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Abstract

Query processing in data streams is a very impor-
tant research direction. The challenge in a database
of data streams is to provide efficient algorithms and
access methods for query processing, taking into con-
sideration the fact that the database changes continu-
ously as new data arrive. Traditional access methods
that continuously update the data are considered in-
efficient, due to the significant update costs. In this
paper we present IDC-Index, an efficient technique
for similarity query processing in streaming time se-
quences, which is based on a multidimensional access
method enhanced with a deferred update policy and
an incremental computation of the Discrete Fourier
Transform (DFT), which is used as a feature extrac-
tion method. The method manages to reduce the num-
ber of false alarms examined and therefore achieves
high answers/candidates ratio. Moreover, an exten-
sive performance evaluation based on synthetic ran-
dom walk and real time sequences have shown that the
proposed technique outperforms significantly existing
approaches for similarity range query processing.

1 Introduction

Nowadays, a significant number of applications
require the manipulation of data streams [BWOL,
BBD02, CF02, LF03, CDIM03, GMM+03]. Exam-
ples of these applications are online stock analysis,
computer network monitoring, network traffic man-
agement, earthquake prediction. The major com-
mon characteristic of the above applications is that
they are all time-critical. Therefore, the DBMS must
be equipped by effective and efficient tools for data
stream processing.

An important query type that has been studied

thoroughly in database literature is the similarity
query. Given a query object @) the similarity query
asks for all objects O, that are similar to Q) to a suffi-
cient degree. Similarity queries have been studied for
multidimensional objects, images, video, time series
and other non-traditional data types. In data streams
the problem is more challenging since the query ob-
ject, the data or both may change over time. The
similarity between two objects is expressed by means
of a distance metric (e.g., Euclidean, Manhattan).

Basically, there are three similarity query types
that have been extensively used in the literature:

e similarity range query,
e similarity nearest-neighbor query and

e similarity join query.

In this paper, we study similarity range queries in
streaming time sequences, where both the query se-
quence and the data sequences change over time. In
this query type, given a query object @) and a distance
e, the systems determines the data objects O, that are
within distance e from ). These queries can be used
on their own, or can be part of complex data mining
tasks for clustering and classification [NTMO1].

The length of a streaming time series can be very
large, since new values are appended. Therefore, the
similarity of two time series is expressed by means
of the last values of each sequence (e.g. 128, 256,
1024). Each sequence can be defined as a vector in
a high-dimensional space. Dimensionality reduction
techniques (e.g., DFT, KLT) can be used in order to
reduce the number of dimensions, allowing efficient
multidimensional access methods to be utilized. How-
ever, each vector changes over time since new values



are continuously appended. The naive procedure is to
delete the old vector by updating the access method,
to re-apply the dimensionality reduction technique to
the new vector, and to store the resulting vector in the
access method. This process is very time consuming
both in CPU time and disk accesses and therefore is
inappropriate in our case.

In this work we propose the IDC-Index (Incremen-
tal DFT Computation) which is based on the R*-tree
access method [BKSS90] in order to index the vec-
tors corresponding to the underlying time sequences.
The dimensionality reduction technique applied to the
original time series is based on an incremental compu-
tation of the DFT which avoids recomputation. More-
over, the R*-tree is equipped by a deferred update pol-
icy in order to avoid index adjustments every time a
new value for a stream is available. Experiments per-
formed on synthetic random walk time series and on
real time series data have shown that the proposed ap-
proach outperforms significantly the sequential scan-
ning (SS) of the database and a recently proposed
method called VA*-stream [LF03], which is based on
the vector approximation access method [WSB98].

The rest of the paper is organized as follows. In
the next section we briefly discuss related work on
similarity-based queries both in streaming and non-
streaming time series databases. Moreover, we give a
brief description of the VAT-stream method for simi-
larity search in streaming time sequences, and present
our motivation and contribution. Our method is pre-
sented in detail in Section 3. The performance evalu-
ation results are offered in Section 4. Finally, Section
5 concludes the work and raises some issues for future
research in the area.

