DIS) denotes the displacement done by the

pair of objects over the two time-intervals. The value of DIS
is derived from the middle locations between the two aggre-
gate locations (in the two time-intervals) and it is equal to
the distance between the two middle locations.
Cardinal Direction (CD). The features listed above pro-

vide a spatial description of the movement without specify-
ing any geographic connotation. We introduce the feature
CD in order to elicit the information about the spatial direc-
tion and capture that information as the classical cardinal
direction of the movement of the pair of objects. The value
of CD is derived from the middle locations between the two
aggregate locations (in the two time-intervals) and it takes
the direction which goes from the middle location of the
first time-interval towards the middle locations of the sec-
ond time-interval.
Position (POS). The purpose of this feature is to pro-

vide information on the localization of the movement. In-
deed, the features listed above cannot distinguish whether
two identical movements are localized in the neighbourhood
or in completely distant locations. The value of POS is de-
rived from the middle locations between the two aggregate
locations (in the two time-intervals) and it corresponds to
the middle point of the two middle locations.

Finally, for each pair of objects ou and ov, the transforma-

Figure 3: Trajectory transformation.

tion technique returns a vector of valued features 〈 CRM,
NRM, DIS, CD, POS 〉 computed on the two consecutive
time-intervals [τi, τi+k], [τi+k+1, τi+2k]. It is worthwhile that
the extraction of features for each pair of objects on con-
secutive time-intervals has a two-fold result: i) modelling
the interaction of the smallest admissible group of objects
(namely, two objects), and ii) capturing relevant changes
of their movements which turn out to be evident only on
time-intervals rather than instantaneous time-stamps.

3.2 The Feature Tree
Once the feature vectors have been generated, they pop-

ulate a B-tree [2] which is used to discover first the feature
groups and then the communities. The tree structure does
not change when the vectors are inserted and it is defined on
the basis of the set of features introduced in Section 3.1. The
arrangement of tree levels is such to represent the features
in the order {CRM, NRM, CD,DIS, POS-x, POS-y} (Figure
4(a)). The feature ordering is decided by domain experts on
the basis of their criteria about the discriminative power of
the features. Thus, the features CRM and NRM are ranked
first because they depict, better than the others, the inter-
action in a pair of objects. Then, we place features CD and
DIS because they are able to denote characteristics on the
changes of the movement, and, finally the features POS-x
and POS-y which provide a spatial indication not directly
related to the interactions and changes in moving objects.

Nodes of a specific level refer to one feature and access to
nodes (children) of the lower level which, in their turn, refer
to another feature. More precisely, a node has as many child
nodes as the number of the possible values of the feature as-
sociated with its level, therefore, the number of nodes of a
specific level is equal to the number of the possible values
of the feature associated with the parent level. In the case
of categorical features, the child nodes are denoted with dis-
tinct values εl defined in Section 3.1. For example, at the
level associated with feature CD, the nodes have eight child
nodes, one for each value of the set {“north”, “north-east”,
“east”, “south-east”, “south”, “west”, “south-west”, “north-
west”}. In the case of numeric features, the child nodes
are denoted with distinct ranges [εminl , εmaxl) produced by
a discretization technique. In this work, we adopt equi-
frequency discretization since it guarantees the balancing of
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Figure 4: Levels are associated with features and nodes have as many children as the values of the associated
features. The red dotted line illustrates a path example.

the tree due to the uniform distribution of vectors to ranges.
This tree structure allows us to collocate in the same

node the vectors whose values of the feature are identical
(εl) or are included in the same range ([εminl , εmaxl)). The
root node contains vectors which have only one feature with
identical value (categoric), while the leaf nodes contain vec-
tors which have all categoric features with identical values
and all numeric features with values included in the same
ranges. Therefore, the vectors collocated in the same leaf
node will be those that have traversed the same path in the
tree and that we consider similar since share the same cate-
goric values and same numeric ranges. For instance, in the
leftmost leaf node in Figure 4(b), the pairs (o2,o1), (o2,o3)
share the same categoric values, namely“one away”for CRM
and “north” for CD, and the same numeric ranges, namely
[1,3) for NRM, [20,40) for DIS, [100,600) for POS-x, and
[50,150) for POS-y.
The insertion process starts at the root and descends the

tree. For each level, it chooses the node whose value of the
associated feature is identical to (categorical) or includes
(numeric) the value of the same feature of the current vector.
From the chosen node we access to its child nodes where we
replicate the insertion considering the appropriate feature
until to reach the leaf nodes.

