
Closest Pair Queries with Spatial Constraints ?

Apostolos N. Papadopoulos Alexandros Nanopoulos Yannis Manolopoulos

Department of Informatics, Aristotle University, GR-54124 Thessaloniki, Greece.
E-mail: {apostol,alex,manolopo}@delab.csd.auth.gr

Abstract. Given two datasets DA and DB the closest-pair query (CPQ) re-
trieves the pair (a,b), where a ∈ DA and b ∈ DB, having the smallest distance
between all pairs of objects. An extension to this problem is to generate the
k closest pairs of objects (k-CPQ). In several cases spatial constraints are ap-
plied, and object pairs that are retrieved must also satisfy these constraints.
Although the application of spatial constraints seems natural towards a more
focused search, only recently they have been studied for the CPQ problem
with the restriction that DA = DB. In this work we focus on constrained
closest-pair queries (CCPQ), between two distinct datasets DA and DB, where
objects from DA must be enclosed by a spatial region R. A new algorithm
is proposed, which is compared with a modified closest-pair algorithm. The
experimental results demonstrate that the proposed approach is superior with
respect to CPU and I/O costs.

1 Introduction

Research in spatial and spatiotemporal databases is very active in the last twenty
years. The literature is rich in efficient access methods, query processing techniques,
cost models and query languages, providing the necessary components to build high
quality systems. The majority of research efforts aiming at efficient query processing
in spatial and spatiotemporal databases, concentrated in the following significant
query types: range query, k nearest-neighbor query, spatial join query and closes-pair
query. t is a combination of spatial join and nearest neighbor queries. Given two
spatial datasets DA and DB, the output of a k closest-pair query is composed of k
pairs oa,ob such that oa ∈ DA, ob ∈ DB. These k pair-wise distances are the smallest
amongst all possible object pairs.

Spatial joins and closest-pair queries require significant computation effort and
many more I/O operations than simpler queries like range and nearest neighbors.
Moreover, queries involving more than one datasets are very frequent in real appli-
cations, and therefore, special attention has been given by the research community
[11, 5, 6, 14, 17, 3].

In this study, we focus on the k-Semi-Closest-Pair Query (k-SCPQ), and more
specifically, on an interesting variation which is derived by applying spatial con-
straints in the objects of the first dataset. We term this query k-Constrained-Semi-
Closest-Pair Query (k-CSCPQ). In the k-SCPQ query we require k object pairs
(oa, ob) with oa ∈ DA and ob ∈ DB having the smallest distances between datasets

? Research supported by ARCHIMEDES project 2.2.14, “Management of Moving Objects
and the WWW”, of the Technological Educational Institute of Thessaloniki (EPEAEK
II), and by the 2003-2005 Serbian-Greek joint research and technology program.

DA and DB such that each object oa appears at most once in the final result. In
the k-CSCPQ query, an additional spatial constraint is applied, requiring that each
object oa ∈ DA that appears in the final result must be enclosed by a spatial region
R1. An example is given in Figure 1, illustrating the results of the aforementioned
CPQ variations for k = 2.

a1

a2
a3

b1

a4

a5

a6

a7

a8

a9

b3

b4

b5

b6
b2

(a) closest-pair query

(k-CPQ)

a1

a2
a3

b1

a4

a5

a6

a7

a8

a9

b3

b4

b5

b6
b2

(b) semi-closest-pair query

(k-SCPQ)

a1

a2
a3

b1

a4

a5

a6

a7

a8

a9

b3

b4

b5

b6

Query Region

b2

(c) constrained semi-closest-pair query

(k-CSCPQ)

Fig. 1. Results of CPQ variations for k=2.

Distance-based queries, such as nearest-neighbor and closest-pair, play a very
important role in spatial and spatiotemporal databases. Apart from the fact that
these queries compose an important family of queries on their own, they can be used
as fundamental building blocks for more complex operations, such as data mining
algorithms. Several data mining tasks require the combination of two datasets in
order to draw conclusions. A clustering algorithm based on closest pairs has been
proposed in [12]. In [2, 3] the authors study applications of the k-NN join operation
to knowledge discovery, which is a direct extension of the k-semi-closest-pair query.
More specifically, the authors discuss the application of k-NN join to clustering,
classification and sampling tasks in data mining operations, and they illustrate how
these tasks can be performed more efficiently. In [19] it is reported that the k-NN
join can also be used to improve the performance of LOF algorithm, which is used for
outlier detection in a single dataset [4], and also to improve the performance of the
Chameleon clustering algorithm [10]. The importance of dynamic closest-pair queries
to hierarchical clustering has been studied in [8]. In the same paper the authors
discuss the application of CPQ to other domains such as the Traveling Salesman
Problem (TSP), non-hierarchical clustering, and greedy matching, to name a few.

