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Abstract—Wireless  networks introduce brand new pioneering applications [42] supporting the distribution of
opportunities for music delivery. The trend of using mobile MP3-based songs to 3G UMTS devices. These applications
devices in wireless networks, can significantly extent the recent rely on the existence of a central server, which receives
change of paradigm in the model of music distribution, by ts f d deli dio files t th’ bile client
allowing mobile clients to search for audio music in a network requests rqm an elivers f”‘u 10 'es_ 0 the mobile C_'en S.
of wireless mobile hosts. This work, introduces the application Though, aside from these single-hop infrastructured wireless
of Content-Based Music Information Retrieval (CBMIR) in  networks, music delivery can also unfold over the emerging
wireless ad-hoc networks. We investigate, for the first time in Mobile Ad-hoc NETworks (MANETs). The wireless ad-
the literature, the challenges posed by the wireless medium and hoc networks are peer-to-peer, multi-hop, mobile wireless
recognize the factors that require optimization. We propose novel twork h inf fi ’ ket 't itted i
technigues, which attain a significant reduction in both response networks, where in orma lon packets are ransrm ,e In .a
time and network traffic, compared to naive approaches. Store-and-forward fashion from source to destination, via
Extensive experimental results illustrate the appropriateness, intermediate nodes. Such networks are expected to give rise
effectiveness and efficiency of the proposed method to thisto scenarios like the one previously mentioned. The salient
bandwidth-starving and volatile, due to mobility, environment. characteristics of these networks, i.e., dynamic topology,
bandwidth-constrained communication links and energy-
constraint operation, introduce significant design challenges.
S . In this paper, we focus on the following problem. We
A. Music distribution adopts a new paradigm consider a number of mobile hosts that participate in a wireless

Imagine listening to music through your enhanced pockeqd-hoc network, where each host may store several audio
sized ultralight device while jogging or resting in a parkmusical pieces. Assume a user that wants to search in the
A device that, apart from the ability to play pre-storedVir3|ess network, to find audio pieces that are similar to a
music like any MP3 player in a area that is not coveregiven one. For instance, the user can provide an audio snippet
by wireless local area networks, can also search for affi9- & musical piece excerpt) and query the network to find
acquire music songs from other peop|e’s similar musicme peers that store similar pieces. As will be described in
devices. This data exchange is attainable through the devid&8 following, the definition of similarity can be based on
wireless connectivity equipment allowing for participation irseveral features that have been developed (see Section IV-A)
ad-hoc networks, formed with similar devices being in cloder Content-Based Music Information Retrieval (CBMIR). It
proximity. Although such a scenario may seem futuristic, it & important to notice that the querying host does not have
not so distant. any prior knowledge of neither the qualifying music pieces

Having already reached the end of an era for the traditior2®" the hosts’ locations that contain them. This differentiates
music distribution [40], the market model as well as the buyiri§e examined problem from existing ones that are interested
behavior of consumers have been reformed by the developmibigt in identifying the hosts in a wireless ad-hoc network
of technologies like MP3 (and the supporting applications fépat contain a known musical piece. Moreover, the examined
their distribution, e.g.Apple’s iTunesiMusic online music problem is complementary to the one of delivering streaming
services) and the penetration of the World Wide Web. Pedpedia (audio and video) [3] in wireless ad-hoc networks, since
to-peer networks and the maturing distributed file sharirf§e latter does not involve any searching for similar musical
technology, enable the dissemination of musical content Rces, and just focuses on transferring data from one host to
digital forms, permitting customers an ubiquitous reach @other.
stored music files.

. Brand new opportur)ities for music deIiv_ery are additiqnallg_ Requirements set by the wireless medium

introduced by the widespread penetration of the wireless

networks (wireless LANs, GPRS, UMTS [12]) such as the Th|s_resear9h focqses on the Qeve_lopment of methods for
searching audio music by content in wireless ad-hoc networks,

*This research is supported by tH8PAKAEITOSX, and by aI'TET  where the querier receives music excerpts matching to a posed

grant in the context of the project “Data Management in Mobile Ad Hoauery_ As for the Iegal issues of transferring and reproducing
Networks” funded by[IlYOAI'OPAX II national research program. The

second author is supported by IKY postdoctoral scholarship. Prelimina)€ musical pieces found are concerned, analogous issues
results of this research appeared in [21]. are being confronted in online music distribution over wired
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P2P networks, where ways to protect intellectual properpeculiarities include the need to search for similarity

are now maturing. CBMIR applications in wireless networkim a search space where similar content location is not

can, and must, adopt any such developments. Additionally, famown beforehand. As for the data, their size prohibits the

the issue of reproduction, adequate techniques for preserviigsemination for direct local retrieval. To our best knowledge,

intellectual property do exist [19]. no existing approach has addressed all the aforementioned
The searching procedure can benefit from the latdssues, collectively, in the field of MANETS.

approaches for CBMIR in wired P2P networks (see Section II-

B). Nevertheless, the combination of the characteristics of the

wireless medium and of the audio-music data pose new aad Contribution and paper organization

challenging requirements, which call for new solutions: This work introduces the application of CBMIR in wireless
1) CBMIR methods for wired P2P networks do nokd-hoc networks and investigates the challenges posed by the
consider the continuous alteration of the networgireless medium in order to perform content-based MIR, as
topology, which is inherent in wireless ad-hoc networkgjescribed in the paradigm of Section I-A. Accordingly, we
since Mobile Hosts (MHs, the terms MH and peepropose novel techniques, which attain a significant reduction
are similar in this context and thus interchangeabl@) both response time and network traffic, compared to naive
are moving and become in and out of range of thgpproaches.

others continuously. One impact of this mobility is that To address the requirements posed by the wireless medium,

2)

3)

Existing methodologies
aforementioned issues in a limited extent. In particul

selective propagation of the query among MHs, €.9., e propose the following techniques:

using data indexing like DHT as proposed by [49] or
caching past queries ([20] for text documents and [23]
for music), is not feasible. Additionally, the recall of
the searching procedure is affected by the possibility of
unsuccessful routing of the query, as well as the answers,
over the changing network topology. Thus, new query
propagation methods need be developed for wireless ad-
hoc networks.

The need to reduce traffic, which results from the
size of audio-music data (approx. 8MBytes for a
3 minute query). This is done by replacing the
original query with a newly developed representation
that utilizes novel, appropriate transcoding schemes.
Although traffic concerns CBMIR in wired P2P
networks too, the requirement of traffic reduction is
much more compelling in wireless ad-hoc networks,
where the communication ability is usually assumed to
be around 1 MBps for relatively long distances (see also
Section 1I-C). It is worth noticing, that the reduction of
traffic also reduces the involvement of other MHs, due
to constraints in their processing power and autonomy.
In CBMIR over wired P2P networks, should a matching
music excerpt be found, it can immediately be returned

1)

2)

3)

To fulfill the first requirement, we perform breadth-
first searching over the wireless ad-hoc network using
knowledge about neighboring MHs (obtained by probing
neighborhood at specific time points). This approach
can cope with mobility, maintain increased final
recall, and constraint the drawbacks of flooding, e.g.,
excessive traffic due to multiple broadcasts (explained
in Section 1I-C).

