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objects according to their domination capabilities (score). () 2-dimensional representation b] PDA tuples
In this paper, we address the following issues to tackle two
limitations of previously proposed approaches: (i) we allow Figure 1. Skyline example.

dominating queries to be expressed in a subset of the avail-

able dimensions and (ii) we provide the necessary tech-

nigues to enable continuous processing of multiple queries.inat “smaller is better’t; is better thart; in dimensionm

We use a grid-based indexing scheme to facilitate efficient;; ti m < t:m. The PDA example is depjicted in Figure 1. In
search and update operations, avoiding expensive reorga-igre 1(?3[) each PDA is represented by a two-dimensional
nization costs. In addition, several optimizations are pro- tuple (each dimension corresponds to an attribute). PDA

posed to enhance ef_ficiency. Perfo_rmance evaluation re-tuples are shown in Figure 1(b). The black dots of Figure
sults, based on real-life and synthetic data sets, show thel(a) represent the skyline.

efficiency and scalability of the proposed scheme. Skyline queries have received considerable attention re-

cently, due to their aid in selecting the most preferred items,

especially when the selection criteria are contradictory. In
1 Introduction [4] an efficient skyline query processing scheme has been
proposed based on branch-and-bound, which utilizes the R-
tree spatial access method. Another technique has been pro-
posed in [2] for selecting skyline tuples according to their

omination capabilities. These schemes however, assumes

hat the skyline is computed over the whole set of attributes,
which in many cases may not be meaningful.

The fact that a tuple is contained in the skyline does not
necessarily means that it will be a good choice for the user.
For example, tuple, although it is a skyline tuple, it does
not dominate any pointin the data set. On the other hand, tu-
ple ts dominates four tuples, which means that it possesses
significant domination power. The domination power of a
tuple is expressed by the number of tuples it dominates, and
leads to an intuitive ranking of tuples. Note that a tuple
not in the skyline may have more domination power than
a skyline tuple. For example, tuptg has more domina-
tion power than the skyline tuple. Thek tuples with the
highest domination power are calléap-+ dominating tu-
ples Techniques for tog dominating queries have been

*Research supported by the PENED 2003 program, funded bydeveloped in [5, 6]. In [6] the authors propose efficient al-
the GSRT, Ministry of Development, GREECE. gorithms to determine the tapdominating tuples by using

Preference queries are frequently used in multicriteria
decision making applications, where a number of (usually)
contradictory criteria participate towards selecting the most
promising answers. Assume that a customer is intereste
in purchasing a PDA device. Assume further that the cus-
tomer focuses on two important parameters of a PDA: the
price and the weight. Unfortunately, these two criteria are
frequently contradictory and therefore, the number of can-
didates should be carefully selected. Depending on the se
mantics of each attribute, we may ask for maximization of
the attributes, or any combination (minimization in some
attributes and maximization in the others).

Theskylineof a set of tuples comprises all tuples that are
not dominated. A tuple; dominates another tuplg, if ¢;
is as good ag; in all dimensions and it is better thanin
at least one of the dimensions. Létbe the total number
of attributes (dimensions) ang; denote the value of the
j-th dimension of the-th tuple. Since we have assumed




an aggregate R-tree index. In [5], a method is studied to  The number of tuples that a tuplelominates, is denoted
rank multidimensional tuples according to their domination ast.score, and this value expresses the domination power
power. However, the problem has not been addressed fronof the tuple. The above definition implies that the answer
a data stream perspective, where the data change frequentlis composed of all the tuples that have thieighest scores.
(e.g., inasliding-window manner). In such a case, the resultA top-k dominating query is a combination of skyline and
of the query should be updated by using the previous result,top-k queries, resulting in a more complex one. Togem-
avoiding expensive recomputations. Another limitation of inating queries use the dominant relationship rather than a
previously proposed methods is that they assume that theuser-defined score function. The determination of the ap-
user is interested in the whole set of attributes (dimensions).propriate score function is not obvious, especially when the
However, a user may be interested only on a subset of thenumber of attributes increases. Moreover, todeminat-
available attributes. In this paper, we handle both issues bying queries bound the size of the resulting set of tuples, in
proposing an organization scheme and the associated algoeontrast to skyline queries.
rithms to provide efficient processing of continuous top-
:prminating queries in a subset or the whole set of the at-2.1  Indexing and Processing
ributes.

