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Abstract

Server-initiated broadcast, compared to unicast transmis-
sion, presents excellent scalability to requests by multiple
clients in wireless networks. In such networks, many mo-
bile clients can have overlapping interests about the same
visual information, thus image broadcasting is expected to
find acceptance in wireless broadcast networks (WBNs). In
this paper we examine for the first time, to our knowledge,
the problem of image broadcasting in WBNs. We propose
a novel method that significantly reduces the time latency
perceived by clients that request images. We also consider
the issue of energy consumption, because portable devices
operate with batteries. With experimental results we ver-
ify the superiority of the proposed method against existing
methods from other domains.

1 Introduction

Advances in wireless technology have brought the de-
mand for visual communication, consisting of images (or
video), over wireless networks. Nowadays several formats
of wireless images exist, e.g., WBMP (wireless bitmap)
and OTB (on-the-air bitmap). Moreover, novel transmis-
sion schemes have been proposed [4, 8, 11], which focus on
addressing the challenges posed by the wireless medium to
the problem of error correction.

There are two basic delivery methods in wireless net-
works: (a) the unicast (a.k.a. point-to-point or pull-based)
transmission and (b) the server-initiated broadcast (a.k.a.
push-based). With the former, each mobile client estab-
lishes a separate connection with the server (through an up-
link channel) and poses a request. Thus, excessive network
traffic may incur for “hot” pieces of information, since mul-
tiple requests are produced for them. Unicast is the only
delivery method that has been examined so far for image

transmission in wireless networks [4, 8, 11]. Since image
data are relatively large compared to, e.g., text, unicast im-
age transmission can significantly aggravate network loads
and reduce the quality of service.

In contrast, with the latter method, all clients moni-
tor the same channel (downlink channel) to acquire data
transmitted by the server. Therefore, broadcast is advan-
tageous because of its excellent scalability, as it permits si-
multaneous requests by numerous clients to be served ef-
ficiently. Moreover, it exploits the communication asym-
metry in wireless environments; that is, the uplink channel
capacity is much smaller than that of the downlink. Several
commercial broadcast services have been deployed so far,
e.g., StarBand, Hughes Network Systems, and DirectBand
Network.1 They only support plain data types (text or nu-
merical), which have been successful for applications about
weather or financial information. However, improvements
in wireless technology resulted to bandwidths that can, now,
sustain visual communication with image data.2 Neverthe-
less, until now, these increasing capabilities have not been
explored in depth for image transmission.

1.1 Motivation

The first question that follows from the previous dis-
cussion is whether images are useful in wireless broadcast
networks (WBNs). To answer this question we have to
consider that, in several cases, mobile clients have over-
lapping interests about the same visual information. For
example, an image can represent the map of an area and
several clients may be interested in receiving it at their
PDAs (location-based service). The map may be addition-
ally overlayed with information like the traffic load (e.g.,

1www.starband.com, www.microsoft.com/resources/spot, and
www.direcway.com, respectively.

2For instance, GPRS currently provides bandwidth higher than 64
KBps.



streets annotated with an indicative color). This creates
the additional need to update such time-varying images. In
another example, images can be associated with headline
news. Since these news interest many users, the correspond-
ing images can be broadcast to them along with the textual
description. In all the aforementioned examples, it is more
efficient to broadcast the requested images than having each
client burden the wireless network with separate requests.
Therefore, due to their usefulness, it is likely that images
are going to become a common type for data dissemination
in WBNs, like text currently is.

The second question that follows is why existing (uni-
cast) methods for transmitting images do not suffice in the
case of WBNs. Compared to unicast transmission, image
broadcast has to consider two new issues: (i) Transmission
does not start when the mobile client issues a request, but
when the available information is scheduled to be broad-
cast. (ii) The broadcast channel presents limited capacity
(compared to, e.g., a wireless LAN) and higher economic
charge. Both issues render unicast methods inapplicable. In
particular, the former (i) issue introduces the need to min-
imize user-perceived latency (waiting time). The latter (ii)
issue compels users to request for approximations instead
of the original image, whereas each user can set the desired
level of approximation depending on the provided band-
width and/or economic charge.3 The aforementioned issues
have not been examined so far. What is, therefore, required
is a novel approach, which will address both these issues.