The second requirement is addressed by a technique that
uses a concise, feature-based representation of the query
with reducing length. The reducing-length representation
(a.k.a transcoding) that we propose drastically degrades
traffic, while reducing the computation performed at
each MH as well.

The additional traffic produced by the third requirement
is addressed by a twofold proposal: (i) We propose
policies to constraint the number of MHs involved for
the propagation of the answers, by exploiting any MHs
that were involved during the propagation of the query.
(i) We allow such MHs to prune the propagation of
answers, based on a property of the previously described
representation.

to the querying node, since the querier is direct]y To our best knOWledge this work is the first to examine

accessible (through its IP address). In contrast, fRe issue of CBMIR in ad-hoc wireless networks. The
wireless ad-hoc networks the answers to the query hag@ntributions are: i) the introduction of the problem and
to be propagated back to the querier via the netwotRe identification of the inherent requirements, i) a novel
(the querier is not directly accessible). This requiremeatgorithm that combines the aforesaid techniques and

further burdens traffic, thus requiring optimization.
in MANETs, address

addresses the posed requirements, and iii) an extensive
th&xperimental evaluation, which illustrate the efficiency of the
aproposed methodology.

algorithms proposed for the problem of routing in MANETS The rest of the paper is organized as follows. Section Il

consider neither the peculiarities of searching for CBMIescribes background and related work. In Section Il we
purposes nor the size of the transferred data, since mu@iline the proposed method, whereas Section IV describes

data are considerably larger than routing packets. Thd§atures selection and the indexing method that we use.
Section V provides a complete account of the searching

1The searching procedure, i.e., the subject of this work, does not revedtjorithms and, subsequently, Section VI describes the

concerns about legal issues, since it only involves excerpts. _proposed routing policies. Section VII presents and discusses
Distributed Hash Tables. In such systems each node is assigned witfy a . tati d lts obtained. Einallv. th .
region in a virtual address space, while each shared document is associHikg EXPErMeNntation and results obtained. rinally, the paper IS

with a value (id) of this address space. concluded in Section VIII.



I[I. BACKGROUND AND RELATED WORK of some of the four most semantically important features such

In this section, CBMIR is considered as a discrete procedlﬁ‘g pitch, rhythm, “”?bre :?md dyngm|c_s. L
Common alternatives, in the direction of approximation of

as well as in terms of a process deployed in P2P networks. : . :
An overview of content-based music information retrieval®™me of the four most semantically important features include

systems, both for audio and for symbolic music notation ¢ 4t5Ch l;j_etﬁc(tjion [(_3]’ [;OL ar;d r_h%/t hm ddetecti_onf [3(‘;’]’ [37]’|
be found in [47]. Moreover, a brief introduction on informatio ]. Pitch detection is dealt with time-domain fundamental

discovery and resource in wireless mobile ad-hoc networksqgr'Od.p'tCh detef:uon, autocorrelatlon.pnch detection, adapuye
provided. filter pitch detection, cepstrum analysis and frequency-domain

pitch detection. It should be noted that no pitch detection
algorithm is totally accurate and some that appear to be,
A. CBMIR in audio utilize music inputs that follow specific constraints or show

Music exists in two representations: the Symbongmreased computational requirements (non real-time). Key

representation (MIDI, Humdrum, common music notatiorgiﬁicu]ties in pitch dgtectipp ir_10|ude attgck.transienys, low
and the acoustic representation (audio format - wav, m@?d h|gh freque'nues identification, myopic pitch tracking and
etc). Their key difference lies in the fact that the familicoustical ambience. Rhythm detection, on the other hand,
of symbolic representations contains information of wh&@" be divided into three levels: low-level (event detection),
a musical player should perform, whereas the acousfitd-level (transcription into notation) and high-level (style
representations comprise a specific recorded performance®Bflysis). As with pitch detection, rhythm detection is also
a music piece. Acoustic representations contain the sampt@erently difficult due to non accurate human performance of

waveforms of a sound [41] while symbolic contain varioughusical scores as well as the ambiguity of the music notation.

degrees of structured descriptive music. In this work our focus
is on acoustic musical data. B. CBMIR in P2P networks
Our focus on acoustic music is motivated by the popularity
of music in acoustic format. A reason of that popularity is
the ease of quality performance reproduction that acous
formats offer. In addition, this trend gives as well as receivi
further impulse by the transition of the music distributio
model, which nowadays offers music to download as wef!
Thus, the obvious result is the formation of digitized musi¢
databases the size of which is rapidly augmenting. As us
attempt information retrieval in these collections, methods f
Music Information Retrieval (MIR) are necessary. Althoug

Research related to the application of CBMIR in wired P2P
gtworks is recent. In one of the first attempts, [50] presents
r P2P models for CBMIR, which include centralized,
ecentralized and hybrid categories. Another research based
n a hybrid configuration is presented in [49], in which the
uthors propose a DHT-based system utilizing both manually
ecified attributes (artist, album, title, etc.) and extracted
atures in order to describe the musical content of a piece.
he authors of [55] propose the utilization of the feature

abundantly used, even nowadays, the traditional metad EC“OT’ and extract_ion process that is described in [54] for
(title, composer, performer, genre, date, etc.) of a music pie MIR in a decentralized unstructured P2P system. Moreover,

give rather minimal information about the actual content tﬁ‘:cthf;gh forle?ted 'Ejo_war(:s_ a (jllffe::)eggate? d|skC|pI1|_rr1]e, th.e vyorl|<
the music object itself. Their use aims solely in performin [ t] r? ?;S 0 audio rhe reva '1 i nefwor Sih gp&lnupa.
MIR using textual information of the music pieces. On th rget ot this research 1S combating of unauthorized music

other hand, MIR can be performed based on humming (usi Iﬁ)sharing in P2P networks. Finally, [23] investigated the

a microphone) or on a small piece of musical file. This typ% blem tOf (iontzn(;-basetd ls_ea(;cgglg fo: slelar a(éoust:]lc ?ata
of queries lies within the Content-Based MIR. In CBMIR, afVer unstructured decentralise NEtorks, under the time-

actual music piece is required in order to compare its contefigPNY distanc . .
In the present work we deal with a wireless ad-hoc

with the content of the music pieces already available in the . .
database network, where two nodes can communicate only if in close

Though, acoustic sequences tend to be very large in size A gimity (m-range). As described, in this kind of network
three minute CD-quality recording can be about 30 MB?tesPeerS participate randomly anq for sh.ort term, and when they
Thus, for an approach to be efficient, characteristic featurgg_’ 'i_hey change ;requently_ t:lelr_loce;tlog. These_ faCtolrS (Lalwse
need be extracted from the music file in order to perforr?f('s INg approaches, €.g., Indexing, to become inapplicable.

similarity search on them. As a first approach for feature

extraction, one can transform the acoustic data into symbolg, Information discovery/provision in wireless mobile ad-hoc
leading to a complete account of the datum (transcriptioretworks

and accordingly extract features. Although skilled musicians
are able to perform music transcription with high success [ZZI],1
computer music transcription is generally admitted to be very
hard and poor performing [39], [54]. For this reason, a second
approach for feature extraction is to compute approximations‘Dynamic Time Warping (DTW) has been proposed as a more robust

similarity measure to Euclidean distance, as it can express similarity between
3[15] reports that MP3 compression of bitrates above 128Kbps is “near Qo time series even if they are out of phase in the time axis or they do not
quality”. In this case, the recording requires 5-8 MBytes, which is still largdave the same length.