The rest of the work is organized as follows. Section 2 ~ Due to the dynamic nature of the problem, to avoid high
gives background material and our proposal, whereas somd€organization costs, it is more preferable to use a simple
representative experimental results are given in Section 3Structure for quick maintenance. This approach has been

Finally, Section 4 concludes the work. followed in other research proposals dealing with dynamic
_ o _ data sets [3]. For clarity, we assume a regular grid to illus-
2 Continuous Top+ Dominating Queries trate the basic properties of the proposed method. Irregular

Table 1 summarizes the basic symbols used throughou@"ids are described later. o
our study. The proofs of propositions as well as the pseu- Without loss of generality, we focus on minimizing the

docode of algorithms are omitted due to lack of space. attributes of interest. Each celldominates all cells located
Assume aD-dimensional spac® = {d, ...,dp} and at higher positions in all dimensions. Moreover, egltloes
a set of tuplesT = {t,...tr}. Moreov7er 7assume a Notdominate a cell that lies in at least one lower positions

number ofQ) top-k dominating queries. Each quegy is of |t The remaining cells are partially dominated_by
applied in a subset of dimensiogsD C D and it has a which means that a tuplg of ¢; may or may not dominate
parametey;.k which specifies the desired number of tuples. SOme tuples of the partially dominated cells. For example,
) cell ¢g of Figure 2 dominates cellg;;, c12, ¢15 andcyg,
Definition 1 (dominated tuple whereas it partially dominates cells, c7, cs, cio andcia.
A tuple t; is dominatedby a tuplet; in queryg, if and only ~ The remaining cells are not dominatedday o
ifVd, €qD, ti, <ti,and3d, € ¢.D,t:, < ti,. Each cell contains the IDs of the tuples that lie in this
! L v Ty cell and themaximum coveragef the cell. The maximum

Definition 2 (top-k£ dominant tuplg coverage of a cell is the maximum number of tuples that it
A tuple t; is atop-k dominant tupleof queryq if and only s possible to be dominated by any tuple of this particular
if it dominates one of thé-th highest number of tuples in  cell. Therefore, to calculate the maximum coverage;of
dimensiong.D. we first determine the cells that fully and partially dom-

inates and then, we add the numbers of the tuples of these
cells. Similarly, theminimum coveragef a cellc;, denoted
asc;.min, is the sum of the numbers of the tuples of cells

Symbol | Description ]

D,D’ andD,D" | dimensions sets and number of dimensiohs  that c; fully dominates. The minimum coverage of cell
d,di a dimension is equal to the maximum coverage of cellthat lies in the
T tuples set and the number of tuples _ immediately higher position of; in all dimensions, e.g.,
tij the value of the-th tuple m_j-th dimension C10.min = c15.mazx = 1.
ti.score the number of tuples dominated by Queries are maintained in a hash table for quick refer-
Q,Q queries set and the number of queries
9 qi aquery
q.D,q.D the set and the number of dimensiong;of o
q.k gk parametek for a query oo [ tcﬁ e
g.top the top% dominant tuples of a query O Il HE
g.score the scores ok dominant tuples of i3 " g
q.kscore the k-th score ofk dominant tuples of f ) S % . I Y
¢, ci grid cells ° | et ‘L “; a2
p(c) the projection of in a subspace R I PP o e A
c.min, c.maz | minimum and maximum coverage of a cell e
cn the number of tuples of a cell
Table 1. Basic symbols. Figure 2. Grid structure.



ence. Each query has an ID, a paraméten subset of
dimensiong;.D, the top4 dominating tuples of this query
q.top and their score valuesscore

We use the notatiop(c;) to denote the result of the
projection of a celk; in a subspace. The following propo-
sitions explain how the maximum and minimum coverage
of a projected cell can be computed.

