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Abstract

Dominating queries are significant tools for preference-
based query processing in databases and decision support
applications. An important preference-based query is the
top-k dominating query, which reports thek most important
objects according to their domination capabilities (score).
In this paper, we address the following issues to tackle two
limitations of previously proposed approaches: (i) we allow
dominating queries to be expressed in a subset of the avail-
able dimensions and (ii) we provide the necessary tech-
niques to enable continuous processing of multiple queries.
We use a grid-based indexing scheme to facilitate efficient
search and update operations, avoiding expensive reorga-
nization costs. In addition, several optimizations are pro-
posed to enhance efficiency. Performance evaluation re-
sults, based on real-life and synthetic data sets, show the
efficiency and scalability of the proposed scheme.

1 Introduction
Preference queries are frequently used in multicriteria

decision making applications, where a number of (usually)
contradictory criteria participate towards selecting the most
promising answers. Assume that a customer is interested
in purchasing a PDA device. Assume further that the cus-
tomer focuses on two important parameters of a PDA: the
price and the weight. Unfortunately, these two criteria are
frequently contradictory and therefore, the number of can-
didates should be carefully selected. Depending on the se-
mantics of each attribute, we may ask for maximization of
the attributes, or any combination (minimization in some
attributes and maximization in the others).

Theskylineof a set of tuples comprises all tuples that are
not dominated. A tupleti dominates another tupletj , if ti
is as good astj in all dimensions and it is better thantj in
at least one of the dimensions. Letd be the total number
of attributes (dimensions) andti,j denote the value of the
j-th dimension of thei-th tuple. Since we have assumed
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Figure 1. Skyline example.

that “smaller is better”,ti is better thantj in dimensionm
if ti,m < tj,m. The PDA example is depicted in Figure 1. In
Figure 1(a) each PDA is represented by a two-dimensional
tuple (each dimension corresponds to an attribute). PDA
tuples are shown in Figure 1(b). The black dots of Figure
1(a) represent the skyline.

Skyline queries have received considerable attention re-
cently, due to their aid in selecting the most preferred items,
especially when the selection criteria are contradictory. In
[4] an efficient skyline query processing scheme has been
proposed based on branch-and-bound, which utilizes the R-
tree spatial access method. Another technique has been pro-
posed in [2] for selecting skyline tuples according to their
domination capabilities. These schemes however, assumes
that the skyline is computed over the whole set of attributes,
which in many cases may not be meaningful.

The fact that a tuple is contained in the skyline does not
necessarily means that it will be a good choice for the user.
For example, tuplet2 although it is a skyline tuple, it does
not dominate any point in the data set. On the other hand, tu-
ple t8 dominates four tuples, which means that it possesses
significant domination power. The domination power of a
tuple is expressed by the number of tuples it dominates, and
leads to an intuitive ranking of tuples. Note that a tuple
not in the skyline may have more domination power than
a skyline tuple. For example, tuplet3 has more domina-
tion power than the skyline tuplet2. Thek tuples with the
highest domination power are calledtop-k dominating tu-
ples. Techniques for top-k dominating queries have been
developed in [5, 6]. In [6] the authors propose efficient al-
gorithms to determine the top-k dominating tuples by using
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an aggregate R-tree index. In [5], a method is studied to
rank multidimensional tuples according to their domination
power. However, the problem has not been addressed from
a data stream perspective, where the data change frequently
(e.g., in a sliding-window manner). In such a case, the result
of the query should be updated by using the previous result,
avoiding expensive recomputations. Another limitation of
previously proposed methods is that they assume that the
user is interested in the whole set of attributes (dimensions).
However, a user may be interested only on a subset of the
available attributes. In this paper, we handle both issues by
proposing an organization scheme and the associated algo-
rithms to provide efficient processing of continuous top-k
dominating queries in a subset or the whole set of the at-
tributes.

The rest of the work is organized as follows. Section 2
gives background material and our proposal, whereas some
representative experimental results are given in Section 3.
Finally, Section 4 concludes the work.

2 Continuous Top-k Dominating Queries
Table 1 summarizes the basic symbols used throughout

our study. The proofs of propositions as well as the pseu-
docode of algorithms are omitted due to lack of space.