As was previously mentioned, a MANET is a collection of
reless MHs forming a temporary network without the aid
any centralized administration or standard support services



regularly available on the wide area network to which the hostsly needed routes. Recall that proactive routing protocols
may normally be connected. maintain all routes without regard to their ultimate use. The
Ad-hoc networks are significantly different than Wirelessbvious advantage with discovering routes on-demand is to
Local Area Networks (WLANSs), which are infrastructuredavoid incurring the cost of maintaining routes that are not
and Wireless Personal Area Networks (WPANSs), e.gused. This approach is attractive when the network traffic
Bluetooth, which are very short range wireless networks (with bursty and directed mostly toward a small subset of
a range around to 10 meters. Although, different than WLAN®des. The most popular on-demand routing protocols are
and WPANs, MANETSs are often implemented using WLANghe Dynamic Source Routing (DSR) and ad-hoc On-demand
or WPANs [56]. Thus, the medium access control layer @istance Vector (AODV).
the ad-hoc networks is commonly assumed to be than ofDSR [17] is characterized by the use of source routing.
WLANs or WPANS, providing, for instance, symbol rates athat is, the sender knows the complete hop-by-hop route to
the range of 11 and up to 50 Mbps. Though, these rates #ne destination. These routes are stored in a route cache. The
achievable for ranges less than 70 meters; for ranges betwdata packets carry the source route in the packet header. When
110-130 meters the rate is 1 Mbps, whereas for distan@sode in the ad-hoc network attempts to send a data packet
longer than 100 meters, the rates drop below 1 Mbps (steea destination for which it does not already know the route,
Figure 2.2 in [56] and Table 3.6 in [2]). For this reason, almoftt uses a route discovery process to dynamically determine
all the studies involving transmissions at a range of 250 metatsch a route. Route discovery works by flooding the network
or longer, assume a symbol rate between 500 Kbps andvith route request (also called query) packets. Each node
Mbps. receiving a request, rebroadcasts it, unless it is the destination
In an ad-hoc network, when a source node desires to semdt has a route to the destination in its route cache. Such a
a message to some destination node and does not alreadge replies to the request with a route reply packet that is
have a valid route to that node, it initiates a path discoverguted back to the original source. Route request and reply
process to locate the destination. It broadcasts a route reqyusstkets are also source routed. The request builds up the path
to its neighbors, which then forward the request to theiraversed so far. The reply routes itself back to the source by
neighbors and so on, until the destination or an intermedidataversing this path backward. The route carried back by the
node with a route to the destination is located. Nodes amply packet is cached at the source for future use. If any
identified by their IP address and maintain a broadcast Ilink on a source route is broken (detected by the failure of an
which is incremented after every route request they initiatattempted data transmission over a link, for example), a route
The broadcast ID together with the node’s IP address, uniquelyor packet is generated. Route error is sent back toward the
identify a route request. In the same manner, the transmitt®slirce which erases all entries in the route caches along the
data requests can be identified. path that contains the broken link. A new route discovery must
There is no prior relevant work on performing contentbe initiated by the source, if this route is still needed and no
based information retrieval in MANETS, though there is alternate route is found in the cache.
wealth of routing algorithms. Routing algorithms for MANETs AODV [38] shares DSR’s on-demand characteristics in
are radically different from the traditional routing (e.g., Opethat it also discovers routes on an “as needed” basis via a
Shortest Path First) and information search protocols (e.gimilar route discovery process. However, AODV adopts a
Distributed Hash Table) used in hardwired networks, due tery different mechanism to maintain routing information. It
the absence of “fixed” infrastructure (servers, access poinises traditional routing tables, one entry per destination. This
routers and cables) in a MANET as well as the mobility of this in contrast to DSR, which can maintain multiple route
nodes. For wireless ad-hoc networks there have been proposache entries for each destination. Without source routing,
various routing/discovery protocols, which roughly fall into théAODV relies on routing table entries to propagate a RREP
following categories ([1]): a) table-driven or proactive routindpack to the source and, subsequently, to route data packets
protocols, b) source-initiated on-demand or reactive routing the destination. AODV usedestination sequence numbers
protocols, and c) hybrid routing protocols. to prevent routing loops and to determine freshness of routing
Proactive protocols maintain unicast routes between aiformation. These sequence numbers are carried by all routing
pairs of nodes regardless of whether all routes are actughigckets. The absence of source routing and promiscuous
used. Therefore, when the need arises (i.e., when a traffitening allows AODV to gather only a very limited amount
source begins a session with a remote destination), the trafffcrouting information with each route discovery. Besides,
source has a route readily available and does not haveAODV is conservative in dealing with stale routes. It uses the
incur any delay for route discovery. These protocols also caaquence numbers to infer the freshness of routing information
find optimal routes (shortest paths) given a model of linknd nodes maintain only the route information for a destination
costs. Therefore, they require consistent, up-to-date routiogrresponding to the latest known sequence number; routes
information from each node to every other node in the netwovkith older sequence numbers are discarded even though they
and thus are practically unfeasible for large-scale and dynamiay still be valid. AODV also uses a timer-based route expiry
MANETS. mechanism to promptly purge stale routes. Again if a low
On-demand (reactive) routing presents an interesting avalue is chosen for the timeout, valid routes may be needlessly
significant departure from the traditional proactive approactiiscarded.
Main idea in on-demand routing is to find and maintain On-demand and hybrid routing protocols rely on some



form of broadcasting broadcasting is best suited in cases Due to their relative positions and the preferred tolerance
where information packets are transmitted to multiple hosts in  to traffic (see below), all such nodes may not be possible
the network.Flooding is the simplest broadcasting approach, to reach.

where every node in the network forwards the packet exactly) At each reached MH, the qualifying sequences have to
once; flooding ensures full coverage of the MANET provided be detected by detaining the MHs, in terms of CPU cost,
that there are no network partitions. Flooding, though, as little as possible.

generates too many redundant transmissions, causing ftlk Each qualifying sequence has to reach the querier in a
broadcast storm probler{B4]. way that reduces traffic. Notice that the answers may have

Various algorithms have been proposed to address this to be routed back to the querier following paths different
problem [30], [24]. They can be classified as follows: from those through which the MHs with qualifying
a) probabilistic approaches(counter-based, distance-based, sequences were reached, since intermediate MHs may
location-based), and bYeterministic approachegglobal, have changed their position, and therefore be out of range.
quasi-global, quasi-local, local). The former methods do not Due to this, every detected answer may not be possible
guarantee full coverage of the network, whereas the latter do to reach the querier.
provide coverage guarantees, and thus they are preferable. An example is illustrated in Figure 1. The querier is M.