1.2 Contribution

In this paper we examine for the first time, to our knowl-
edge, the problem of image broadcasting in WBNs. We
propose a novel scheduling method that generates non-flat
programs for image broadcast. Its objective is to minimize
the time latency that is perceived by clients when they re-
quest an image from a WBN. Additionally, we consider the
resulting energy consumption, since portable devices oper-
ate with batteries.

The proposed method has the following characteristics:

• It can work with encoding techniques that support pro-
gressive image refinement, thus can easily be applied
to several widely accepted standards like the progres-
sive mode or hierarchical mode employing progressive
coding mode of JPEG [10] or the JPEG2000.

3Approximations are sufficient for the additional reason that light mo-
bile devices (e.g., PDAs) usually have screens with relatively low resolu-
tion.

• It exploits features that these standards present, like en-
ergy compaction, to identify the elements that should
be given higher priority. The identification is done an-
alytically, through the optimization of estimation func-
tions that are developed.

• The generated programs (non-flat) assign higher
broadcast frequency to higher priority elements. This
leads to significant performance improvement com-
pared to existing methods, which is verified by experi-
mental results.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the background and related work. The
proposed problem and method are detailed in Sections 3
and 4. The experimental results are given in Section 5,
whereas Section 6 concludes the paper.

2 Background and related work

2.1 Background

In the rest of the paper we assume the following. There
exists a fixedmobile support station(server), which broad-
casts over a single broadcast layer at a constant rate. The
data are reliably received by the clients that are within the
server’s radio coverage. Note that the problem of error cor-
rection is orthogonal to our research (see Section 2.2). The
physical unit of broadcast data is denoted asbucket. Thus,
when a client reads data from the channel, the minimum
number of bytes it can read each time, is equal to the bucket
size.4 In real applications, the bucket usually has a relatively
low size, e.g., 512 bytes or 1 K.

The most critical factor is the scheduling algorithm,
which organizes the periodically broadcast items in apro-
gram that determines their order and frequency (i.e., num-
ber of appearances) in each cycle. Each program contains
information about an image that is encoded with an existing
standard like JPEG or JPEG2000. For simplicity, we will
assume JPEG, but our approach can be easily generalized
to JPEG2000.

In JPEG, the image is partitioned into disjoint windows
of size8 × 8 pixels. Discrete Cosine Transform (DCT) is
applied within each window, producing a sequence of 64
DCT coefficients that are ordered. In particular, the DC
coefficient is of order 0, whereas the order of the highest

4The notion of bucket is analogous to a physical page in a hard disk
device.



frequency AC coefficient is 63. Finally, the coefficients of
each window are quantized and encoded (e.g., run-length or
huffman). We collect the quantized and encoded DCT co-
efficients from all8× 8 windows that are of the same order,
i, into a new sequenceCi, 0 ≤ i ≤ 63. The contents (co-
efficients) of each sequenceCi are then placed into a series
of buckets (because they may not fit in only one bucket).
Such a sequence of buckets that contains the contents ofCi

is denoted assegmentsi, where|si| denotes the number of
buckets required bysi. Figure 1a illustrates the formation
of the resulting 64 segments. In contrast to a bucket, which
is the physical unit of transmission, a segment acts as the
logical unit of transmission, since a client has to read the
contents of an entire segment in order to retrieve the value
of a specific coefficient within it. In general, as coefficients
are encoded, it may hold that|si| 6= |sj | for i 6= j. There-
fore, assegment sizewe consider the maximum|si| for all
0 ≤ i ≤ 63, and we assume that, when necessary, all other
segments are padded to fit this maximum size.

Using a flat program, the segments are just sorted in
increasing order of their coefficients and are periodically
broadcast one after the other. An example is depicted in
Figure 1b. This implements the case of unicast.

Mobile clients can set the desired level of image’s ap-
proximation (i.e., quality). The approximation level deter-
mines the maximum orderm of coefficients that will be re-
trieved,0 ≤ m ≤ 63. After a request, the client waits until
s0 starts being broadcast and retrieves all segmentssi for
0 ≤ i ≤ m. We define asaccess latency, A, the time that
the client waits until segmentsm is received. For conve-
nience, we measureA in terms of the corresponding number
of segments. For instance, if a request initiates when seg-
ments62 is about to be broadcast andm = 5, thenA = 8.
Finally, we assume the existence of mechanisms [1, 5] that
allow the server to learn statistics, like the request probabil-
ities of the segments.