Taking into consideration the significance of distance-based queries in several dis-
ciplines, in this work we focus on the semi-closest-pair query with spatial constraints
and study efficient algorithms for its computation. The motivation behind the cur-
rent study is the fact that in many realistic cases the user focuses on a portion of
the dataspace rather than in the whole dataspace. Although this sounds natural,
specifically for large dataspaces and large populations, there is limited research work
towards constrained spatial query processing. Moreover, spatial constraints may be
applied implicitly by the system as a result of user query. For example, consider
the query: ”Find the three closest parks from all hotels located at the center of
the city”. The hotels located at the city center are usually enclosed by a polygonal

1 For the rest of the study we assume that both datasets DA and DB contain multidimen-
sional points. The methods are also applicable for non-point objects.

region which determines the center of the city. Finally, many complex algorithms
first perform a partitioning of the dataspace into cells, and then operate in each cell
separately. Therefore, our methods can be used as of-the-self components of more
complex operations, in order to speed up specific algorithmic steps.

The rest of the article is organized as follows. Section 2 presents the appropriate
background, the related work and the main contributions of the paper. The query
processing algorithms are presented and studied in Section 3. Section 4 contains the
performance evaluation results, whereas Section 5 concludes the work and motivates
for further research in the area.

2 Problem Definition and Related Work

LetDA andDB be two datasets of multi-dimensional points, each indexed by means of
a spatial access method. We assume that the R∗-tree [1] is used to index each dataset,
although other variations could be applied equally well. Dataset DA is called the
primary dataset, whereas dataset DB is called the reference dataset. We are interested
in determining the k objects from DA that are closer to objects from the reference
dataset DB, under the constraint that all points from DA that are part of the answer
must be enclosed by a spatial region Rq. If the number of objects from DA contained
in R is less than k, then all objects are reported, ranked by their NN distance to the
reference dataset DB. For simplicity and clarity we assume that Rq is a rectangular
region, although arbitrary query regions can be used as well.

The first method towards processing of constrained closest-pair queries has been
proposed in [13], where it is assumed that DA=DB. Moreover, the authors assume
that in order for a pair (o1, o2) to be part of the answer, both o1 and o2 must be
enclosed by the query region R. In order to facilitate efficient query processing, the
R-tree is used to index the dataset. The proposed method augments the R-tree nodes
with auxiliary information concerning the closest pair of objects that resides in each
tree branch. This information is adjusted accordingly during insertions and deletions.
Performance evaluation results have shown that the proposed technique outperforms
by factors existing techniques based on closest pairs. This method can not be applied
in our case, since we assume that datasets DA and DB are distinct. This method can
only be applied if for every pair of datasets we maintain a different index structure,
which is not considered a feasible approach.

In [16] the authors study the processing of closest-pair queries by applying car-
dinality constraints on the result. For example, the query “determine objects from
DA such that they are close to at least 5 objects from DB”, involves a distance join
(closest-pair) and a cardinality constraint on the result. However, we are interested
in applying spatial constraints on the objects of DA.

Research closely related to ours include the work in [20] where the All-Semi-
Closest-Pair query is addressed, under the term All-Nearest-Neighbors. The authors
propose a method to compute the nearest neighbor of each point in dataset DA, with
respect to dataset DB. They also provide a solution in the case where there are no
available indexing mechanisms for the two datasets. The fundamental characteristics
of these methods is the application of batching operations, aiming at reduced pro-
cessing costs. Although the proposed methods are focused on evaluating the nearest-
neighbor for every object in DA, they can be modified towards reporting the best
k answers, under spatial constraints. The details of the algorithms are given in the
subsequent section.