The deterministic approacheprovide full coverage of the During the forward phase (Figure la), the query is received
network for a broadcast operation, by selecting only a sub$st MHs P, and P;. During the backward phase (Figure 1b),
of nodes to forward the broadcast pacKet\ard node} and answers can be directly returned By (still in range of P,).
the remaining nodes are adjacent to the nodes that forward e to relative movement?s is, now, out of range. Thus its
packet. The selection of nodes is done by exploiting the “statafiswers are routed throug®, (previously out the range of
information, i.e., network topology and broadcast state (e.g%).
next selected node to forward the packet, recently visited nodes
and their neighbor sets). All the categories of the deterministic

) . . wd phase wd phase
algorithms, apart from théocal algorithms require (full or -

’Pz

partial) global state information, thus they are impractical. p - P2y v
The local orneighbor-designatinglgorithms maintain some B, p ; Plo‘/ 0
local state information, i.e., 1-hop neighborhood information ' \‘o : &/

. C . / . rO+—0O
by periodic exchange of ‘HELLO’ messages, which is feasible . 39% A B
and not costly. In the neighbor-designating methods, the TR, e

forwarding status of each node is determined by its neighbors.

As a matter of fact, the source node selects a subset of its 1- @) ()
hop neighbors as forward nodes to cover its 2-hop neighbors. i

This forward node list is piggybacked in the broadcast pack&td 1+ AN example of the searching procedure.
Each forward node in turn designates its own forward node

list The searching procedure is initiated at the querying MH,

. . . . aiming at detecting sequences in other MHs, which contain
Remqtely_ related to_ the top_lc of thIS paper is the iss quences whose similarity from the query sequefices
of multic3astmg st_rearplng mg_dlat (a;g'olj\&dfso)dto _MANE-ZI-%Vithin user-defined boundaries, a thresheldrhe definition
Sl_er;g-, [13]) I?r Urrl“cash'”g audio Oh : evf|ces [42]f the distance measure is detailed in Section IV. Just for now,
ESe Works t ougnh assume the emstenge ob a CenYH can intuitively think of the distance as a measure of how
Server (s'uppller), which provisions the mobile clients W'“Eiissimilar two music sequences are. The length of detected
multimedia data. sequences is equal to the length of the query sequ@nce
To address traffic minimizatior) has to be transformed to
I1l. OUTLINE OF THE SEARCHING PROCEDURE a representation form, denoted Asthrough which qualifying

In this work, music similarity is used in order to identifySeduences are detected.
similar musical pieces to a query musical piece, in a network
of mobile hosts (as described in Section I-A). The problem italzation Scarchine Process
of finding similar music sequences in a MANET requires a yoopepeeaden e
A . . 3 Q is transformed to a representation form R
searching procedure, which will detect MHs in the MANET 3. Risbroadcast to all peers in range
that have similar sequences, find those sequences in the !

reception
of R

Qualifying sequences (true- and false-positives)

detected at each peer comprise an answer set
H ti ~h 1 set i adeast bac g
MHs, and return them back to the querier. The already of anewer 5. Bach answer setis broadeast back (o the querier
set 6. Resolution of false-positives (possible places are:

described requirements of the wireless framework formulate
the examined searching procedure in the following way:

i) There is no prior knowledge of the data MHs store, that
is the querier has no knowledge of the location of thgg 2. searching process and basic events.
required data.

ii) MHs that have qualifying sequences have to be reached inDue to this transformation, it is possible that false-
a way that addresses their mobility and minimizes traffipositive results may appear. A false positive result is a

at answer providing peers, the querier or
intermediate peers)
7. Return of actual matches to user/application

answer set
reaching

querier




result that appears to be a true result when comparifay the searching procedure. Our methodology is able to
with the transformed representation, though, under the nambrace any high performance feature extraction procedure.
transformed query is not a real result. Moreov&, must Accordingly, we apply a feature extraction process based
present no false-negatives (real results that were missed due the wavelet transform. Wavelet transforms provide a
to the transformation). However, its particular implementatiosimple but yet efficient representation of audio by taking
determines whether false-positives may be produced or if thieyo consideration both non-uniform frequency resolution and
will be completely avoided. Based on all the aforementionéchpulsive characteristics, as shown by [7], [28], [29].
issues, an abstract scheme to describe the entire searchirithe wavelet transform has long been used in image and
procedure consists of the steps depicted in Figure 2, whisignal processing while its use in information retrieval and
are also summarized in four events. data mining has been extensive [31]. A complete survey on
To avoid duplicate effort, the procedure taBswith an ID wavelet application in data mining can be found in [28]. In
(see Section 1I-C). This way, MHs that have already receivedgeneral terms, the wavelet transform is a tool that provides
will perform no further action. Additionally, the propagation ofquality time and frequency resolution, while dividing up data,
R to the neighboring MHs is controlled by a parameter callddnctions, or operators into different frequency components
h, which is a counter that is decreased at each receiving Midd then studying each component with a resolution matched
(denotes the available number of hops). Its initial value, at the its scale[28], [11], [18].
querier, is equal td\/axzHop. This value corresponds to the Wavelets present numerous favorable properties in contrast
preferred tolerance to traffic and network reach/coverage. Tiee other type of analyses. Among them, lie the efficient
propagation of answer sets (resulting from step 5) is handledmputation complexity, the vanishing moments that support
similarly. de-noising and dimensionality reduction while focusing
As already mentioned, the searching process consistsonf most important information, the compact support that
a forward and a backward phase. During the fornferis guarantees the localization of the wavelet, the de-correlated
propagated and during the latter answers are routed baclkctefficients that enable the reduction of complex processes
the querier. The two phases are interleaved, since during tifetime domain into simpler in the wavelet domain and
propagation of R by some MHs, other MHs are returningthe support to the Parseval’'s theorem. In addition, wavelets
answers to the querier. The backward phase’s volume maipiiesent a multiresolution property that leads to hierarchical
depends on the existence of answers and the number of falepresentations and manipulations of the objects treated.
positives, while the forward phase depends on the sizB,of The previously mentioned merits of the wavelet transform,
our coverage willingness as well as the network reachabiliyorroborate the use of wavelets on music. The low computation
In general, the volume of information transferred during theomplexity assists the already burdened process by the large
backward phase is larger than that of the forward phase. size of the musical data. The vanishing moments and their de-
Having outlined the searching procedure, in the followingoising capability cope with the noise introduced in musical
sections we detail its parts. First we elaborate on the featuresordings by the ambient sounds, during recording. The
that can be selected for the formation @&f. Next, we compact support allows locally altered musical pieces to retain
describe the acceleration of similarity searching within eagheir overall similarity, while the multiresolution adheres to the
MH by using indexing. Based on these, we next descrilperception model of the ear, according to which the perception
two searching algorithms, which follow different choices witlof both large scale quantities and small scale events, rely upon
respect to the formation aR. Finally, we present methods tothe multiresolution capability of the ear [7].