2.2 Related work

Using a flat program, an image is transmitted by sim-
ply conveying its segments one after the other, regardless of
their access probability. However, some segments are more
frequently requested than others, depending on the approxi-
mation level that is set by each client. To minimize latency,
we have to take into account the access probabilityP (si)
for each segmentsi. Therefore, segments with higherP (si)
value should be broadcast more frequently so as to reduce
the time clients wait for them. In this case, the resulting
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Figure 1. Example of: (a) mapping from 8 × 8
windows to 64 segments; (b) a flat program.

program is denoted as non-flat.

Non-flat programs for plain data (e.g., numerical) have
been introduced by Acharya et al. [1], whereas subsequent
works [2, 6] described ways to determine the frequency of
the items in the program. These works examine the retrieval
of a single item and are not efficient for image data, because
the latter requires multi-item retrieval. For purposes of com-
parison, however, we examine the adaptation of the MAD
scheduling algorithm [6], which is one of the best schedul-
ing algorithms for single-item retrieval.

Scheduling for multi-item retrieval has been considered
in [3, 9]. However, the access pattern in these works is dif-
ferent from the one considered in our work. The reason
is that [3, 9] concern broadcast items that are “linked” to-
gether (e.g., inline images within a web-page), thus con-
sider programs where some items are accessed together



with probability equal to one. In contrast, for image broad-
casting, items are accessed together with probability deter-
mined by the required quality, which is user-defined. More-
over, in [3, 9] there exist no order in the broadcast items,
whereas in image broadcasting, items are ordered with re-
spect to a transformation (e.g., discrete cosine). Program-
generation algorithms for retrieving numerical values in
specified ranges, are examined by Tan et al. [7]. In the case
of image data, ranges start from the first segment and are
determined by the required quality. This results to a very
different access pattern compared to [7].

Finally, related work includes channel-coding methods
for error resilience [4, 8, 11]. They focus on unicast image
transmission in wireless networks. Channel-coding meth-
ods are orthogonal to our research. Referring to the 7-
layer OSI model, we focus on theTransportlayer, assum-
ing transparency to error-correction mechanisms provided
by theNetworkandData Link layers.

3 Problem definition

The quality of the received image depends on the maxi-
mum order,m, of coefficients that will be retrieved. For the
example of Lena image, Figure 2 illustrates Mean Square
Error (MSE) versusm. In general, as also verified by Fig-
ure 2, due to the energy-compaction property, MSE reduces
rapidly after the first few values ofm. However, after a
point, the reduction becomes much less steep. It is expected
that most clients will not be willing to setm higher than
this point, as the corresponding image quality is adequate
and the additional cost (time and/or economical) does not
payoff.
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Figure 2. Example of MSE versus m.

Since different clients will use different values form,
each segment will be retrieved with different probability.
An observation we have to make is that, if we setm = i,

we have to retrieve all segmentssj for 0 ≤ j ≤ i. For this
reason we define the following:

Definition 1 For each segmentsi (0 ≤ i ≤ 63), we define
the access probabilityP (si) as the normalized number of
times that clients requested retrieval up tosi.

In other words,P (si) denotes the probability that a client
will set m = i. For the reasons mentioned in the beginning
of this section (reduction of MSE with increasingm), the
distribution ofP (si) is expected to have shape similar to
that in Figure 3, which can be approximatively divided into
three main parts:

• Part 1 corresponds to the clients that stop at the very
first segments (i.e., use a lowm value). Their number
is small, as these segments produce low image quality.

• Part 2contains the majority of clients, which are those
that use a satisfactorym.

• Part 3 corresponds to the clients that use a highm

value. In this partP (si) reduces, because few clients
request such higher-level approximations. The reduc-
tion continues until it reaches a minimum, whereas be-
yond this pointP (si) remains about constant.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

i

P
(s

i)

Part1

Part3

Part2

Figure 3. Example of distribution of P (si).

We have examined various synthetic probability distribu-
tion functions forP (si), like the Poisson distribution or the
Log-normal distribution, which are used to model skewed
phenomena. Our experiments indicated that the relative per-
formance of the methods we examined is not changed by the
choice of the probability distribution function. For reasons
of simplicity, and also becauseP (si) can be considered as a
discrete random variable, we henceforth assume thatP (si)
follows the Poisson distribution, that is,P (si) = e−λλi/i!.