Methods proposed for Closest-Pair queries [9, 6, 7] can be used in our case by
applying the necessary modifications in order to: 1) process Semi-Closest-Pair queries
and 2) support spatial constraints. Algorithms for Closest-Pair queries are either

recursive or iterative and work by synchronized traversals of the two index structures.
Performance is improved by applying plane-sweeping techniques and bidirectional
node expansion [15]. The details of the Closest-Pair algorithm, which is used for
comparison purposes, are given in the subsequent section.

3 Processing Techniques

3.1 The Semi Closest-Pair Algorithm (SCP)

Algorithms that process k-CPQ queries can be adapted in order to answer k-CSCPQ
queries. In this study, we consider a heap-based algorithm proposed in [7], enhanced
with plane-sweeping optimizations [15]. Moreover, the algorithm is enhanced with
batching capabilities, towards reduced processing costs. Algorithm SCP is based on a
bidirectional expansion of internal nodes which has been proposed in [15], in contrast
to a unidirectional expansion [9]. A minheap data structure is used as a priority
queue to keep pairs of entries of TA and TB, which are promising to contain relevant
object pairs from the two datasets. The minheap structure stores pairs of internal
nodes only, keeping the size of the minheap at reduced levels. In addition, a maxheap
data structure maintains the best k distances determined so far.

Algorithm SCP continuously retrieves pairs of entries from the minheap, until the
priority of the minheap top is greater than the current dk. Let (EA, EB) be the next
pair of entries retrieved by the minheap. We distinguish the following cases:

– Both EA and EB correspond to internal nodes: in this case a bidirectional expan-
sion is applied in order to retrieve the sets of MBRs of the two nodes pointed by
EA and EB respectively. Then, plane-sweeping is applied in order to determine
new entry pairs, which are either rejected or inserted into minheap according to
their distance.

– Both EA and EB correspond to leaf nodes: in this case a batch operation is
executed, by means of the plane-sweep technique, in order to determine object
pairs (ai, bj) of the two datasets that may contribute to the final answer. If
dist(ai, bj) > dk then the pair is rejected. If dist(ai, bj) ≤ dk and object ai does
not exist in maxheap, then the pair (ai, bj) is inserted into maxheap. However, if
ai is already in maxheap, we check if the new distance is smaller than the already
recorded one. In this case, the distance of ai is replaced in maxheap.

– One of the two entries corresponds to an internal node, and the other entry
corresponds to a leaf node: in this case a unidirectional expansion is performed
only for the entry which corresponds to an internal node. New entry pairs are
either rejected or inserted into minheap.

In summary, the SCP algorithm can be used for k-CSCPQ query processing,
provided that:

– a node of TA is inspected only if its MBR intersects the query region R and
– during plane-sweeping operations each object from DA is considered only once.

3.2 The Proposed Approach (The Probe-and-Search Algorithm)

In this section, we present a new algorithm for answering k-CSCPQ queries, when the
two datasets under consideration are indexed by means of R∗-trees or similar access
methods. We would like to devise an algorithm having the following properties:

– The algorithm should have reduced CPU cost, which is enabled by the use of
batching operations,

– Buffer exploitation should be increased introducing as few buffer misses as pos-
sible,

– The working memory of the algorithm should be low, and
– Pruning of TA should be enforced in order to avoid inspecting all tree nodes

intersected by R.

In the sequel we present in detail the proposed algorithm, which is termed Probe-
and-Search (PaS). It consists of three stages: a) searching the primary tree, b) pruning
the primary tree and c) performing batching operations in the reference tree.

Searching the Primary Tree Given the number of requested answers k and the
query region R, the algorithm begins its execution by inspecting relevant nodes of
the primary dataset, which is organized by TA. Instead of using a recursive method
to traverse the tree, a heap structure is used to accommodate relevant entries. The
heap priority is defined by the Hilbert value of the MBR centroid of every inspected
node entry, as it has been used in [20]. We call this structure HilbertMinHeap. When
a new node of TA is visited, we check which of its entries are intersected by the query
region R. Then, the Hilbert value of each of these entries is calculated, and the pair
(entry, HilbertValue) is inserted into HilbertMinHeap.

The use of the Hilbert value guarantees that locality of references is preserved,
and therefore, nodes that are located close in the native space are likely to be accessed
sequentially. The search is continued until a node is reached which resides in the level
right above the leaf level.