3.3 Feature Groups and Communities
We exploit the structure of the feature tree to determine

the geo-spatial and temporal components of feature groups
which are, in their turn, necessary for the communities.
From each leaf node we can extract at least one feature
group. Indeed, the pair group G of a feature group can
be searched among the pairs of the inserted vectors, while
the geo-spatial component is determined directly from the
tree path which characterizes each leaf node. The temporal
component is computed by the method given in the sequel.
The method analyses the content of the leaf nodes sepa-

rately and, for each of these, it searches the feature time-
intervals which are in common. In particular, the method
identifies all possible pair groups (Definition 1) present in
each leaf node and, for each pair group, it processes all
sequences of feature time-intervals in order to find the se-

quences in common. The analysis is thus focused on each
pair group and is conducted in two phases: first, generation
of candidate sequences, then, selection of the more interest-
ing candidates with respect to preference criteria.

In the first phase, we adopt the efficient algorithm pro-
posed in [6] in order to find sequences (candidates) in com-
mon between a reference sequence of feature time-intervals
and the set of all sequences of the current pair group. The
algorithm solves the problem by searching the intersections
between the feature time-intervals of the reference sequence
and the feature time-intervals of the remaining sequences. In
particular, for each time-interval of the reference sequence
(query interval), the algorithm uses two binary search oper-
ations, one into the sorted list of the time-stamps which ter-
minate the time-intervals and the other into the sorted list of
the time-stamps which open the time-intervals. Each search
excludes the time-intervals that cannot intersect the query
interval, leaving solely those that must intersect the query
interval. A detailed description can be found in [6]. Eventu-
ally, the intersecting time-intervals are sorted and combined
to form the candidate sequences.

In the second phase, two selection operations are per-
formed, one subsequent to the other one. The first one filters
out the candidates which have time-intervals shorter than
the width ∆, while the second one selects the candidates
which meet the preference criteria. We have two preference
criteria, one alternative to the other one. The first criteria
(maxInterval, MI ) aims to prefer feature groups with feature
time-intervals as long as possible, while the second criteria
(maxObjects, MO) aims to pick feature time-intervals asso-
ciated with the largest set of pairs as possible. Note that
the considered preference criterion is strictly connected to
the choice of the reference sequence seen in the first phase.
So, when we choice maxInterval the reference sequence is
chosen as the longest sequence in the set of all sequences of
the pair group, while when we choice the criteria maxOb-
jects the reference sequence is chosen as the shortest se-
quence which has the maximum number of pairs, since fea-
ture groups with higher number of pairs are more probable
in shorter sequences.

The result of the two phases consists in only one sequence



Algorithm 1 COM /* community discovery */

Input: {Gf1 , Gf2 , . . ., Gfn}, γ, or, minO
Output: Tlines

1: TL ← �; Tlines ← �; D ← �;
2: S ← sort by time({Gf1 , Gf2 , . . ., Gfn});
3: Fprev ← nextTimeInterval(S, τ1);
4: insert(TL, Fprev); remove(S,Fprev);
5: while S 6= �
6: Fnext ← nextTimeInterval(S, getEndTimeStamp(Fprev));
7: if gap(Fprev , Fnext) ≤ γ
8: if testParticipants(getParticipants(Fprev),

getParticipants(Fnext))
8: update(TL, Fnext); remove(S, Fnext)
9: Fprev ← Fnext;
10: else
11: insert(D, Fnext); remove(S, Fnext);
12: else
13: S ← S ∪ D; TL ← �;
14: D ← �; Tlines ← Tlines ∪ {TL};
14: Fprev ← nextTimeInterval(S,τ1);
15: insert(TL, Fprev); remove(S, Fprev);
16: prune by minO(Tlines);

which contains the feature time-intervals shared in the cur-
rent pair group. It provides a temporal characterization
which completes the description of the feature group.
According to Definition 2 and the structure of the feature

tree, a reference object is associated with only one feature
group in each leaf node. Thus, a reference object is associ-
ated with a set of feature groups {Gf1 , Gf2 , . . ., Gfn} com-
puted from all leaf nodes. These feature groups anyway have
different sets of participant objects. The method for discov-
ering communities follows this same idea and builds groups
of moving objects relatively to reference objects. It works
with the feature groups of the same reference object and op-
erates on the selected sequences of the feature time-intervals
by generating a sequence of ordered feature time-intervals
(time-line) with the same set of participant objects.
Two alternatives are adopted depending on the chosen