improve the backward phase. More particularly, we consider the Haar wavelet
transformation for its simple incremental computation,
I\V. EEATURES AND INDEXING its capability concerning the capture of time dependant

properties of data and overall multiresolution representation
A. Features for CB_MIR _ _ _ of signals [26] as well as for the incorporation of the
One of the main challenges in MIR is the choice ofreviously mentioned properties. However, our approach can

representation of the musical information within the systeraasily be extended to other types of wavelet transforms.
As the sequences of acoustic music objects tend to be quite

large in size, they are commonly described by a set of features. ) o
Numerous standpoints exist on what features to retain and Bn [ndexing within peers
how to select these features [5], [32], [33], [36], [51], [52]. The To facilitate the searching within peers we use the
selection of appropriate features is considered very importdaliowing approach. In a peer, each original audio sequence
in music information retrieval [16]. Meaningful features helfis transformed to a number of multidimensional points. We
in the effective representation of the objects and enable thee a sliding window of length over the sequence and apply
use of indexing schemes for efficient query processing.  Discrete Wavelet Transform (DWT) to the contents of each
The most typically encountered features for the acoustidndow, producingn coefficients per window. An example
representation are produced by time analysis, spectral analysiglepicted in Figure 3a. Therefore, each audio sequence
and wavelet analysis. produces a set ofi-dimensional points in the feature space.
In this work, we do not concentrate on devising newincen depends on the query length and, thus, takes relatively
features. Instead, we are interested in a methodololgyge values (e.g., 64 K), in order to efficiently index them



in the feature space, we select only the fidlsdimensions simple choices concerning the representativiof the query

from each point (in our experiments we uséd= 64). This sequence and its propagation during the forward and backward
procedure dramatically reduces both the size of the index gpldhses. The second (proposed) is based on more advanced
the number of dimensions without affecting much the qualityhoices with respect to the latter issues.

of the index. The reason for the latter is the merit of DWT

to concentrate the energy of the sequence in the first few Algorithm based on maximal query representation

coefficients. However, false-positives are possible and thusA imolisti h for th o i
require resolution, simplistic approach for the representatidhis to set it

Most importantly, it has been proven by [9] that nAdentical to the query sequence. The advantage is that no false-
false dismissals aré introduced when using only dhérst positives occur, since when a possible match has been found by

coefficients (due to Parseval's theorem). Notice that thi ; 2 . . )
property is proven in [9] for the Euclidean distance. Althoug self (ie., R). Thus,. no false-posn.lves W'" be included in
this distance measure is simple, it is known to have sevef ?answer_-sets, which could negatively impact the backwgrd-
advantages, as it has been illustrated by [25]. Nevertheled4aS€ traffic, as they would be propagated to the querier just
the proposed methodology does not decisively depend on fﬂé'nd that they are nqt actual mgtchgs. we havg to note that,
particular features and distance measure, which are used he‘%ine gble to perform index probing (i.e., to avoid squgntlal
following simplicity as well as computation efficiency reasons’s.earchlng at each MH), a small number of DWT coefficients

To speed-up the retrieval, for each sequence the collectBY included ink as well. However, their size is negligible

of the resulting/-dimensional points is organized in Minimumcompared to' the 5|ze'of thg query sequence. .
Bounding Rectangles (MBRs), which are, then, stored in The resu!tlng al_gorlthm IS denot_ed as ML (flMaX|mum
an R-tree [4]. Answering to query, the root is initia”yrepreser_]tatm_n W'th Local reso_lutlon at MHS)' ML is
retrieved and its entries that intersect the query are orfymmanzed |n.F|gure 4 accorqmg to the actions performed
further examined recursively until reaching a leaf. All no r each occurring event (see Figure 2).

intersecting nodes are not included in the search. An example

is given in Figure 3b. Therefore, when searching for similar « Query initialization The querier assigns 8 the entire
subsequences, we first retrieve candidates from théree. query sequence (plus the few query coefficients) and
We rank the candidates so as to process the most promiging Propagates (broadcasts) it to all its neighbors.
ones first (we observed that this saves a lot of CPU time) « Reception of R Upon the reception ofR, each
and then, those candidates are examined against the provided MH P probes its indexes, resolves the false-positives,
query representation. When the latter is reduced (as in the case and produces a list of results (only true-positives).

gdex probing, it can be immediately tested against the query

of transcoding that will be explained), false-positives are stjll ~ The answer-set is propagated back to the querief, by
possible. Nevertheless, their number is significantly reduced. ~broadcasting it toall the neighbors ofP (backward
More details about indexing can be found in [22]. phase). Accordingly, should there be availahleR is
conveyed to allP's neighboring MHs (forward phase).
— 2 - « Reception of an answer-settach MH P, that is
A ~ el @ oo not the querier, receiving an answer-set, continues the
— ) propagation (backward phase) &l its neighboring
0 0 12 25 18 32 12 23 17 31‘ . .
@ MHs as long as there is availabte
N « An answer-set reaches the querielWhen an answer-
T set reaches the querier, then the results are immedjately
” presented to the user.
. b Fig. 4. The ML algorithm.
m -
’ oug manages to control the traffic during the
Kl Although ML to control the traffic during th
v [} backward phase (due to the elimination of false-positives),
, ] 1= this comes at the cost of excessive traffic during the forward
. [7] phase. This is due to the representati®rthat is propagated
L]~ during the forward phase, which is equal to the entire query.
For large query sequences this causes prohibitive forward
raffic. Evidently, there emerges a trade-off between the two
(0) traffic. Evidently, th trade-off bet the t

contrasting phases. What is, therefore, needed is a method
that will balance the traffic between the two phases, aiming at
overall improvement.
Another issue on which ML makes a simplistic choice is
the selection of the neighboring MHs to which the answer-
In this section we describe the two algorithms thaet is propagated during the backward phase. When handling
implement the searching procedure. The first is based thre second and third events, ML selects all neighbors for

Fig. 3. Feature extraction process.