2 Background
2.1 Related Work

One of the first studies in similarity queries for time
sequences databases has been performed in [AFS93].
DFT is used as the feature extraction method, and
the Euclidean distance is used as the similarity mea-
sure. The DFT coefficients are stored in an R*-tree.
The Euclidean distance is the most common simi-
larity measure [FRM94, CF99, KP99, GWO02] due to
its simplicity. Transformations other than DFT have
been used as well: Haar wavelet transform [CF99],
piecewise linear representation [KP99], categorization
[PCYHO00, PLC99], segmented means [YF00].

During the last years, data streams have attracted

the interest of researchers. In [BW01, BBDO02,
GKMS03] a system architecture for continuous queries
has been proposed and some very important issues on
data streams are addressed.

Similarity queries in streaming time series have
been studied in [GWO02] where whole-match queries
are investigated by using the Euclidean distance as
the similarity measure. A prediction-based approach
is used for query processing. The distances between
the query and each data stream are calculated using
the predicted values. When the actual values of the
query are available, the upper and lower bound of the
prediction error are calculated and the candidate set
is formed using the predicted distances. Then, false
alarms are discarded. The same authors have pro-
posed two different approaches, based on pre-fetching
[GYWO02, GW02D].

Both the aforementioned research efforts examine
the case of whole-match queries, where the data is
static time series and the query is dynamic (changes
over time). In [LFO03] the authors present a method
for query processing in streaming time series where
both the query object and the data are dynamic. The
VA-stream and VA T-stream access methods have been
proposed, which are variations of the VA-file [WSB9S].
These structures are able to generate a summarization
of the data and enable the incremental update of the
structure every time a new value arrives. The per-
formance of this approach is highly dependent on the
number of bits associated with each dimension.

2.2 The VAT-stream Method

In this section we briefly describe the VAT-stream
access method which has been proposed in [LF03] as a
similarity search method in streaming time series. The
VAT -stream is based on VAT-file [WSB9S§], a structure
that has been proposed as an index method to over-
come the dimensionality curse and to support efficient
similarity search for non-uniform data.

Since a streaming time sequence contains a large
number of values, similarity is expressed with respect
to the W last value of the streams. This is applied to
the query time sequence as well. Therefore, if W =
256 then each sequence is considered a point in the
256-D space, as it is illustrated in Figure 1.

The VAt-stream divides the data space into 2°
cells, where b is a user-specified parameter. The VA™-
stream allocates different number of bits for each di-
mension. The sum of these bits is equal to b. Each cell
is an approximation of the data points that fall into
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Figure 1: Example of streaming time sequences.

this cell and is represented by a bitstring of length b.
An example of six time sequences in the 2-D space
(W=2) is given in Figure 2.
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Figure 2: An example of VAT-stream.

As new values arrive, new dimensions are created
and therefore the structure must be adjusted accord-
ingly to reflect the changes. Since the dimensional-
ity remains constant, the left-most dimension must
be eliminated, whereas a new dimension is formed,
composed by the newly arrived values of the time se-
quences. Therefore, the data stream values considered
are obtained by a sliding window which always con-
tains the last W stream values. In order to adjust the
structure due to the newly arrived values, a bit real-
location method is applied. Each dimension is quan-
tized independently with its assigned bits, in order to
achieve the least reproduction error.

The VA*-stream access method can answer similar-
ity range and nearest-neighbor queries. We focus on
similarity range queries and describe shortly the query
processing mechanism. A similarity range query is de-
fined by a streaming time sequence ) and a radius e

expressing the region of interest. The query is pro-
cessed by using the following phases:

e In the first phase, the VAT-stream is searched
and the distance between the cell vectors and the
query point is computed. The distance between
the query point and the data point that falls into
a cell cannot be smaller than the distance between
the query point and the cell. Therefore the real
distance is lower-bounded. If the distance of a
cell is greater than e then the data points that
fall into this cell are rejected. The candidate set
is formed by the remaining points.

e In the second phase the candidate set is scanned
and the real distance is computed, in order to
discard false alarms.

2.3 Motivation and Contribution

Let us examine some important drawbacks of the
VA*-stream method developed in [LF03] and de-
scribed in the previous section. In order for the
method to be applicable, all stream values must be
available at a given time instance. However, there are
cases where new values are available for a portion of
the data streams, whereas other data streams main-
tain their previous value. In such a case, the VAT-
stream access method can not be applied.