The mean and variance are equal toλ. Thus,λ determines
the shape of the distribution.

To construct efficient non-flat program, we have to de-
termine the frequency of each segmentsi according to its
P (si) value. Low frequency for highly demanded segments
(those in Part 2) increases access latencyA, whereas an un-
necessarily high frequency increases the length of the pro-
gram andA. Thus, the segments’ frequencies have to be
optimized. As mentioned, for the retrieval of segmentsi,
we have to retrieve all segmentssj for 0 ≤ j < i as well.
Since the segmentssj in Part 1 have smallP (sj) values, if
we assign them a low frequency, then they will become the
“weakest link in the chain” and will increaseA. Consider-
ing all the aforementioned issues, we describe the following
problem that has to be solved.

Problem 1 Given a sequenceS = 〈s0, . . . , sN−1〉 of N

segments5 and their access probabilitiesP (si), 0 ≤ i ≤ N ,
we want to find: (1) ak value, 0 ≤ k < N , which
determines a subsequence of consecutive segmentsG =
〈s0 . . . sk−1〉, and (2) a frequency valuef ≥ 1 for the seg-
ments inG. The values ofk and f are selected such that
the corresponding program minimizes the expected access
latencyA.

That is, we divideS in two subsequences:G andG′ =
S − G. Intuitively, G contains the highly requested seg-
ments and their preceding ones (i.e., those in Parts 1 and
2), to which we assign frequencyf ≥ 1.6 To the segments
of G′ we assign frequency equal to one. This means that:
(i) these segments are not repeated within a cycle and (ii)
the frequency of segments inG (those that are going to be
repeated) will be defined relative to the basic frequency of
segments inG′. In the following, we present the proposed
scheduling method by describing methods to generate non-
flat programs and to derive the values fork andf .

4 Proposed scheduling method

4.1 Program generation

Assume (for now) that the values ofk andf are given.
A non-flat program can be generated by first placing the
segments ofG at f distinct positions in the program and
next by filling the remaining positions with the segments
from G′. In general, between any two consecutive appear-
ances of segments fromG, the number of segments from

5For JPEG,N = 64.
6Whenf = 1, a flat program is produced.

G′ may vary. An example is depicted in Figure 4a (as-
sumingk = 2). In contrast, the number of intermediate
segments fromG′ can be fixed. An example is depicted
in Figure 4b. According to [1], the former case represents
a skewedprogram, whereas the latter anon-skewedpro-
gram. Henceforth, we are based on non-skewed programs,
because they result in smaller latency compared to skewed
ones [1]. Givenk and f , it follows that the length of a
non-skewed program (in number of segments) is equal to
(f−1)k+N , whereas the number of intermediate segments
between two appearances of segments fromG, is equal to
dN−k

f e.

4.2 Computing parameters for access-
latency minimization

In this section we describe the computation ofk andf .
Let A(si) be the access latency (in terms of number of seg-
ments) for a user that request the segments froms0 up tosi.
The expected access latency for all segments is, therefore,
equal to:

A =
N−1∑

i=0

P (si)A(si). (1)

A(si) depends on whetheri < k or not. For this reason
we consider the following:

Lemma 1 For a segmentsi, 0 ≤ i < N , it holds that:

A(si) =





1
2

(
dN−k

f
e+ k + i + 1

)
, 0 ≤ i < k

1
2

(
b i−k+1

dN−k
f

e ck + fk − 3k + N + i + 1

)
, k ≤ i < N.

Proof. For0 ≤ i < k we consider the following two cases.

Best case: If the user issues the request at the moment
thats0 is about to be broadcast, then at best case we get that
Ab(si) = i+1, because the user has to wait for the retrieval
of the segments froms0 to si.

Worst case: If the user issues the request at the moment
thatsi has just been broadcast, then has first to wait for the
k− i−1 remaining segments fromG to be transmitted (that
is, si+1 to sk−1), next for dN−k

f e intermediate segments
from G′, and finallyi + 1 segments fromG (that is,s0 to
si). Thus, at worst case, we getAw(si) = dN−k

f e+ k. On

average we have thatA(si) = 1
2 (Ab(si) + Aw(si)). With

simple algebraic manipulations we get the required equality
for the case0 ≤ i < k.