Proposition 1 (maximum coverage @{c))

Assume a subspad® C D and a celle; with positions
POS;.1,P0S;.2,...,p08; p. Cell p(¢;) has maximum cov-
eragep(c;).max = cj.max, Wherec; is the cell with
positionspos;, = pos;, ¥V d € D" andpos;, = 1

Vd, € Dandd, ¢ D’.

Proposition 2 (minimum coverage gf(c))

Assume a subspad® C D and a celle; with positions
POS; 1,P0S; 2, ..., pos; p. Cellp(c;) has minimum coverage
p(c;).min = cj.mazx, wherec; is the cell with positions
POS;z = Pos; 4 + 1V d, € D andpos;, = 1Vd, € D
andd, ¢ D'.

For example, assume the grid of Figure 2 and a qgery
with ¢.D = {d; }. Cellp(cs) hasp(cg).max = co.mazx and
p(cs).min = cz.maz. Notice that a celp(c;) can be the
same ap(c;), e.g., cellp(cg) andp(cio).

We can use the grid structure to computethacore of
a tuplet, in all dimensions. First, we find the cel] that
t, belongs to. The value,.score lies between the range
[ci-min, c;.maz]. To computet,.score, it IS necessary to
check how many tuples are dominated by, only in the
partially dominated cells of;. Thent,.score = ¢;.min +
n. In Figure 2, tuplet, dominates the tupleg andt,; of
the partially dominated cells thug.score = 3 + 2 = 5.

Assume a query with ¢.D C D. There are some dif-
ferences to compute,.score in the subspace.D. After
we find the celle; thatt, belongs, we project the cell to
the subspace of the quegy Now, we should check how
many tuples are dominated by in the partially dominated
cells of p(¢;). Again, if n is the number of the tuples,
ty.score = p(c;).min + n.

cells that partially dominate; is increased by one. Then,
for each active query the following steps are taken:

1) First, we check if there are tuples of tépef the query
that dominate the new tuplg, and we update theiscore
values accordingly. Then, we rearrangtop andg.score

in order to keep sorted thgescore Next, we check if the
new tuplet,, is top+ of the query. Ifg.kscore is increased

by one, then it is not possible to find another tuple that dom-
inates more or equal thankscore tuples and therefore the
update is terminated. Notice that the insertion of a new tu-
ple can cause the increase of@re value only by one. If
q.kscore is not increased, then it is possible to find tuples
(candidate tuples) that dominate exaetliyscore tuples.

2) Next, we determine all cells containing candidate tuples.
These cells are the ones that dominate or partially domi-
natec;, since tuples of these cells, it is possible to dominate
t, and therefore theiscore values may have increased by
one. For each such cell the corresponding projectigric)

is determined. Ifp(c).max < g.kscore, then the cell is
discarded. Otherwise, we compute the partially dominated
cells ofp(c) and we apply the procedure of the computation
of score for each tuple of p(c), as we described above.

2.2 Adaptive Grid

The advantage of the regular grid is that insertions and
deletions are processed efficiently. Unfortunately, if the
data distribution in a dimension deviates from uniformity
then in high dimensionality most of the cells will be empty
and therefore, the regular grid can not be used efficiently.

To overcome this disadvantage and simultaneously keep
the reorganization cost low, we propose #uaptive grid
The adaptive grid separates equally the tuples in each di-
mension. Figure 3(a) shows an example of an adaptive grid.
The number of tuples is 12 and the number of cells of each
dimension is 4. Thus, we want each column of a dimension
to have 3 tuples. To obey this rule, dimensidnis reor-
ganized. The dashed line indicates the new bound of the
column. The reorganization procedure is invoked when tu-
ples are not well separated in a dimension and it is applied
only in this dimension without affecting the others. We ex-
plain the procedure by means of an example. Assume that

Moreover, we can use the maximum coverage of a cell toa new tuplet;5 is inserted into the grid of Figure 3(a) and

avoid domination checks during the evaluationt gkcore.
Assume a query defined in all dimensions. H; is the cell

of ¢, and if ¢;,max < q.kscore, thent, can not be top-

k dominant tuple of the query, sin¢g.score < c¢;.mazx.