Another worth mentioning issue is that the VA™-
stream access method has very high space require-
ments (as we demonstrate in the performance eval-
uation section). A more compact structure is more
appropriate, since it would be very advantageous to
maintain the structure in main memory, in order to
improve similarity query performance.

Finally, according to the discussion in [LF03], the
number of time sequences must be known in advance,
in order to calculate the number of bits per dimension.
If new time sequences are inserted, the bit allocation
may not reflect the data distribution adequately, re-
quiring a possible reorganization of the structure.

The proposed method avoids the aforementioned
problems. The contribution of our work is three-fold:
a) the exploitation of the DFT transform which has
been successfully applied in time series databases, b)
the use of an index structure to store the transformed
vectors, ¢) the application of a deferred update policy
in order to avoid high reorganization costs for index
adjustments. With this approach, multidimensional
access methods which have been implemented in many



commercial DBMSs, can be used to handle similar-
ity range queries in streaming time series in an effec-
tive and efficient way, avoiding the implementation of
complex access methods. Moreover, the proposed ap-
proach can be applied to other multidimensional ac-
cess methods as well (e.g., SS-tree [WJ96], SR-tree
[KS97], X-tree [BKK96], TV-tree [LJF95]).

3 Proposed Method

A stream is denoted by the symbol S, and a finite
time series by the symbol S,[i : j], where 4 is the first
time instance of the time series and j is the last. The
number of values of a time series is therefore j-i and
corresponds to a window W. S, (7) is the i-th value of
the time series. Generally, the query and data streams
do not have the same length.

Let us define the problem formally. Let us assume
n streaming time series, each updated over time. To
find similar streaming time series, use only the last
N values of each one and update these values when
a value becomes available. Given a query, find the
streaming time series that are within distance e.

In our study, the Euclidean distance between two
finite time series is used as the similarity measure. The
distance between two streaming time series S, and S,
is defined by the Euclidean distance between the last
W values of S, and S,.

3.1 Incremental DFT Computation

The DFT is used as the feature extraction method,
which preserves the Euclidean distance between two
sequences. Real-life time series often concentrate the
energy in the first few components of the DFT. There-
fore we need less information in order to capture the
characteristics of the original vector. Another im-
portant feature of the DFT is that the Euclidean
distance in the original and the Euclidean distance
in the frequency domain are equal. By taking the
first coefficients of the DF'T vectors, the resulting dis-
tance between two vectors is reduced, and therefore
no false dismissals occur during range query process-
ing [AFS93, FRM94].

Normally, every time a new value for a stream
arrives, the DFT vector must be recalculated by
using the last W values of the stream. This may
lead to high costs since the recomputation of the
DFT is quite expensive. However, as the following
proposition explains, the computation of the DFT can
be performed incrementally avoiding recomputation.

Proposition

Let S be a streaming time series with values S(0),
S(1), ..., S(N — 1) and length N. If a new value for
this stream arrives, we get the sequence T'(1), T'(2), ...,
T(N), where S(i)=T(i) and T'(N) is the new value.
The DFT coefficients of T" can be computed by the
DFT coefficients of S according to the following equa-
tion:

T(n) = ﬁ~(\/N~S(n)—5(0)+T(N)).ej2wn/zv )

Proof
Note that S(i) = T(i) for 1 < i < N — 1. The n-th
coefficient of S is given by:

P

S(n) _ S(k) . e—j27rkn/N (2)
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Similarly, the n-th coefficient of T' is given by:

— i - . ,—j2mkn/N
T(n) = o ;;) Tk+1)-e (3)

We begin with Equation 1 and substitute the values
of S(n) as follows:

T(n) = (S(0) + S(1)e=72™/N 4

-

+S(N —1)e 72 N=1n/N _ §(0) + T(N))e?2m/N

By algebraic manipulations in the above equation and
taking into consideration that S(i) = T'(¢) for 1 < <
N — 1, and that e/2™/N = =727(N=1)n/N we get:

T(n) = (T(1) 4+ T(2)e 72™/N 1+

2~

-I-T(N _ 1)efj27r(N72)n/N + T(N)efj%r(Nfl)n/N)

which is exactly Equation 3.