Assume aD-dimensional spaceD = {d1, ..., dD} and
a set of tuplesT = {t1, ..., tT }. Moreover, assume a
number ofQ top-k dominating queries. Each queryqi is
applied in a subset of dimensionsqi.D ⊆ D and it has a
parameterqi.k which specifies the desired number of tuples.

Definition 1 (dominated tuple)
A tuple ti is dominatedby a tupletj in queryq, if and only
if ∀ dx ∈ q.D, tj,x ≤ ti,x and∃ dy ∈ q.D, tj,y < ti,y.

Definition 2 (top-k dominant tuple)
A tuple ti is a top-k dominant tupleof queryq if and only
if it dominates one of thek-th highest number of tuples in
dimensionsq.D.

Symbol Description
D,D’ andD,D′ dimensions sets and number of dimensions
d, di a dimension
T, T tuples set and the number of tuples
ti,j the value of thei-th tuple inj-th dimension
ti.score the number of tuples dominated byti

Q, Q queries set and the number of queries
q, qi a query
q.D, q.D the set and the number of dimensions ofq
q.k, qi.k parameterk for a query
q.top the top-k dominant tuples of a query
q.score the scores ofk dominant tuples ofq
q.kscore thek-th score ofk dominant tuples ofq
c, ci grid cells
p(c) the projection ofc in a subspace
c.min, c.max minimum and maximum coverage of a cell
c.n the number of tuples of a cell

Table 1. Basic symbols.

The number of tuples that a tuplet dominates, is denoted
ast.score, and this value expresses the domination power
of the tuple. The above definition implies that the answer
is composed of all the tuples that have thek highest scores.
A top-k dominating query is a combination of skyline and
top-k queries, resulting in a more complex one. Top-k dom-
inating queries use the dominant relationship rather than a
user-defined score function. The determination of the ap-
propriate score function is not obvious, especially when the
number of attributes increases. Moreover, top-k dominat-
ing queries bound the size of the resulting set of tuples, in
contrast to skyline queries.

2.1 Indexing and Processing

Due to the dynamic nature of the problem, to avoid high
reorganization costs, it is more preferable to use a simple
structure for quick maintenance. This approach has been
followed in other research proposals dealing with dynamic
data sets [3]. For clarity, we assume a regular grid to illus-
trate the basic properties of the proposed method. Irregular
grids are described later.

Without loss of generality, we focus on minimizing the
attributes of interest. Each cellci dominates all cells located
at higher positions in all dimensions. Moreover, cellci does
not dominate a cell that lies in at least one lower positions
of it. The remaining cells are partially dominated byci,
which means that a tupletj of ci may or may not dominate
some tuples of the partially dominated cells. For example,
cell c6 of Figure 2 dominates cellsc11, c12, c15 and c16,
whereas it partially dominates cellsc6, c7, c8, c10 andc14.
The remaining cells are not dominated byc6.

Each cell contains the IDs of the tuples that lie in this
cell and themaximum coverageof the cell. The maximum
coverage of a cell is the maximum number of tuples that it
is possible to be dominated by any tuple of this particular
cell. Therefore, to calculate the maximum coverage ofci,
we first determine the cells thatci fully and partially dom-
inates and then, we add the numbers of the tuples of these
cells. Similarly, theminimum coverageof a cellci, denoted
asci.min, is the sum of the numbers of the tuples of cells
that ci fully dominates. The minimum coverage of cellci

is equal to the maximum coverage of cellcj that lies in the
immediately higher position ofci in all dimensions, e.g.,
c10.min = c15.max = 1.

Queries are maintained in a hash table for quick refer-

Figure 2. Grid structure.
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ence. Each query has an ID, a parameterk, a subset of
dimensionsq.D, the top-k dominating tuples of this query
q.top and their score valuesq.score.

We use the notationp(ci) to denote the result of the
projection of a cellci in a subspace. The following propo-
sitions explain how the maximum and minimum coverage
of a projected cell can be computed.