For k ≤ i < N we consider again the following two
cases.
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Figure 4. Example of two programs: (a) skewed; (b) non skewed.

Best case: If the user issues the request at the moment
that sk (the first segment inG′) is about to be broadcast,
then has to wait fori−k+1 segments fromG′. Additionally,
we have to wait for all the appearances of the segments ofG

betweens0 andsi. Since for eachdN−k
f e segments fromG′

there arek segments fromG and we havei−k+1 segments
from G′, we have to additionally wait forb i−k+1

dN−k
f eck − k

segments ofG.7 Therefore,Ab(si) = b i−k+1
dN−k

f eck − k + i−
k + 1.

Worst case: If the request is issued aftersi has just been
broadcast, then we have to wait for all the program to be
broadcast, that is,Aw(si) = (f − 1)k + N . On average
we have thatA(si) = 1

2 (Ab(si) + Aw(si)). With simple
algebraic manipulations we get the required equality for the
casek ≤ i < N . ¤

From Equation 1 and Lemma 1 it follows that, for a given
k, we can considerA as a function off . With the following
proposition, we find the valuef∗ that optimizesA.

Propositon 1 For a givenk, A is minimized for the value

f∗ =
(N − k)

√
P (G)√

k
∑N−1

i=k iP (si) + [k(N − 2k + 1)]P (G′)
(2)

Proof. We simplify A(si) by not considering the ceiling
and floor functions. Next, we take the derivative:∂A

∂f =

−N−k
2f2

∑k−1
i=0 P (si) +

∑N−1
i=k

P (si)
2

(
i−k+1
N−k k + k

)
= 0.

We denote P (G) =
∑k−1

i=0 P (si) and P (G′) =∑N−1
i=k P (si). Therefore, by solving forf and with sim-

ple algebraic manipulations, we get the required equation.
Because the frequency is an integer, we have to take the
ceiling df∗e value. ¤

Finally, we derive the optimumk∗ value fork as follow-
ing:

k∗ = arg min
0≤k<N

A, (3)

where we assume that for each examinedk, we determine
the optimumf∗ according to Equation 2.

7The term(−k) results because, in the best case, the request is issued
at the broadcast ofsk, not ofs0.

The time cost to determinek∗ is O(N2), due to theN
possible values in Equation 3 and the summation performed
in the denominator of Equation 2 for each possible value.

4.3 Tuning time

The proposed scheduling minimizes access latency.
However, wireless broadcasting also involvestuning time,
that is, the time a mobile client remains tuned in the broad-
cast channel. Tuning time is related to client’s battery con-
sumption, thus it has to be minimized too. We consider the
following method. Each bucket in a segment contains, as
associated metadata, the following:

• the order of its coefficients,

• the positionp of the corresponding segment in the pro-
gram, i.e., the offset of the segment from the first seg-
ment in the program (e.g., in Figure 4b, the positionp

of segments5, is 7),

• the segment’s size (in buckets), and

• the values ofN , f , andk.

These metadata produce negligible space overhead
within each bucket. Upon its tuning to the channel, a client
reads the metadata and computes therelative positionr of
the segment, which is given as follows:

r = p− bp
c
cc

wherec = k + dN−k
f e. The relative positionr of a segment

denotes its offset from the first segment of the most previous
repetition of segments inG (the ones with frequency higher
than one). In the example of Figure 4b, the relative position
r for segments5, is equal to 3, becauses5 is three segments
away from the most previous repetition of segments0 (in
this case,G consists ofs0 ands1).

After reading the metadata and computingr, the client
disconnects to reduce energy consumption. While discon-
nected, the client knows each following positionp (because



transmission rate is constant). For a segmentsi in each
forthcoming positionp, the client can calculate the order
i of its coefficients, using the following function:

i =

{
r, r < k

r − k + bp
c cdN−k

f e, otherwise.

Thus, when the currently broadcast segment is in the range
required by the user, i.e., when0 ≤ i ≤ m, the client tunes
and reads it. This minimizes tuning time, as the client tunes
only to read the requested segments. Experimental results
in the following section will demonstrate the efficiency of
this technique.