The above proposition can be used to incrementally
compute the new DFT vector of a streaming time se-
ries, taking into account the previous one, and there-
fore, avoiding the recomputation.



3.2 Deferred Update Policy

Since the number of streams may be quite large, the
use of an index structure is desirable in order to avoid
the computation of the distance between the query
and all the time series. We use the R*-tree as an index
structure for the DFT coefficients of the streaming
data series.

In our case the problem is that the DFT of data
time series must be updated when a new value arrives.
If we update the index every time a new value becomes
available, the overhead may be prohibitive due to ad-
ditional page accesses. In order to avoid continuous
deletions and insertions in the R*-tree, we use a de-
ferred update policy. A parameter D is used to control
the updates. If the distance between the new and the
old DFT vector exceeds the value of parameter D,
then the R*-tree is updated. Otherwise, no update is
performed. This technique leads to considerable sav-
ing in CPU and I/O time. The last recorded DFT
vector is stored in the last disk page of every stream-
ing time series, in order to become available when a
new value arrives.

The example that is follow will clarify the method.
Assume that we have a stream S and the last N values
form a time series S[k — N : k], where k is the posi-
tion of last value of the stream. When a new value
arrives, a new time series is formed Sk + 1 — N :
k+1]. Let Sy and Sk41 be the DFT vectors of series
Slk— N : k] and S[k+1— N : k+ 1] respectively. If
Euclidean(Sk41,Sk) < D then Sk is stored as the
most recent DFT but it is not inserted into the R*-
tree. Assume that another value for the same stream
arrives. S[k+2 — N : k + 2] is the new time series
and Sk is the DFT of this sequence. Assume that
Euclidean(Sk+2,Sk) < D. Then, Si2 replaces Siy1,
and Sy is discarded. Sk.y2 is not inserted in the R*-
tree. Notice that the comparison is always between the
new DFT and the DFT that has been last recorded in
the R*-tree. If D(Sky2,Sk) > D then Siio replaces
Si in the R*-tree.

In summary, we need both the last recorded DFT
vector and the previously calculated DFT vector. The
first is used to decide weather an update will occur or
not, and the second is used for the incremental com-
putation of the new DFT vector.

We used statistical analysis on the initial data for
the choice of D. Therefore D is a static parame-
ter. Due to space limitations we cannot explain the
whole analysis. We only refer that it is based on

the estimation ratio of the DFT to the real data (e.g
& = Dppr/Dyear), where D is the Euclidean dis-
tance). It is obvious that a more sophisticated analysis
can be used to have a better choice of D. For exam-
ple, it is possible to change D according to the data
changes over time. However, this is an issue for future
work.

The update of the R*-tree is performed as follows:
When a new DFT is produced, an exact match query
is performed in order to locate the tree leaf that where
the DFT vector is stored. The new DFT replaces the
old one in this leaf. Then, the MBRs of the corre-
sponding path from the leaf to the root are adjusted
accordingly. Since the coefficients of consecutive DF'T
vectors are similar, the overlap enlargement is not sig-
nificant.

By combining the R*-tree with the incremental
DFT computation and the deferred update technique
we obtain the IDC-Index.

3.3 Similarity Queries

Recall that a new DFT vector replaces the old one
in the IDC-Index only if the Euclidean distance be-
tween the two vectors exceeds D. In order for simi-
larity range queries to produce the correct results, the
user-defined distance e must be expanded. This way,
we guarantee that there will be no false dismissals.
Therefore, the range query algorithm proceeds as fol-
lows:

1. Compute the DFT of the query time series @,

2. Perform a range query with center ) and radius
e + D, by using the IDC-Index,

3. Retrieve the candidate data time series, and

4. Refine the results in order to discard falls alarms.

4 Performance Evaluation

In order to evaluate the performance of the IDC-
Index approach in comparison to SS and VA T-stream,
all methods have been implemented in C++!. The
experiments have been conducted on a Pentium IV
Workstation with 1GBytes of memory, running Win-
dows 2000. A number of experimental series have been
conducted on synthetic and real-life datasets. The
datasets used are the following:

1We are grateful to X. Liu and H. Ferhatosmanoglu for pro-
viding us with the MATLAB code of the VAT -stream.



e SYNTHETIC: this dataset is composed of
50,000 streams, and the length of each stream is
set to 20,000 values. The data are produced by
means of a random-walk process. Each stream is
generated as Sy (i) = 100 (sin(0.1x RW (¢))+ 1+
1/20000), 0 < i < 19999, where RW is a random
walk series of 20,000 values.

e STOCKS: is the daily stock prices obtained from
http://finance.yahoo.com. In order to have an
adequate number of streams, we have generated
some by transposing values of the real streams.
The data set consists of 50,000 time sequences,
and the maximum length of each one is set to
1,500.

e TAO: this dataset (Tropical Atmosphere Ocean)
contains the sea surface temperature of 65 sites on
Pacific and Atlantic Ocean since 1974, obtained
from the Pacific Marine Environmental Labora-
tory (http://www.pmal.noaa.gov/tao). We have
used the highest data resolution (e.g. the sam-
pling time interval) that was available. About
105,000 streams form the data set, and the max-
imum length of each one is set to 1,200.

We study the performance of a query with respect
to e (maximum similarity distance), D (minimum up-
date distance), sliding window size W, and number of
streams. We measure the CPU time and the number
of disk accesses for the processing of similarity range
queries. Moreover, we study the cost per update by
varying the parameter D. Finally, we compare IDC-
Index and VAT-stream with respect to the number of
candidates produced by the filter step. Due to space
limitations, only the most representative results are
illustrated. The parameter values used (if not oth-
erwise specified) are: W=256, D=5 (real datasets),
D=100 (synthetic dataset). In all the experimental
series the first two DFT coefficients are used. CPU
time is measured in seconds.

In order to evaluate the performance of the various
approaches in a realistic setting, a workload was gen-
erated composed of queries intermixed with update
operations. In this workload 60% of the operations
are queries whereas 40% are arrivals of new values for
the time sequences. These arrivals are uniformly dis-
tributed among the query operations.

Before presenting the experimental results we dis-
cuss an implementation detail regarding the use of the
VAT-stream access method. The VAT -stream divides

Cells CSET
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8 111 31

Figure 3: The CSET structure used by VA+-stream.

the data space into 2° cells. As it is mentioned in
[LF03], assigning 3 bits per dimension is a good choice.
Assume that we assign 3 bits at each dimension and
the window size is 256. Then, b = 3*256 = 768 and
the number of produced cells is 27%%. However, not
all of these cells are useful, since many of them do
not contain any data points. In order to overcome
this problem, a structure called CSET is used. This
structure stores for each data point the corresponding
cell. Thus, only the useful cells are used. The draw-
back is the size of the structure. In order to define a
cell, d integers are required (see Figure 3). For each
d-dimensional data point a cell is stored and therefore
the CSET has n*d integers where n is the number
of the real data points. To compare the size of the
CSET, consider that the real data is n*d real num-
bers. We used the CSET structure, which was also
used in [LF03] for the experimental evaluation.

In the first experiment we give the performance of
the methods for various values of e, which denotes
the radius of the range query. Figures 4 and 5 il-
lustrate the results for the SYNTHETIC and TAO
datasets. Both the CPU time and the number of disk
accesses are given. It is evident that the performance
of IDC-Index is significantly better than that of SS
and VA'-stream. In this experiment we assumed that
both IDC-Index and VA™'-stream access methods re-
side on disk. This is the reason for the large number
of disk accesses posed by VAT-stream. In the sequel
we will assume that both the IDC-Index and the VA*-
stream are maintained in main memory, although this
approach is more advantageous for the VA*-stream
because (as it is illustrated in the sequel) it requires
considerably more space.

Figure 6 illustrates the space requirements of IDC-
Index and VA*-stream in MBytes for STOCKS and
TAO datasets. It is evident that IDC-Index requires
considerably less space and therefore it is more fea-
sible to maintain the structure in main memory. By
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increasing the space dimensionality (sliding window
length) the space requirements of IDC-Index are con-
stant, due to the dimensionality reduction performed
by the DFT. On the other hand, the space require-
ments of VAT-stream increase linearly with respect to
the number of dimensions. Similar results have been
observed for the SYNTHETIC dataset.
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Figure 6: Index space requirements vs W for STOCKS
and TAO datasets.