Proposition 1 (maximum coverage ofp(c))
Assume a subspaceD’ ⊂ D and a cellci with positions
posi,1, posi,2, ..., posi,D. Cell p(ci) has maximum cov-
eragep(ci).max = cj .max, where cj is the cell with
positionsposj,x = posi,x ∀ dx ∈ D’ and posj,x = 1
∀dx ∈ D anddx /∈ D’ .

Proposition 2 (minimum coverage ofp(c))
Assume a subspaceD’ ⊂ D and a cellci with positions
posi,1, posi,2, ..., posi,D. Cellp(ci) has minimum coverage
p(ci).min = cj .max, wherecj is the cell with positions
posj,x = posi,x + 1 ∀ dx ∈ D’ andposj,x = 1 ∀dx ∈ D
anddx /∈ D’ .

For example, assume the grid of Figure 2 and a queryq
with q.D = {d1}. Cellp(c6) hasp(c6).max = c2.max and
p(c6).min = c3.max. Notice that a cellp(ci) can be the
same asp(cj), e.g., cellsp(c6) andp(c10).

We can use the grid structure to compute thetx.score of
a tupletx in all dimensions. First, we find the cellci that
tx belongs to. The valuetx.score lies between the range
[ci.min, ci.max]. To computetx.score, it is necessary to
check how many tuplesn are dominated bytx only in the
partially dominated cells ofci. Thentx.score = ci.min +
n. In Figure 2, tuplet4 dominates the tuplest6 andt11 of
the partially dominated cells thust1.score = 3 + 2 = 5.

Assume a queryq with q.D ⊂ D. There are some dif-
ferences to computetx.score in the subspaceq.D. After
we find the cellci that tx belongs, we project the cell to
the subspace of the queryq. Now, we should check how
many tuples are dominated bytx in the partially dominated
cells of p(ci). Again, if n is the number of the tuples,
tx.score = p(ci).min + n.

Moreover, we can use the maximum coverage of a cell to
avoid domination checks during the evaluation oftx.score.
Assume a queryq defined in all dimensions. Ifci is the cell
of tx and if ci.max < q.kscore, thentx can not be top-
k dominant tuple of the query, sincetx.score ≤ ci.max.
If ci.max ≥ q.kscore, we initialize tx.score = ci.min.
Then, we check each tuple of the partially dominated cells,
if it is dominated bytx. We can stop the domination checks
if the remaining tuples for examination plus the current
tx.score is smaller thanq.kscore. In the case where the
query has a subset of dimensionsq.D ⊂ D, we usep(ci)
instead ofci itself.

We can now proceed with the description of the insertion
procedure. Tuple deletions are handled similarly. Initially,
the new tupletn is inserted in the appropriate cellci. The
maximum and minimum coverage of the cells that dominate
ci are increased by one, while the maximum coverage of the

cells that partially dominateci is increased by one. Then,
for each active query the following steps are taken:
1) First, we check if there are tuples of top-k of the query
that dominate the new tupletn and we update theirscore
values accordingly. Then, we rearrangeq.top andq.score
in order to keep sorted theq.score. Next, we check if the
new tupletn is top-k of the query. Ifq.kscore is increased
by one, then it is not possible to find another tuple that dom-
inates more or equal thanq.kscore tuples and therefore the
update is terminated. Notice that the insertion of a new tu-
ple can cause the increase of ascore value only by one. If
q.kscore is not increased, then it is possible to find tuples
(candidate tuples) that dominate exactlyq.kscore tuples.
2) Next, we determine all cells containing candidate tuples.
These cells are the ones that dominate or partially domi-
nateci, since tuples of these cells, it is possible to dominate
tn and therefore theirscore values may have increased by
one. For each such cellc, the corresponding projectionp(c)
is determined. Ifp(c).max < q.kscore, then the cell is
discarded. Otherwise, we compute the partially dominated
cells ofp(c) and we apply the procedure of the computation
of score for each tuplet of p(c), as we described above.

2.2 Adaptive Grid
The advantage of the regular grid is that insertions and

deletions are processed efficiently. Unfortunately, if the
data distribution in a dimension deviates from uniformity
then in high dimensionality most of the cells will be empty
and therefore, the regular grid can not be used efficiently.