Pruning the Primary Tree In order to prune the primary tree TA, the PaS al-
gorithm should be able to determine whether a node of TA cannot contribute to the
result. Let NA be a node examined by PaS (i.e., it has been inserted in HilbertMin-
Heap). For each NA’s entry, NA[i], PaS checks if there is an intersection of NA[i] with
R. If this is true, then a 1-NN query is issued to TB and the minimum distance mindist
between NA[i].mbr and an object in TB is determined. If the calculated mindist is
larger than the current k-th best distance, then it is easy to see that the further ex-
amination of NA[i] can be pruned, because NA[i] will not contain any object whose
distance from any object of TB will be less than the currently found k-th distance.
In this case, we avoid the access to the corresponding page and the examination of
NA[i]’s entries.

Since PaS uses the aforementioned pruning criterion, we would like to prioritize
the examination of the entries of TA according to their mindist distance from the
entries of TB . This way, the most promising entries of TA are going to be examined
first. Thus, the current k-th best distance will be accordingly small so as to prune
many entries of TA and the final result will be shaped more quickly. PaS performs
the required prioritization by placing the examined entries of TA into a second heap
structure. An entry in this heap comprises a pair (NA[i], mindist), where mindist is
the result of the 1-NN query issued to TB by NA[i].mbr. The entries in this heap are
maintained according to their mindist values.

It is easy to contemplate that the closer to the root of TA a node is, the smaller
its corresponding mindist from TB will be. Therefore, the nodes of the upper levels
of TA are more difficult to be pruned. Moreover, we would spend considerable cost
to issue 1-NN queries for such nodes, which will not payoff. For this reason, PaS
uses the prioritization scheme only for the leaves of TA. Since the number of leaves
in the R∗-tree is much larger than the number of internal nodes, the expected gain

is still significant. Consequently, once an internal node NA[i], which is a father of
a leaf, is inspected (i.e., was previously an entry in the HilbertMinHeap), then for
all its children (leaves) NA[i] that intersect query region R, a 1-NN query is issued
against TB . As a result, pairs of the form (NA[i], mindist) are inserted into the second
priority heap, which is denoted as LeafMinHeap. Evidently, a leaf node never enters
the HilbertMinHeap, thus no duplication incurs. The entries of LeafMinHeap are
examined (in a batch mode) in the sequel, in order to find those that will contribute
to the final result. This issue is considered in more detail in the following subsection.

Figure 2 illustrates a schematic description of the searching and pruning opera-
tions of the PaS algorithm. The figure also illustrates the separate parts of the tree,
which populate the different heap structures that are maintained.

leaf level

leaf parent level

entries handled by

HilbertMinHeap

entries handled by

ProbeMinHeap

entries used for

batching operations

Simple 1-NN queries

to reference dataset

Batch 1-NN queries to

reference dataset

Fig. 2. Bird’s eye view of the Probe-and-Search algorithm.

Enhancing the Algorithm with Batching Capabilities Pruning the primary
tree is one direction towards reducing the number of distance calculations. Another
direction to achieve this, is to apply batching operations during query processing. The
basic idea is to perform multiple nearest-neighbor queries for a set of data objects,
instead of calculating the nearest neighbor for each object separately.

The BNN algorithm which has been proposed in [20] uses batching operations
in an aggressive way, in order to avoid individual 1-NN queries as much as possible.
Recall that BNN focuses on All-NN queries instead of k-NN queries. Therefore, the
size of each chunk can be quite large resulting in increased CPU and I/O costs. This
effect is stronger when the primary dataset DA is dense in comparison to DB. In this
case, a large number of leaf nodes of TA participate in the formulation of each chunk
before the area criterion is violated.

Instead of relying on when the area criterion will be violated, we enforce that
batching is performed for objects contained in a single leaf of TA. The relevant leaf
entries that may change the answer set are accommodated in the ProbeMinHeap
structure. These entries are inspected one-by-one by removing the top of the heap.
For each such entry NA[i], the following operations are applied:

– The leaf node L pointed by NA[i].ptr is read into main memory.
– The MBR of all objects in L enclosed by R is calculated.
– If the area of the MBR is less than or equal to the average leaf area of all leaf

nodes of TB , a batch query is issued to TB .
– Otherwise, objects are distributed to several chunks, and for each chunk a sepa-

rate batch query is issued.