If ¢;max > q.kscore, we initialize t,.score c;.min.
Then, we check each tuple of the partially dominated cells,
if it is dominated byt,.. We can stop the domination checks
if the remaining tuples for examination plus the current
t..score is smaller thang.kscore. In the case where the
query has a subset of dimensiop® C D, we usep(c;)
instead ofc; itself.

We can now proceed with the description of the insertion
procedure. Tuple deletions are handled similarly. Initially,
the new tuple,, is inserted in the appropriate cell. The
maximum and minimum coverage of the cells that dominate

¢; are increased by one, while the maximum coverage of the
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Figure 3. Adaptive grid example.



tuple t; is deleted. Then, the reorganization procedure is mensions up tq.D-1 dimensions.
invoked for dimensioni;. We can choose the second or Upper bound of a cell. It is evident, that cells in low
the fourth column ofl; to move tuples. The column with  positions of dimensions will be examined in almost all up-
the smaller number of tuples is chosen. Then, the choserdates. It is possible to use an extra parameterufiper
column is checked and if it violates the maximum number bound of each cell to further improve the possibility that a
of tuples, the procedure continues. To avoid endless loopscell will be pruned in other queries of the same or subse-
we stop the procedure if we choose again the column fromquent updates. For each candidate tupléhat it is not dis-
which the procedure started. Figure 3(b) illustrates a reor-carded from the above optimizations, we computecore
ganization example. Notice that this is a heuristic, thus it and we stop it,..score can not exceed.kscore. The max-
is possible that the rule of equally separated tuples in a di-imum possible value of,..score is its current value plus
mension may be violated. However, this heuristic performs the number of remaining tuples of the partially dominated
well in practice. cells. For each cell;, we keepmnax{t,.score+ number of
In order to avoid repetitive reorganizations of the adap- remaining tuple, V¢, € ¢;. Then, we can assign this value
tive grid, we use the parametef (reorganization factor) to the upper bound of the cell if it is lower than the current
which is a bound of the number of tuples in each column upper bound. The upper bound of a cell can be used instead
of a dimension. For example, if the number of tuples  of the maximum coverage.
is 1000, the number of cells of a dimension is 5, affid=
0.05, the reorganization procedu_re is appli_ed V\_/hen the num-3  parformance Evaluation
ber of tuples of a column of this dimension is more than
200+ 200-0.05 = 210 or less thar200 — 200 - 0.05 = 190. In this section, we report the experimental results of
our study. We use the abbreviations RG and AD for the
regular and the adaptive grid without optimizations while
the abbreviations RGO and ADO are used for the corre-
The most time consuming part of the proposed method issponding methods with optimizations enabled. All meth-
the computation of thecore value of each candidate tuple. ods are implemented in C++ and the experiments have
The following optimizations can be applied towards more been conducted on a Pentium IV at 3.6GHz, with 1GB
efficient processing: RAM. Two data sets have been used: (a) Forest Cover (FC)
Traverse order of the cells. Cells that have low posi-  (http://kdd.ics.uci.edu) which contains 581,012 records in
tions in dimensions (e.g., cell), contain candidate tuples 10 dimensions and (b) a synthetic anti-correlated data set
that have better possibility to be part of a thpesult. Thus, (AN), generated by using the process described in [1].
we want to examine these cells earlier than others. To deter- In the experiments, we have used 10 dimensions both
mine the traverse order of the cells, we can use the positionsn real and synthetic data sets. The default values for the
of the cells in each dimension. The suffrof the positions  parameters (if not otherwise specified) are: the number of
of a cell specifies the traverse order. A cell with low#er  tuples is 100,000, the parametek of each query; lies in
must be examined earlier from a cell with higtter the range [1,100]. The number of dimensignd, the set of
Discard cells dominated by other cells.Assume cells  the dimensiong.D and the parametetk of the queries are
¢; ande; that contain some candidate tuples. Moreover, as-generated uniformly. In the diagrams below, the response
sume that; dominates:;, thusc; will be examined earlier  time per update is given. An update, according to the sliding
thanc; due to the previous optimization. ¢f does not con- ~ window paradigm, corresponds to the insertion of the new
tain any topk tuple then we can discarg since each tuple  tuple and the deletion of the most obsolete one.
in ¢; dominates less tuples than the tuples;of First, we study the effect of the grid size. We use only
Skyline set. Since we are interested in tuples that dom- one query to evaluate the methods. The number of cells
inate exactlyg.kscore tuples and it is not possible to find per dimension varies between 2 and 5, corresponding to a
tuples that dominate more and not be in the kogleminant grid of 219 up to 50 cells. Figure 4 illustrates the results
of a query, it is safe to discard tuples of a cell that are dom- for the anti-correlated data set. Adaptive and regular grids
inated by other tuples of this cell, i.e., we examine only the
tuples that belong to the skyline of this cell.
Minimum domination check. To computet,..score of 10000 AGo ——
a candidate tuple, of ¢;, we check how many tuples of the 1000 AS
partially dominated cells, are dominated hy It is suffi- w0
cient to apply domination checks in a subset of dimensions