preference criterion (maxObjects or maxInterval). They op-
erate in the same way (Algorithm 1) but they differ in the
following aspect: the first technique aims at generating time-
lines with the larger number of participant objects, while the
second one aims at generating time-lines with the longer fea-
ture time-intervals. Both techniques start off with sorting
(by chronological order) the sequence of the time-intervals
of the feature groups associated with the current reference
object or. This can return an ordering in which the time-
intervals of the same feature group are separated and time-
intervals of different feature groups are adjacent.
Algorithm 1 generates a time-line incrementally by evalu-

ating whether joining the next time-interval (getNextTimeIn-
terval()) to the current time-line (TL). In particular, the
time-interval Fprev is considered for the join whether i) it
follows temporally the last time-interval added to the time-
line TL and there is no time-interval with the same partic-
ipants which precedes it, and ii) it is not temporally dis-
tant more than γ. Thus, the time-line is updated whether
the test is positive. The implementation of this test distin-
guishes the two techniques: for maxObjects the test is imple-
mented as getParticipants(Fprev) = getParticipants(Fnext),
while for maxInterval the test is getParticipants(TL) ∩ get-
Participants (Fnext) 6= ∅, where getParticipants(TL) returns
the participants which are in common to the time-intervals
added to TL. The output (Tlines) is a set of candidate time-
lines which are further processed: the time-lines with num-

ber of participants less than minO are pruned, then, from
those remaining, we select only the time-line which better
satisfies the preference criterion (either highest number of
participants or longest sequence of time-intervals).

Example 2. We extract some feature groups and commu-
nities based on Figure 4(b) with ∆=1 hour. On the leftmost
leaf node, we have a feature group Gf1 whose pair group is
composed by the pairs (o2, o1) and (o2, o3), the geo-spatial
component is equal to “one away” (CRM), “north” (CD),
[1,3) (NRM), [20,40) (DIS), [100,600) (POS-x), and [50,150)
(POS-y), while the temporal component corresponds to the
sequence of intersecting feature time-intervals 〈 [10:00,12:00],
[15:00,16:00] 〉. On the rightmost leaf node, we see a feature
group Gf2 whose group consists of the pairs (o2, o1), (o2,
o3), and (o2, o4) the geo-spatial component is equal to “one
away” (CRM), “north” (CD), [1,3) (NRM), [20,40) (DIS),
[700,900) (POS-x), and [200,300) (POS-y), while the tem-
poral component corresponds to the sequence of intersecting
feature time-intervals 〈 [12:00,14:00], [18:00,19:00] 〉. Let o2
be the reference object and γ=4 hours. The time-intervals
are sorted as follows 〈 [10:00, 12:00] (Gf1), [12:00, 14:00]
(Gf2), [15:00, 16:00] (Gf1), [18:00, 19:00] (Gf2) 〉. By choos-
ing the criterion maxObjects, we obtain the community com-
posed of the pairs (o2,o1),(o2,o3), and (o2,o4) which exhibit
on the time-line 〈 [12:00, 14:00] [18:00, 19:00] 〉 the move-
ment so described: “one away” (CRM), “north” (CD), [1, 3)
(NRM), [20, 40) (DIS), [700, 900) (POS-x), and [200, 300)
(POS-y). Instead, by choosing the criterion maxInterval,
we obtain the community composed by the the pairs (o2,o1)
and (o2,o3) which exhibit the movement “one away” (CRM),
“north”(CD), [1, 3) (NRM), [20, 40) (DIS), [100, 600) (POS-
x), [50, 150) (POS-y) in [10:00, 12:00], [15:00, 16:00], and the
movement “one away” (CRM), “north” (CD), [1,3) (NRM),
[20, 40) (DIS), [700, 900) (POS-x), [200, 300) (POS-y) in
[12:00, 14:00], [18:00, 19:00]. �

4. PERFORMANCE EVALUATION
Experiments were conducted in order to test the efficiency

of COM and the influence of the parameters on the dis-
covered communities with both preference criteria (COM-
MO and COM-MI). We performed also comparative ex-
periments with two competitors. The first one (TC) is
used as baseline and it aims at discovering the common
sub-trajectories with a density-based line-segment cluster-
ing algorithm [7]. It takes user-defined parameters on the
minimum number of line-segments and radius of the clus-
ters. The second competitor (SW) discovers groups of ob-
jects moving for certain snapshots that could be not con-
secutive [8]. The algorithm SW works on pre-existing clus-
ters and adopts a candidate generation strategy. It takes
user-defined parameters on the minimum number of the ob-
jects and minimum duration the swarms (which correspond
to minO and ∆ of COM). These algorithms have a dif-
ferent input parameterization, so we conducted a different
comparative analysis. Moreover, SW cannot be directly ap-
plied since it does not handle either trajectories of different
length or missing values. To perform a fair comparison, we
tested it on the pre-processed trajectories returned by the
temporal segmentation (Section 3.1). TC was used with the
original data since it handle trajectories of different length.