20

50

35

30

25

15

a
1

a
2

a
3

b
1

b
2

b
3

b
4

b
5 b

6

b
7

b
8b

9

data chunk

leaf B1

leaf B2

leaf B3

ID ID NN Dist

a1 b1 20

Hash table contents, after processing leaf B1

a2 b3 50

a3 b3 35

ID ID NN Dist

a1 b1 20

Hash table contents, after processing leaf B3

a2 b9 30

a3 b7 25

ID ID NN Dist

a1 b1 20

Hash table contents, after processing leaf B2

a2 b9 30

a3 b4 15

Fig. 3. Batch query processing by means of the BatchHashTable structure.

Each batch query is executed recursively by traversing nodes of TB with respect
to the mindist distance between the MBR of the chunk and the MBR of each visited
node entry. Each time a leaf node is reached, the pairwise distances are calculated by
using a plane-sweep technique, in order to avoid checking all possible pairs of objects.
A hash table is maintained, called BatchHashTable, which stores the currently best
distance for each object in the chunk. When another leaf node of TB is reached, a test
is performed in order to determine if there is an object in the new leaf that change
the best answers determined so far. Figure 3 illustrates an example of a batch query
and the contents of the BatchHashTable structure after each leaf inspection. The best
answers after each leaf process are shown shaded in the hash table.

The number of BatchHashTable elements is bounded by the maximum number of
entries that can be accommodated in a leaf node, and therefore, its size is very small.
After the completion of the batch query execution, the contents of BatchHashTable
are merged with the globally determined k best answers, which are maintained in
a heap structure, called AnswersMaxHeap. This structure accommodates the best k
answers during the whole process.

4 Performance Study

4.1 Preliminaries

The algorithms PaS and SCP have been implemented in C++, and the experiments
have been conducted on a Windows XP machine with Pentium IV at 2.8Ghz. The real
datasets used for the experimentation are taken from TIGER [18]. The LA1 dataset
contains 131,461 centroids of MBRs corresponding to roads in Los Angeles. Dataset
LA2 contains 128,971 centroids of MBRs corresponding to rivers and railways in Los
Angeles. Finally, dataset CA contains 1,300,000 centroids of road MBRs of Califor-
nia. These datasets are available from http://www.rtreeportal.org/spatial.html. In
addition to the above datasets, we also use uniformly distributed points. All datasets
are normalized to a square, where each dimension takes real values between 0 and
1023.

LA1 and LA2 are quite similar, having similar data distributions and popula-
tions. On the other hand, dataset CA shows completely different data distribution
and population. The selection of these datasets have been performed in order to test
the performance of the algorithms in cases where the primary and reference dataset

follow the same distribution. In the sequel, we investigate the performance of the
algorithms for three cases: 1) DA=LA1 and DB=CA, 2) DA=CA and DB=LA1, and
3) DA=LA1 and DB=LA2. The aforementioned cases correspond to the three dif-
ferent possibilities regarding the relative size between the primary and the reference
dataset. In particular, in case (1) the primary dataset is significantly smaller than
the reference dataset, in case (2) the primary dataset is significantly larger than the
reference dataset, and in case (3) the primary and the reference datasets are of about
the same size. In most application domains, the reference objects are much less than
the objects in the primary dataset (e.g., authoritative sites are much smaller than
domestic buildings) Therefore, (2) is the case of interest for the majority of appli-
cation domains. Case (3) can also be possible in some applications. In contrast, one
should hardly expect an application domain for case (1). Nevertheless, for purposes of
comparison, we also consider this case, in order to examine the relative performance
of the examined methods in all possible cases.

In each experiment, 100 square-like queries are executed following the distribution
of the primary datasetDA. CPU and I/O time correspond to average values per query.
The disk page size is set to 1024 bytes for all experiments conducted. An LRU page
replacement policy is assumed for the buffer operation. The capacity of the buffer is
measured as a percentage of the database size. In the sequel we present the results for
different parameter values, i.e., the number of answers, the area of the query region,
the size of the buffer, and the population of the datasets. Moreover, a discussion of
the memory requirements of all methods is performed in a separate section.

4.2 Performance vs Different Parameter Values

In this section we present representative experimental results which demonstrate the
performance of each method under different settings.

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128 256 512 1024

C
P

U
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
SCP

(a) CPU time

 2

 4

 8

 16

 1 2 4 8 16 32 64 128 256 512 1024

I/O
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
SCP

(b) I/O time

Fig. 4. CPU and I/O time vs k for DA=LA1 and DB=CA (logarithmic scales).