V. SEARCHING ALGORITHMS



this purpose, thus resorting to plain flooding. This simplistic « Keeps forward traffic low, as the size &fis reducing at
selection can significantly impact the backward traffic. To each stage of the forward phase propagation.

overcome the problem we need to devise policies for thee Reduces backward traffic by letting the MHs involved in
selective routing of the answer-sets. That is, we want to select the forward phase to cache the transcoded representation
only those nodes that are more promising to satisfy the receipt and, during the backward phase, to use it for early
of the answers, thus significantly reducing backward traffic  resolving false-positives, before they reach the querier.
without reducing the chances of the answer-sets to reach the The problem of caching depends on several network
querier. parameters. This problem is independent to our approach,
while effective solutions can be found in [14]. In
our experiments, we found that by simply caching
the representations for a small, fixed amount of time,
adequate performance is attained.

In Section V-A it was made clear that there is a tradeoff « Reduces the processing (CPU) time at each MH, as the
between the forward and backward traffic. ML focuses only on  cost of resolving false-positives at each MH depends on
the improvement of backward traffic and incurs high forward the size ofR.
traffic. In this section we present a new algorithm, which has The reduction is performed by gettingvalues according
a two-fold objective. The first is to produce a representation to an inverse sigmoid function (Figure 5b). Due to the shape
that achieves a balance between the two phases and minimigethis function, the immediate neighborhood of the querier,
the overall traffic. The second is to develop selective routinghich can provide results faster, receives a lafBewhereas
policies for the propagation of the answer-sets, leading fiee burden posed on MHs that are far is appreciably smaller.
significant reduction of the backward traffic. Also, this way we control the exponential growth of traffic

The first objective is confronted by settirfg between the that results by plain broadcasting of full-size representation.
two extremes cases: (i) the minimum possible representatian example is depicted in Figure 5&; is the querier and
with only the d DWT coefficients that are required for theP, is the node that starts propagating the answer-set. The
local index-searching (minimizing forward traffic), and (ii) theMHs in the path fromP; to P, are depicted gray shaded,
maximum possible representation with allelements in the and they are annotated with the size ®fthat reaches them
guery sequence itself (eliminating the burden of false-positiveéB; starts with 10 K DWT coefficients). Figure 5b illustrates
in terms of computation and backward traffic). Therefor¢hat these sizes are reducing, following an inverse sigmoid
between the two extremes? can consist of the greater function. During the backward phase, starting frétn MHs
DWT coefficients, wherel < I < n. Notice that this type of P; and P5; can be reached (depicted with dashed arrows). The
representation generalizes the two extreme cases: by setttaghed representation i can help to resolve possible false-

I = d, R becomes identical to the first (i) case; in contraspositives in the answer-set. The reason is thaljrthe false-
by setting! = n, R becomes identical to the second (ii)positives were examined against a smafethan the one in
case, because the DWT coefficients are equivalent to thePs. In contrast,P; was not in the path, thus cannot resolve
n elements of the query sequence (due to the Parsevaliy false-positives.

theorem) As described in Section 1V, a numbérof the

greater DWT coefficients can effectively capture the energy of

B. Algorithm based on reduced query representation and
transcoding

the music sequence and reduce the number of false-positives. P 10K
The result is that, compared to the second (ii) case, the forward 3K %jK o
traffic is expected to be smaller, becauseé n. Compared to P gls/'ci)‘; 3K
the first (i) case, the backward traffic is expected to be smaller 10K g 1K
too, due to the number of false-positives being significantly ’ T 2 3 4

reduced, since < [. ®)
The tuning ofl, however, is difficult, because it depends on
several factors, like the topology of the MANET, which areig. 5. An example of the searching procedure.
changeable. For this reason we follow a different approach.
Initially, ! is assigned a large value (see Section VII for its Henceforth, the size of the initial query representation is
tuning) and this value is monotonically reduced during thgiven as a factor (denoted d$ of the complete query size,
propagation ofR in the forward phase. This technique can b@hereas the slope of the inverse sigmoid function is controlled
though of as dranscodingscheme, as it involves sequenceby a parameter denoted as(higher values ofx produce a
with varying number of DWT coefficients that correspongteeper slope).
to varying approximations of the initial query sequence. The Regarding the second objective, we do not follow the
transcoding scheme: simplistic approach of ML, which propagates the answer-sets
to all neighbors. In contrast, during the forward phase, as it
5In the case of ML we could havek to consist of all then DWT S typical in any dynamic source routing protocol [17], each
coefficients. However, we choose thesequence elements in the time domain\jH that receivesk, additionally receives the ID of all MHs
just to avoid the computation of the inverse DWT, since in our case the ti . . .
;ﬂﬁgg were used in the path from the querier to it. These IDs

domain presents a smaller storage requirement as the data values are in o=H ] h -
0-255. can be maintained along witt® with minimal cost (only



some bytes). When a MH starts propagating answer-setsarié additionally involved. The objective of all policies is to
selects among its current neighbors those that will propagatntrol the number of involved MHs so as to reduce backward
the answer-set (not all of them). To make this selectiotraffic. These policies constitute a hybrid approach between
it applies a policy that focuses on the neighbors that wepeobabilistic broadcasting, where the broadcasting decision is
included in the path from the querier to it. Since several suclhmpletely local to each mobile host and the deterministic
policies can be developed, in the next section we elabordét®adcasting which relies on the discovery of some form of
further on them. All the policies, despite their differencegonnected dominating set [30].
emphasize on selecting neighboring MHs that were included
in the path. The reason is that the cached representations Fabl bal and local ¢ lici
these nodes maintain, can resolve false-positives during the obal and focal counter policies
backward phase. Therefore, traffic is substantially reduced.To clarify the description of the first two policies, consider
More details will be given in Section VI. the example of Figure 7a, which depicts the path from FH

The algorithm that combines all the aforementione® MH Ps, which was followed in the forward phase. Figure 7b
characteristics is denoted as RT (querying Bgduced depicts the routing of the answer-set froRg back to P;.
representation witArranscoding) and is illustrated in Figure 6 Comparing the two phases, several MHs have changed their
The handling of success or failure is treated similarly t@cation, others have switched off, and some new ones have

standard routing MANET protocols employing a TTL-likebecome reachable. The MHs that are depicted grey color are

policy [53]. the ones that were included in the forward path too, whereas
the rest are new ones that were involved only in the backward
o Query initialization The querier setsk equal to g phase.
sample with an initial size (parameter) plus the query P,
co_efficients, and propagates (broadcasts) it to all its P Ps >, Py Py
neighbors. R
« Reception of R Upon the reception oR, each MHP Py P, Py 3 S Py ’
probes its indexes, resolves as many false-positives as ’ ‘ Pe
possible based on the received query sampl&,cénd @ (®)

produces a list of results. The answer-set is propagated

back to the querier, by following the described policyFig.- 7. An example of propagation in a MANET: a) forward phase, b)

for the backward phase. Accordingly, should therg b&ackward phase.