We evaluated the performance of the algorithms using
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Figure 5: Runtime (in seconds) vs. minO and ∆ (γ=1 hour).

 1

 10

 100

 1000

 10000

 100000

2 3 4 5 6

R
u

n
ti

m
e

Min number of objects

COM-MO
COM-MI
SW-AVG

SW
TC

(a) Starkey

 0.1

 1

 10

 100

 1000

 10000

2 3 4 5 6

R
u

n
ti

m
e

Min number of objects

COM-MO
COM-MI
SW-AVG

SW
TC

(b) Geolife

 1

 10

 100

 1000

 10000

0.5 1 1.5 2

R
u

n
ti

m
e

Delta

COM-MO

COM-MI

SW-AVG

SW

TC

(c) Starkey

 0.1

 1

 10

 100

 1000

0.5 1 1.5 2

R
u

n
ti

m
e

Delta

COM-MO

COM-MI

SW-AVG

SW

TC

(d) Geolife

Figure 6: Number of results vs. minO and ∆ (γ=1 hour).

two real-world datasets: i) Microsoft Geolife1 which com-
prises the trajectories of 182 users outdoor movements (O)
in a period of over three years sampled every 1-5 seconds or
every 5-10 meters. This dataset contains almost 24 millions
of observations in a set of 18 millions time-stamps (T ). ii)
Starkey2 which has been generated by the Starkey project
and contains radio-telemetry locations of the movements of
128 elks (O). The observation period is May 1993-August
1996 and comprises 168,000 distinct recordings in 166,000
time-stamps (T ). Each object has a portion of 0.09 obser-
vations per time-stamp. In both datasets, trajectories have
different length and can contain positions recorded at differ-
ent time-stamps.
Figures 5(a) and 5(b) illustrate the results of the efficiency

when tuning minO. The results of SW-AVG include also
the running times averaged on ∆={1/2, 1, 1.5, 2} hours,
while those of TC are averaged on several settings of the
input parameters. We observe that the running times of
COM are significantly lower than those of SW and TC (y-
axis is logarithmic). In addition, the performance of COM
with respect to SW can be explained with the fact that
SW spends time in a preliminary density-based clustering
and exploration of the search space of the candidate swarms.
TC requires more time because the clustering decision re-
quires a distance measure on sub-trajectories whose execu-
tion is computationally intensive. COM exhibits the best
runtimes also when tuning ∆ (Figures 5(c) and (d)) but
with a different behaviour due to the different density of the
trajectories, as said before: in Geolife we have essentially a
slight decreasing tendency, while it is increasing in Starkey.
The decrease exhibited by SW, when increasing ∆, is due
to the reduced number of clusters that are likely to be ex-
tracted from wider time-intervals.

1
http://research.microsoft.com/apps/catalog/default.aspx?t=down-

loads
2
http://www.fs.fed.us/pnw/starkey/data/tables

The different density and distribution of the two datasets
is the key to analyze the number of the groups (communities,
swarms and clusters) when varying ∆ (Figure 6, minO=4).
The results of SW-AVG are averaged onminO={2,3,4,5,6}.
COM and SW have similar behaviour, namely slightly de-
creasing in Geolife and increasing in Starkey. This comfort
us about the response of our approach with respect to trajec-
tories which have very different characteristics. A deeper in-
spection reveals the different order of magnitude between the
communities and swarms: this is quite expected since SW
works on the spatial closeness of the objects, while COM
can generate groups of objects even when they are not close.
Instead, TC discovers an average number of clusters which
is less than one. This difficulty could be due to the inherent
complexity that an operation of grouping of line-segments
can raise with respect to grouping simple geo-spatial loca-
tions, as in the case of SW.

5. CONCLUSIONS
We investigated the problem of mining groups of moving

objects from trajectory data. Different from the existing
proposed approaches relying on the spatial closeness (flock,
convoy and swarm), the current work considers the interac-
tions among the objects and changes of their motions which
opens to the possibility of following the complete dynam-
ics of a group. The proposed solution integrates an efficient
grouping technique which avoids to re-scan all data. Experi-
ments remark the efficiency with respect to other algorithms.
We plan to extend the work in several directions including:
i) the integration of pre-processing techniques (e.g., local-
ity sensitive hashing) to guide the discovery process on sets
of moving objects of particular interest, ii) the adaptation
of the approach to a distributed architecture (e.g., MapRe-
duce framework) to analyze massive trajectory data, and iii)
the construction of the feature tree without considering any
pre-defined order of the features.
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