We start by first testing case (1), that is, when the primary dataset is significantly
smaller than the reference dataset. As mentioned, this case is only examined for
purposes of comparison, since it does not constitute a case of interest for the vast
majority of applications. Figure 4 illustrates the performance of the algorithms when
DA=LA1 and DB=CA, by varying the number of answers k. Evidently, DB contains
many more objects than DA. The query region is set to 1% of the dataspace area,
the buffer capacity is 10% of the total number of pages of both trees.

PaS manages to keep the CPU cost at low levels for all values of k. With respect
to I/O cost, which is depicted in Figure 4(b), the situation is quite different.

The I/O cost of PaS is maintained at low levels, especially for k greater than 10.
It is evident that PaS outperforms SCP Therefore, even for the extreme case when
the reference dataset is significantly larger than the primary, the performance of PaS
is reasonably good, whereas SCP is not able to maintain a good performance.

 1

 2

 4

 8

 1 2 4 8 16 32 64 128 256 512 1024

C
P

U
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
SCP

(a) CPU time

 0.5

 1

 2

 4

 8

 1 2 4 8 16 32 64 128 256 512 1024

I/O
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
SCP

(b) I/O time

Fig. 5. CPU and I/O time vs k for DA=CA and DB=LA1 (logarithmic scales).

Figure 5 depicts the performance of the algorithms vs k when DA=CA and
DB=LA1. Again, the query region is set to 1% of the dataspace area and the buffer
capacity is 10% of the total number of pages of both trees. It is evident that algorithm
PaS shows the best performance over the other methods. PaS is capable of pruning
several nodes due to the probes performed on the reference tree. Page requests are
absorbed by the buffer, resulting in significantly less I/O time with respect to SCP.

 0.25

 0.5

 1

 2

 4

 8

 16

 1 4 16 64 256 1024 4096 16384

C
P

U
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
SCP

(a) CPU time

 2

 4

 8

 16

 1 4 16 64 256 1024 4096 16384

I/O
 T

im
e

(s
ec

.)

Number of answers (k)

PaS
SCP

(b) I/O time

Fig. 6. CPU and I/O time vs k for DA=LA1 and DB=LA2 (logarithmic scales).

Figure 6 illustrates the performance of the algorithms under study for DA=LA1
and DB=LA2. These datasets follow similar distributions and they have similar pop-
ulations. The query region is set to 1% of the dataspace area and the buffer capacity

is 10% of the total number of pages of both trees. Again, PaS shows the best per-
formance with respect to CPU time. With respect to the overall performance of the
methods, PaS shows the best performance.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

T
ot

al
 T

im
e

(s
ec

.)

Query Region Size (% of dataspace)

PaS
SCP

(a) DA=LA1, DB=CA

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

T
ot

al
 T

im
e

(s
ec

.)

Query Region Size (% of dataspace)

PaS
SCP

(b) DA=CA, DB=LA1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

T
ot

al
 T

im
e

(s
ec

.)

Query Region Size (% of dataspace)

PaS
SCP

(c) DA=LA1, DB=LA2

Fig. 7. Total time vs query region size (logarithmic scales).

Figure 7 depicts the total running time of all methods, for all three dataset com-
binations, vs the area of the query region. The number of answers k is set to 100,
whereas the buffer capacity is set to 10% of the total number of pages of both trees.
Evidently, PaS shows the best performance and outperforms SCP significantly.

5 Concluding Remarks and Further Research

Distance based queries are considered very important in several domains, such as
spatial databases, spatiotemporal databases, data mining tasks, to name a few. An
important family of distance-based queries involve the association of two or more
datasets. In this paper, we focused on the k-Semi-Closest-Pair query with spatial
constraints applied to the objects of the first dataset (primary dataset). We proposed
a new technique which has the following benefits: a) requires less memory for query
processing in comparison to existing techniques, b) requires less CPU processing time
and c) requires less total running time.

There are several directions for further research in the area that may lead to
interesting results. We note the following:

– the application of the proposed method for k-NN join processing,

– the adaptation of the method for high-dimensional spaces (perhaps with the aid
of more efficient access methods), and

– the study of processing techniques when constraints are also applied to the ref-
erence dataset.