An important performance measure is the number
of candidates that each method reports after the com-
pletion of the filter step. The number of candidates is
proportional to the expected cost of the refinement
step. IDC-Index is expected to retrieve more can-
didates by increasing the minimum update distance
D. This is reasonable, since as D increases, updates
in the IDC-Index are more rare, leading to small up-
date costs, but sacrificing the accuracy of the struc-
ture. Moreover, the radius e+ D increases, leading to a
larger search range which increases the number of can-
didates reported in the filter step. Figure 7 illustrates
similarity search performance for IDC-Index and VA™-
stream by varying D. We note that the use of the pa-
rameter D is very important, since it can be used as
a tuning parameter. If new values for the streaming
time sequences arrive at a rapid rate, we can increase
the value of D in order to reduce update costs. On the
other hand, if the arrival rate is low, we can decrease



D in order to keep the structure updated.
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Figure 7: Number of candidates vs D for TAO dataset.

Another important measure is the ratio between the
number of answers and the number of candidates. If
this ratio is high, then the percentage of false alarms
is low and vice-versa. Figure 8 depicts this ratio for
STOCKS and TAO datasets by varying the range
query radius e. It is evident that IDC-Index achieves
a higher hit ratio.
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Figure 8: Hit ratio vs e for STOCKS and TAO
datasets.

Another important issue is the update costs of each
method. Figure 9(a) illustrates the cost for a single
update. It is evident that the VAT -stream method re-

quires less time to perform a single update than IDC-
Index. However, update operations are more frequent
for the VAT-stream than for the IDC-Index. There-
fore, the total update cost for the workload is signif-
icantly low for the IDC-Index as it is illustrated in
Figure 9(b).
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Figure 9: Update costs for STOCKS datasets.

In Figure 10 we study the performance of the meth-
ods with respect to the sliding window size W. Recall
that W affects the dimensionality of the VAT-stream,
and therefore it is expected that by increasing W its
performance will degrade. On the other hand, IDC-
Index is more immune to the increase of W, because
of the dimensionality reduction performed via DFT.
The CPU time and the number of disk accesses with
respect to W are illustrated in Figure 10.

In the last experiment we study the performance of
the methods with respect to different workloads using
the TAO dataset. Each experiment consists of 1000
operations (queries and updates). Figure 11 illustrates
the total CPU time and the total I/O operations for
the various workloads. The IDC-Index outperforms
the VAT-Stream even when the update rate is high.
For SS the early-stop idea is used [KP99]. Evidently
the CPU time for SS is less than IDC-Index when
the update ratio is more than 45% since the sequen-
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Figure 10: CPU time and disk accesses vs W for TAO
dataset.

tial scanning does not rely on an index, and therefore
on index updates are performed. On the other hand,
the number of I/O operations of IDC-Index is much
smaller than SS and therefore the overall performance
of IDC-Index is better.

5 Concluding Remarks

Similarity search on streaming time sequences is be-
ing considered very important due to the changing na-
ture of data. In order to answer similarity queries ef-
ficient access methods must be employed, taking into
consideration that update costs should be reduced and
query response time must be satisfactory.

In this paper a new organization scheme (IDC-
Index) for streaming time sequences has been pro-
posed and studied. IDC-Index is equipped by a) an
incremental computation of DFT which is used as a
feature extraction method and b) a deferred update
policy which is controllable and affects update costs
and index performance. The performance evaluation
results based on synthetic and real-life datasets have
shown that considerable improvement is achieved in
query response time and space requirements in com-
parison to sequential scanning and VAT-stream. The
proposed method could be easily applied to other mul-
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Figure 11: CPU time and disk accesses vs number of
updates for TAO dataset.

tidimensional methods as well.

Currently we are extending this work towards
nearest-neighbor query processing, whereas some in-
teresting issues for further research are:

e the development of an analytical formula for the
choice of D,

e the consideration of the incremental computation
of other feature extraction methods,

e the processing of multiple continuous queries over
streaming time sequences,

e the consideration of multidimensional streaming
time sequences.
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