5 Experimental results

The performance of the proposed scheduling method,
henceforth denoted asImage Broadcast Scheduling(IBS),
was tested experimentally. We compared IBS against the
flat program generation and MAD [6], one of the best
scheduling algorithms for single-item retrieval. In order
to control the various characteristics of the data, we used
a simulation environment, where all scheduling algorithms
were programmed in C language.P (si) values where
synthetically generated following the Poisson distribution.
The main parameter was thepeakpoint of the distribution,
which is equal is equal toλ variable (the peak point is given
relatively to the total number of segmentsN ). The peak
point is corresponds to the approximation level that is re-
quested by the majority of clients. The shapes of the gen-
erated probability distributions were similar to that of Fig-
ure 3.

In our first experiment we measured thef∗ andk∗ values
produced by IBS. The results are depicted in Figures 5 and
6, respectively. As expected from Equations 2 and 3,f∗ and
k∗ increase with increasing peak value.

In the following experiment we measured the access la-
tency, A, resulted by the program of IBS and by the flat
program. A is measured versus the peak point ofP (si).
The results are depicted in Figure 7. In the same figure
we also plotted the value ofA that is predicted by Equa-
tion 1 (denoted as Pred IBS), to measure the accuracy of
the prediction. For IBS, the actual and predicted values are
very similar. Moreover, IBS clearly outperforms the flat
program. With increasing peak value, the latency of both
methods converges to a point, as clients retrieve most of the
segments.
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Figure 8 illustrates the results of the comparison between
IBS and MAD. IBS compares favorably against MAD, as
the latter is designed for single-item retrieval, thus favors
some particular segments without considering the correla-
tions between the different segments. This unnecessarily
increases the length of the program and, thus,A.

Next, we examined how fast each method retrieves the
most important segments. The importance of a segment
si stems from the fact thatsi is needed to retrieve allsj

with j > i; thus thesesj segments depend onsi. To quan-
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tify the importanceI(si) of a segmentsi, we consider that
I(si) =

∑N
j≥i P (sj). Intuitively, a segment is more im-

portant, when the access probability of all its dependent
segments is high. For a given collectionR of retrieved
segments, the total importance,I, is the sum ofI(si) for
all si ∈ R. (I(si) is considered only once for each re-
trievedsi.) Figure 9, depicts the resultingI for all algo-
rithms against the size of collectionR, given relatively to
the total number of segmentsN . When this size is small,
MAD presents the best performance, as it tends to favor the
segments with high probability of retrieval. However, as ex-
plained, this happens at the cost of very highA that MAD
incurs. IBS presents very good performance, whereas in
several cases it is better than MAD. The flat program clearly
looses out, as it treats all segments uniformly.
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Figure 9. Results on importance I.

We also tested the tuning times, in terms of number of
buckets, for all the examined algorithms. The results are de-
picted in Figure 10 (the vertical axis is in logarithmic scale).
As expected, MAD has the worst tuning time, because it re-
sults to programs where segments with consecutive order of
coefficients are very scattered. Thus, the client has to stay

tuned for long times in order to retrieve the required range of
segments. In contrast, the flat program is expected to have
the optimum tuning time, because the client can tune only
when the required segments are being transmitted. IBS, due
to the technique described in Section 4.3, is able to have tun-
ing time similar to the optimum (in Figure 10 the curves for
IBS and Flat are overlapped). This indicates the efficiency
of IBS not only with respect to reduced access latency, but
to the minimization of tuning time as well.
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Figure 10. Results for tuning time.

6 Conclusions

Due to the advances in wireless technology, image
broadcasting is expected to find wide acceptance in wire-
less broadcast networks (WBNs) in the near future. Since
in several real-world applications, mobile clients have over-
lapping interests about the same visual information (e.g.,
using a PDA to view maps or images of headline news in a
browser), it is more efficient to broadcast the requested im-
ages than simply to unicast them separately to each client.

In this paper, we have examined the problem of im-
age broadcasting in WBNs. We proposed a novel schedul-
ing method for non-flat program generation. It is designed
based on characteristics of existing standards for image en-
coding. We examined the problem of minimizing the time
latency that results when requesting an image from a WBN.
We also considered the issue of energy consumption by
minimizing tuning-time. Experimental results verified the
superiority of the proposed method for minimizing access
latency and tuning time. Therefore, we propose an efficient
and simple to implement method for the problem of image
broadcasting.

Future work will include extensions to multiplex many
images in the broadcast program and the examination of
multi-channel networks.
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