References

1. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger: “The R∗-tree: an Efficient and
Robust Access Method for Points and Rectangles”, Proc. ACM SIGMOD, pp. 322-331,
Atlantic City, NJ, May 1990.

2. C. Bohm and F. Krebs: “Supporting KDD Applications by the K-Nearest Neighbor
Join”, Proceedings of the 14th International Conference on Database and Expert System
Applications (DEXA 2003), pp.504-516, Prague, Czech Republic, 2003.

3. C. Bohm and F. Krebs: “The k-Nearest Neighbor Join: Turbo Charging the KDD Pro-
cess”, Knowledge and Information Systems (KAIS), 2004.

4. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander: “LOF: Identifying Density-Based
Local Outliers”, Proceedings of the ACM International Conference on the Management
of Data (SIGMOD 2000), pp.93-104, Dallas, TX, 2000.

5. T. Brinkhoff, H. P. Kriegel, and B. Seeger: “Efficient Processing of Spatial Joins Using
R-trees”, Proceedings of the ACM International Conference on Management of Data
(SIGMOD 1993), pp.237-246, Washington, D.C., May 1993.

6. A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Closest Pair
Queries in Spatial Databases”, Proceedings of the ACM International Conference on
the Management of Data (SIGMOD 2000), Dallas, TX, 2000.

7. A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Algorithms for
Processing K-Closest-Pair Queries in Spatial Databases”, Data and Knowledge Engi-
neering (DKE), Vol.49, No.1, pp.67-104, 2004.

8. D. Eppstein: “Fast Hierarchical Clustering and Other Applications of Dynamic Closest
Pairs”, Journal of Experimental Algorithmics, Vol.5, No.1, pp.1-23, 2000.

9. G.R. Hjaltason and H. Samet: “Incremental Distance Join Algorithms for Spatial
Databases”, Proceedings of ACM SIGMOD Conference, pp.237-248, 1998.

10. G. Karypis, E.-H. Han, and V. Kumar: “Chameleon: Hierarchical Clustering Using
Dynamic Modeling”, Computer, Vol.32, No.8, pp.68-75, 1999.

11. P. Mishra and M. H. Eich: “Join Processing in Relational Databases”, ACM Computing
Surveys, Vol.24, No.1, 1992.

12. A. Nanopoulos, Y. Theodoridis and Y. Manolopoulos: “C2P: Clustering Based on Clos-
est Pairs”, Proceedings of the 27th International Conference on Very Large Databases
(VLDB 2001), Roma, Italy, 2001.

13. J. Shan, D. Zhang and B. Salzberg: “On Spatial-Range Closest-Pair Query”, Proceedings
of the 8th International Symposium on Spatial and Temporal Databases (SSTD 2003),
pp.252-269, Santorini, Greece, 2003.

14. K. Shim, R. Srikant and R. Agrawal: “High-Dimensional Similarity Joins”, IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), Vol.14, No.1, pp.156-171, 2002.

15. H. Shin, B. Moon and S. Lee: “Adaptive Multi-Stage Distance Join Processing”, Pro-
ceedings of the ACM SIGMOD Conference, pp.343-354, 2000.

16. Y. Shou, N. Mamoulis, H. Cao, D. Papadias, and D. W. Cheung: “Evaluation of Ice-
berg Distance Joins”, Proceedings of the 8th International Symposium on Spatial and
Temporal Databases (SSTD 2003), pp.270-278, Santorini, Greece, 2003.

17. Y. Tao and D. Papadias: “Time-Parameterized Queries in Spatio-Temporal Databases”
Proceedings of the ACM International Conference on the Management of Data (SIG-
MOD 2002), pp. 334-345, 2002.

18. TIGER/Line Files, 1994 Technical Documentation / prepared by the Bureau of the
Census, Washington, DC, 1994.

19. C. Xia, H. Lu, B. C. Ooi and J. Hu: “GORDER: An Efficient Method for KNN Pro-
cessing”, Proceedings of the 30th International Conference on Very Large Data Bases
(VLDB 2004), pp.756-767, Toronto, Canada, 2004.

20. J. Zhang, N. Mamoulis, D. Papadias and Y. Tao: “All-Nearest-Neighbors Queries in
Spatial Databases”, Proceedings of the 16th International Conference on Scientific and
Statistical Databases (SSDBM 2004), pp.297-306, Santorini, Greece, 2004.