availableh, R's size is reduced, and the reducgdis

conveyed to allP's neighboring MHs (forward phase)
« Reception of an answer-seMWhen a MH receives p

reply, it checks if it can resolve any false-positives. Thignswer-set with a maximum number of re-transmissidns,

is true should it have received (if any) a representdtioffdual to the length of the forward path plus an extra value
that was larger than the one that the sequences fn N the example, the length (number of edges) is equal
the answer set were examined previously (i.e., af th& S Lete = 1 and = 6. GC tries to find among the

sending MH). After any possible pruning, as long agweighbors, the one that was its predecessor in the path. In the

there is availablé, the answer-set is routed backwafdsSX@mMPple, atFs GC tries to findPs. If this MH is reachable,

following a policy. then it is the only one selected to propagate the answer-set

« An answer-set reaches the queriekVhen an answet- and h _is decreased by_ one. The same procedure is applied
set reaches the querier, initially any remaining fa Se[ecgrslvely. AtPs5, GC tries to findP,. If P, is not reachable,
positives require resolution, and then the results| ar8S it IS now the case, then GC propagates the answer-set to

presented to the user. all ne|ghbor|n_g MHs (broadcasting t8; and Ps) and each

of them receives & value decreased by one. Next, unless

a MH in the forward path has been reached, GC continues

by broadcasting to all neighbors. At each propagation of the

answer-seth is decreased by one, thus actually acting as a

decreasing global counter. If a MH from the forward path is

reached at any point again, then, as previously, GC tries to find
In this section we describe three policies for routing thiés predecessor. In the examplB; is a node from the path,
answer-sets in the backward phase. The first two policiedich has been reached withequal to 2. Its predecessor is

(global and local counter, described in [8]) are based df, which then propagates (dsis 1) the answer set t@;

existing methods, whereas the third one (critical mass) and the procedure terminates.

novel. As mentioned, all policies try to select nodes that wereln summary, when selecting the MHs to route back the

included in the path during the forward phase. Nevertheless)swer-set, GC tries to follow the MHs included in the forward

the backward phase cannot be based only on such nogeth. However, to overcome problems from the alteration of

Due to the mobility of MHSs, it may be impossible to reachthe MANET (like the disappearance &1, in this example), it

the querier unless other MHs (not included in the patkllows an amount of discrepancy by resorting to broadcasting.

~ With the global-counter(GC) policy, when a MH {% in
the example) starts propagating an answer-set, it tags the

Fig. 6. TheRT algorithm.

VI. ROUTING POLICIES FOR THE BACKWARD PHASE
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To control the discrepancy, and thus the backward traffic, it The CM policy differs from GC and LC in the following
uses the value of. Notice that with a very largee, GC aspects: (i) It does not search predecessors in the path, as it
resorts to broadcasting for a very large number of timefcuses on identifying MHs that were in the forward path,
thus becoming equivalent to the simplistic policy used byegardless of their order (i.e. not searching for the previous
the ML searching algorithm. In contrast, with a very smaliode). This makes CM more flexible to the changes in the
e, the querier may not become reachable, especially when MANET. (ii) It never resorts to broadcasting to all neighbors.
MANET changes very fast. At worst case, the number of randomly selected MHs is equal
A variation of GC works as follows. After a discrepancyto CMF. This attains better control of the backward traffic.
when a MH from the path has been reached again, we hesdbue to the aforementioned characteristics, CM is expected to
to its initial value. In the previous example, wheyis reached outperform GC and LC, as will be shown in Section VII.
again, available hop is reset to 6 (initial value). Thusicts as
a decreasing local counter, because it is reset independently at VIl. PERFORMANCE EVALUATION
several MHs. For this reason this policy is denotedoasl-
counter (LC). Its objective is to increase the probability o
reaching the querier, by rewarding the identification of the In this section, we provide an experimental comparison of
forward path. Nevertheless, this can increase the backwéneé three described content-based audio retrieval algorithms.
traffic. The performance of the algorithms was compared through
simulation. The settings of the simulation were as follows.
The mobile ad-hoc network had 100 nodes. We used 300 real
acoustic sequences, which correspond to various pop songs.
With the critical-mass (CM) policy, if at least a number, The average duration was about 5 minutes. To account for
denoted ascritical-mass factor (CMF), of the current the fact that songs (especially the popular ones) are common
neighbors was in the forward path, we select them as titeseveral nodes, we replicated each sequence to a number
only ones to propagate the answer-set. If their number is lesfsSMHs (default value equals to four). The aforementioned
than CMF, then we additionally select randomly some of theettings correspond to a realistic scenario for a MANET, like
current neighbors (not in the path) in order to have at leasie one described in the Introduction. Accordingly, the average
CMF MHs to propagate the answer-set. In contrast, if theflumber of sequences per node was 12, a quantity that is quite
number is larger thaittMF, then they are all selected. Forreasonable for the state-of-the-art MP3 cell phones [43] and
example, consider the case in Figure 8. Figure 8a depicts #BAs, both of which support the latest memory cards.
forward phase, whereas Figure 8b presents the backward casRegarding the simulation of mobility, we based our
As shown, during the backward phase some MHs have newperiments on the GSTD simulator, as presented in [46],
relocated. LetCMF be 2. WhenP, starts propagating the which considers hosts moving freely in a 2-D area. We used
answer-set, it first selecf;, because it belongs to the forwarda squared area with side equal to 4,000 m, whereas the
path. Since this is the only such MH a@MF is 2, it also transmission/reception range of each MH was set to 500 m
selectsP; at random among the other reachable MHs. radius. Different degrees of velocity were selected for the
moving MHs, adjusted by parameters of the GSTD, but due to
lack of space we present results only for the average walking
speed of a human (5 Km/h). Additionally, to account for the
e fact that mobile devices may enter doze mode (power-safe
. status where the device is out of network), we take each time
y for the MHs a doze-mode probability, with default value equal
to 0.1 (that is, at each time unit a MH is out of network with
’ probability 0.1).