To overcome this disadvantage and simultaneously keep
the reorganization cost low, we propose theadaptive grid.
The adaptive grid separates equally the tuples in each di-
mension. Figure 3(a) shows an example of an adaptive grid.
The number of tuples is 12 and the number of cells of each
dimension is 4. Thus, we want each column of a dimension
to have 3 tuples. To obey this rule, dimensiond1 is reor-
ganized. The dashed line indicates the new bound of the
column. The reorganization procedure is invoked when tu-
ples are not well separated in a dimension and it is applied
only in this dimension without affecting the others. We ex-
plain the procedure by means of an example. Assume that
a new tuplet13 is inserted into the grid of Figure 3(a) and

(a) (b)

Figure 3. Adaptive grid example.
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tuple t1 is deleted. Then, the reorganization procedure is
invoked for dimensiond1. We can choose the second or
the fourth column ofd1 to move tuples. The column with
the smaller number of tuples is chosen. Then, the chosen
column is checked and if it violates the maximum number
of tuples, the procedure continues. To avoid endless loops,
we stop the procedure if we choose again the column from
which the procedure started. Figure 3(b) illustrates a reor-
ganization example. Notice that this is a heuristic, thus it
is possible that the rule of equally separated tuples in a di-
mension may be violated. However, this heuristic performs
well in practice.

In order to avoid repetitive reorganizations of the adap-
tive grid, we use the parameterrf (reorganization factor)
which is a bound of the number of tuples in each column
of a dimension. For example, if the number of tuplesT
is 1000, the number of cells of a dimension is 5, andrf =
0.05, the reorganization procedure is applied when the num-
ber of tuples of a column of this dimension is more than
200+200 ·0.05 = 210 or less than200−200 ·0.05 = 190.

2.3 Optimizations

The most time consuming part of the proposed method is
the computation of thescore value of each candidate tuple.
The following optimizations can be applied towards more
efficient processing:

Traverse order of the cells. Cells that have low posi-
tions in dimensions (e.g., cellc1), contain candidate tuples
that have better possibility to be part of a top-k result. Thus,
we want to examine these cells earlier than others. To deter-
mine the traverse order of the cells, we can use the positions
of the cells in each dimension. The sumS of the positions
of a cell specifies the traverse order. A cell with lowerS
must be examined earlier from a cell with higherS.

Discard cells dominated by other cells.Assume cells
ci andcj that contain some candidate tuples. Moreover, as-
sume thatci dominatescj , thusci will be examined earlier
thancj due to the previous optimization. Ifci does not con-
tain any top-k tuple then we can discardcj since each tuple
in cj dominates less tuples than the tuples ofci.

Skyline set. Since we are interested in tuples that dom-
inate exactlyq.kscore tuples and it is not possible to find
tuples that dominate more and not be in the top-k dominant
of a query, it is safe to discard tuples of a cell that are dom-
inated by other tuples of this cell, i.e., we examine only the
tuples that belong to the skyline of this cell.

Minimum domination check. To computetx.score of
a candidate tupletx of ci, we check how many tuples of the
partially dominated cells, are dominated bytx. It is suffi-
cient to apply domination checks in a subset of dimensions
of the query. We clarify this by means of an example. As-
sume a queryq with q.D = {d1, d2} and thatt4 is a can-
didate tuple (Figure 3(a)). Tuples that belong toc6 should
be checked in all the dimensions of the query. Tuples that
belong toc7 andc8 should be checked only ind2 and tuples
of c10 andc14 should be checked only ind1. The minimum
domination check reduces the number of the examined di-

mensions up toq.D-1 dimensions.
Upper bound of a cell. It is evident, that cells in low

positions of dimensions will be examined in almost all up-
dates. It is possible to use an extra parameter, theupper
bound, of each cell to further improve the possibility that a
cell will be pruned in other queries of the same or subse-
quent updates. For each candidate tupletx that it is not dis-
carded from the above optimizations, we computetx.score
and we stop iftx.score can not exceedq.kscore. The max-
imum possible value oftx.score is its current value plus
the number of remaining tuples of the partially dominated
cells. For each cellci, we keepmax{tx.score+ number of
remaining tuples}, ∀tx ∈ ci. Then, we can assign this value
to the upper bound of the cell if it is lower than the current
upper bound. The upper bound of a cell can be used instead
of the maximum coverage.