2.3 Optimizations
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of the query. We clarify this by means of an example. As- 1 pr”” 1p

sume a query with ¢.D = {d;,d2} and thatt, is a can- o1l - - . o1 - - !
didate tuple (Figure 3(a)). Tuples that belong:¢cshould Number Of Cells Per Dimension Number Of Cells Per Dimension
be checked in all the dimensions of the query. Tuples that

belong toc; andcg should be checked only iy, and tuples Figure 4. CPU time and space requirements

of ¢19 andcy4 should be checked only iy . The minimum vs. number of cells per dimension

domination check reduces the number of the examined di-
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have the same space requirements, thus there are only two ™ AGO —— AGO ——
curves in Figure 4 (right). The algorithms AGO and RGO _
have more space requirements than AG and RG due to the
optimizations used. A grid 03'° cells is the best choice
for all algorithms regarding CPU time and space require-
ments. We use three cells per dimension for all experiments.

The results for the real data set are similar and are omitted. ~ * | % O o Number Of Queres. Dimenaons
Moreover, AGO and RGO outperform both AG and RG, (a) FC (b) AN
especially when the number of cells is low. This gap arises

due to the optimizations, since AGO and AG have the same  Figyre 6. CPU time vs. number of queries’
pruning power (similarly for RGO and RG). The remaining  dimensions

experiments follow the same trend and therefore, AG and
RG are omitted.

The next experiment studies the performance of AGO
and RGO with respect to the number of active tuglés
The number of querie® is set to 50. All queries are uni-
formly generated. Figure 5 shows the results for the two
data sets. FC and AND use up to 0.5M and 1M active tu-
ples respectively. The CPU time is given per update for all
queries including the cost of grid update. AGO outperforms e ormeren M e ormeren
RGO, when the number pf tuples is h_|gh espemally_ in the (a) FC (b) AN
real data set. The CPU time of RGO increases rapidly be-
cause can not prune cells of candidate tuples due to the poor  Figyre 7. Effect of upper bound optimization
segregation of tuples.

Next, we study the performance of the proposed methods
in subspaces. Thus, all queries have the same number of diusually more preferable than others.
mensions, but the dimensions sets are different. The number .
of queriesQ) is 36. Figure 6 illustrates the results. As ex- 4 Conclusions
pected, the CPU time of AGO decreases as the number of The results of our study indicate that continuous process-
queries’ dimensions increases. RGO has different behavioring of subspace top-dominating queries can be efficiently
and this happens because its pruning power is lower thanperformed, by organizing the active tuples (objects) in a
that of AGO. As the dimensionality of queries increases simple grid-based indexing scheme which offers fast search
each domination check is more expensive and thus, RGOand update operations. Both regular and irregular grids have
is worst. been considered. In addition to the basic query processing

Finally, we measure the effect of the upper bound op- mechanism, several optimizations have been proposed to in-
timization. We run all queries together and we repeat the crease efficiency. P_erformance evaluation results based on
experiment by running each query separately for AGO. The real-life and synthetic data sets have demonstrated that the
abbreviation AQAGO (All Queries - AGO) and SQAGO |(regulgr grid scheme enhanced by the proposed optimiza-
(Separate Queries - AGO) are used respectively. The redions yields the best performance.
sults are depicted in Figure 7. As the number of queries
increases and therefore the overlapping between the subReferences
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