Regarding CM, the default value f@MF was 10% of the
number of neighbors at each MH, whereas the default initial
sample size was 10% of the query sequence’s size. For GC

Fig. 8. Example of relative locations of MHs in forward andand LC policies, the additional value added to MaxHop
backward phase. is set to 2 (we tried other similar values with no significant
improvement). For all algorithms, the default valueeofvas

The nodes that were selected at random in order to fulfdl and the default MaxHop was set to 5. Henceforth, when
CMF, are still provided with the path of the MH that initiatedparameter values are not specified, we assume the default
the propagation of the answer-set (for the previous examplajues.
P5 that is selected by, will also know the path fromP; to The evaluation metrics are the average traffic (measured in
Py). This way, due to mobility, it is possible for such node#1Bytes) that each query incurs, the number of results obtained
during the backward phase to find neighbors that appear in #ired the time the first and last result were discovered (the time
forwarded path (in the same examplg, finds P, that was of the first result is a useful measure, since users may terminate
in the path). Therefore, the impact of such randomly selectedarching early). The results on time reflect the perceived
MHs on the proposed policy may be kept at a moderate levitency required for the response to the querier. In contrast,

A Simulation configuration

B. Critical mass policy
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total traffic reflects the load posed to the network in order Next, we examined the impact of the document replication
to provide responses. Thus, the two factors require separd#gree on the traffic and the time of the first and last result. The
consideration. former experiment (given in Figure 10a) shows that an increase
in the replication degree has a clear impact on both the number
of results and the backward traffic. This is especially true for
i ) ) , . ML. Once again, the number of results obtained by ML are
In our first experlment., we examlngd the traffic agaln§'>tlightly less than for the other. Regarding times of first and
MaxHop. The resuI'Fs are |Ilustr<'_;\ted in Figure 9a. The forwaqgst result (Figure 10b), an analogous behavior is observed.
and backward traffics are depicted separately, whereas the”i'he following experiment considered the traffic produced

addition (height of bars) gives the total traffic. As expecte% the MH doze-mode probability (Figure 11). It is quite
ML produces the highest fprward traffic in all cases (dug tlf:iyar that for increased values of probability, the network
maximal query representation), whereas the for\{vard traffic Bbcomes less connected, thus leading in decrease of the results
CM’. LC and GC. are about th? same. Regarding backwarr urning to the querier. ML is clearly outperformed, whereas
trafflc,_ as described, ML attains a decreased ”“mbef_ e others perform about the same. What is more, the increase
returning results. However, due to the absence of an efficigqty, ;6 moge probability leads to a decrease in traffic, since

backward routing polic;y, this qdvantage s invalidate(_:l. T'}ﬂe diminished connectivity of the graph prohibits both the
rest approaches, considerably improve backward traffic, w% overy of results and the propagation of any found.

CM performing better for MaxHop greater than seven. From Next, we examine the impact of query rangeFigure 12

this result it becomes obvious that, although the backwazgﬂowS the results for traffic with respectdoSince CM, LC
phase is in general more demanding for all algorithms, dla‘| Lo

B. Experimental results

? : ) fid GC perform similarl , to improve clarity we only include
to the reductp n of backwar-d Frgffm attained by CM, LC.: aNfhe resulr;s for the form){ar. As ipncreases, ):nore re);ults are
GC,.t.he requwement of optimizing the forward phase_, IS f"’}'1"0und and, thus, backward traffic increases too (forward traffic
Additionally notice that the number of results (depicted i
Figure 9a with a solid line) obtained by ML are less tha
the results obtained by CM, LC and GC and although tf{ﬁ

difference is small, there is a clear trend.

1y unaffected). However, the increase is much more obvious
r ML, whereas CM, due the effectiveness of the policy for
e backward phase, has a very smooth increase.

We also tested the sensitivity of the CM algorithm against
ek - | and o parameters (as formally described in Section V-B).
Forward i The results are illustrated in Figure 13a. For bétlnd o

parameters, the performance of ML remains totally unaffected
and is only included for comparison purposes. As far as the
| parameter is concerned, backward traffic is unaffected. As
expected, forward traffic increases with increasing sample size.
For the examined range of values, the reduction in traffic is
not combined with a change in the number of found matches,
9 which are similar in the order of decimal values, and thus
omitted. In contrast, the examined values forparameter
(a) resulted to small differences between the approaches.

] Ouastresut M M Finally, we examined the sensitivity of CM againrGMF
g ST (the others are not affected I§MF). The traffic and number

] HH of results of CM, for varyingCMF values, are depicted in
9

100 T

el
o

Traffic (MBytes)
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Number of results

Figure 13b. Wher€MF is high, the effectiveness of the policy
for the backward phase is limited, since most MHs are selected
at random by this policy. Thus, the resulting backward traffic
is high (forward traffic is not affected). Notice that, for the
examined range dEMF values, the reduction in traffic slightly
MaxHop affects the number of found matches (the difference between
the results for the extreme values GMF are only in the
(b) order of decimal values). On the other hand, the increase in
Fig. 9. Traffic, number and time of results vs. MaxHop the results comes at the cost of higher traffic. Conclusively,
relatively smallCMF values are sufficient.

This result can be further clarified by the results on time of
the first and last results, which are depicted in Figure 9b. In
this figure, the height of the bars correspond to the time of last
result, whereas the time of first result is depicted separatelyin this paper, we introduce the application of CBMIR
as its fraction. As expected, increase in available MaxH@pplication in wireless ad-hoc networks. We recognize the
produces longer times, since more MHs are examined. In alw challenges posed by this type of networks. To address
cases, the increase in time is far more steep for ML, whitkem, we propose a novel algorithm, which is based on a
CM presents an advantage over LC and GC. twofold optimization: (i) the use of query representation with
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reducing length, (i) a selective policies for the routing o& mobile ad-hoc network.
answers, which performs additional pruning of traffic. The
combination of these factors attains significant reduction in
both response times and traffic. This is verified through
extensive experimental results, which illustrate the suitabilit){l] D. P. Agrawal and Q.-A. Zengintroduction to Wireless and Mobile

of the proposed method. Systems Thomson, Brooks/Cole, 2003.

Concluding, we have to mention that the examined contextl G. Anastasi, M. Conti, and E. Gregori, “IEEE 802.11 adhoc networks:
does not depend on the specific features and distance measure,gr‘gggggﬁipﬂfoém?cg Eg}grggigIZ%ef“g?ct,}”rﬁeﬁgv?cocEggthEE%ress
since it can be used in combination of several other ones, as g wiley-Interscience, 2004, pp. 69-116. T
long as they allow for a reducing-length representation. [3] L. Baochun and K. H. Wang, “NonStop: Continuous multimedia

In future work, we plan to examine other features and to Sreamng 'Sr‘elé"c'ifzsregginhg‘;n';‘gfl‘j";g;st_o‘;"[ghz;ogg E)Ob"'wfg;_
develop a real prototype with mobile devices. Additionally, 1641, 2003. iOrER. 22, 0. 25, PP-
we intend to extend the system so as to accommodate musi¢#l N. Beckmann, H. P. Kriegel, and B. Seeger, “The-fee: An efficient
genre querying as well. The key idea is that based on a "érédn{"fé‘s&";e,fhgngfésf’f'”ts and rectangles,Pioc. ACM SIGMOD
annotated querying feature set(such as the features descr'be‘fg]ns. Bray and G. Tzanetakis, “Distributed audio feature extraction for

[48]) the querier can identify similar genre audio data within ~ music,” in Proc. ISMIR Symp.2005, pp. 434-437.
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