3 Performance Evaluation
In this section, we report the experimental results of

our study. We use the abbreviations RG and AD for the
regular and the adaptive grid without optimizations while
the abbreviations RGO and ADO are used for the corre-
sponding methods with optimizations enabled. All meth-
ods are implemented in C++ and the experiments have
been conducted on a Pentium IV at 3.6GHz, with 1GB
RAM. Two data sets have been used: (a) Forest Cover (FC)
(http://kdd.ics.uci.edu) which contains 581,012 records in
10 dimensions and (b) a synthetic anti-correlated data set
(AN), generated by using the process described in [1].

In the experiments, we have used 10 dimensions both
in real and synthetic data sets. The default values for the
parameters (if not otherwise specified) are: the number of
tuples is 100,000, the parameterq.k of each queryq lies in
the range [1,100]. The number of dimensionsq.D, the set of
the dimensionsq.D and the parameterq.k of the queries are
generated uniformly. In the diagrams below, the response
time per update is given. An update, according to the sliding
window paradigm, corresponds to the insertion of the new
tuple and the deletion of the most obsolete one.

First, we study the effect of the grid size. We use only
one query to evaluate the methods. The number of cells
per dimension varies between 2 and 5, corresponding to a
grid of 210 up to 510 cells. Figure 4 illustrates the results
for the anti-correlated data set. Adaptive and regular grids
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have the same space requirements, thus there are only two
curves in Figure 4 (right). The algorithms AGO and RGO
have more space requirements than AG and RG due to the
optimizations used. A grid of310 cells is the best choice
for all algorithms regarding CPU time and space require-
ments. We use three cells per dimension for all experiments.
The results for the real data set are similar and are omitted.
Moreover, AGO and RGO outperform both AG and RG,
especially when the number of cells is low. This gap arises
due to the optimizations, since AGO and AG have the same
pruning power (similarly for RGO and RG). The remaining
experiments follow the same trend and therefore, AG and
RG are omitted.

The next experiment studies the performance of AGO
and RGO with respect to the number of active tuplesT .
The number of queriesQ is set to 50. All queries are uni-
formly generated. Figure 5 shows the results for the two
data sets. FC and AND use up to 0.5M and 1M active tu-
ples respectively. The CPU time is given per update for all
queries including the cost of grid update. AGO outperforms
RGO, when the number of tuples is high especially in the
real data set. The CPU time of RGO increases rapidly be-
cause can not prune cells of candidate tuples due to the poor
segregation of tuples.

Next, we study the performance of the proposed methods
in subspaces. Thus, all queries have the same number of di-
mensions, but the dimensions sets are different. The number
of queriesQ is 36. Figure 6 illustrates the results. As ex-
pected, the CPU time of AGO decreases as the number of
queries’ dimensions increases. RGO has different behavior
and this happens because its pruning power is lower than
that of AGO. As the dimensionality of queries increases
each domination check is more expensive and thus, RGO
is worst.

Finally, we measure the effect of the upper bound op-
timization. We run all queries together and we repeat the
experiment by running each query separately for AGO. The
abbreviation AQAGO (All Queries - AGO) and SQAGO
(Separate Queries - AGO) are used respectively. The re-
sults are depicted in Figure 7. As the number of queries
increases and therefore the overlapping between the sub-
spaces of queries increases too, the gain due to the upper
bound optimization becomes more significant. Notice that,
queries’ dimensions are generated uniformly. This is an in-
dication that the upper bound will affect more the perfor-
mance in a realistic application, where some dimensions are
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Figure 5. CPU time vs. number of tuples
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Figure 7. Effect of upper bound optimization

usually more preferable than others.

4 Conclusions
The results of our study indicate that continuous process-

ing of subspace top-k dominating queries can be efficiently
performed, by organizing the active tuples (objects) in a
simple grid-based indexing scheme which offers fast search
and update operations. Both regular and irregular grids have
been considered. In addition to the basic query processing
mechanism, several optimizations have been proposed to in-
crease efficiency. Performance evaluation results based on
real-life and synthetic data sets have demonstrated that the
irregular grid scheme enhanced by the proposed optimiza-
tions yields the best performance.
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