

 1

An Introduction to

Apostolos N. Papadopoulos
(papadopo@csd.auth.gr)
Assistant Professor

Data Engineering Lab
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki – Greece

 2

Outline
What is Spark?

Basic features

Resilient Distributed Datasets (RDDs)

Existing libraries

Examples

 3

What is Spark ?

In brief, Spark is a UNIFIED platform for cluster computing, enabling efficient big data
management and analytics

It is an Apache Project and its current version is 1.3.1 (released in April 17, 2015)

It is one of the most active projects at Apache:

1.0.0 - May 30, 2014

1.0.1 - July 11, 2014

1.0.2 - August 5, 2014

1.1.0 - September 11, 2014

1.1.1 - November 26, 2014

1.2.0 - December 18, 2014

1.2.1 - February 9, 2014

1.3.0 - March 13, 2015

 4

Who Invented Spark ?

University of Waterloo (B.Sc. Mathematics, Honors Computer Science)
Berkeley (Ph.D. cluster computing, big data)

Now: Assistant Professor @ CSAIL MIT

He also co-designed the MESOS cluster
manager and he contributed to Hadoop
fair scheduler.

Matei Zaharia

Born in Romania

 5

Who Can Benefit from Spark ?

Spark is an excellent platform for:

- Data Scientists: Spark's collection of data-focused tools helps data
scientists to go beyond problems that fit in a single machine

- Engineers: Application development in Spark is far more easy than other
alternatives. Spark's unified approach eliminates the need to use many
different special-purpose platforms for streaming, machine learning, and
graph analytics.

- Students: The rich API provided by Spark makes it extremely easy to learn
 data analysis and program development in Java, Scala or Python.

- Researchers: New opportunities exist for designing distributed algorithms
and testing their performance in clusters.

 6

Spark vs Hadoop

Spark supports many different types of tasks including SQL
queries, streaming applications, machine learning and
graph operations.

On the other hand …

Hadoop MR is good for heavy jobs that perform complex
tasks in massive amounts of data. However, Spark can do
better even in this case due to better memory utilization
and optimization alternatives.

 7

Spark vs Hadoop: sorting 1PB

 Hadoop Spark 100TB Spark 1PB

Data Size 102.5 TB 100 TB 1000 TB

Elapsed Time 72 mins 23 mins 234 mins

Nodes 2100 206 190

Cores 50400 6592 6080

Reducers 10,000 29,000 250,000

Rate 1.42 TB/min 4.27 TB/min 4.27 TB/min

Rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min

Source: Databricks

 8

Spark Basics

Spark is designed to be fast and general purpose.

The main functionality is implemented in Spark Core. Other
components exist, that integrate tightly with Spark Core.

Benefits of tight integration:

- improvements in Core propagate to higher components

- it offers one unified environment

 9

Spark Basics: ecosystem

SQL Streaming MLlib GraphX

HDFS

Cassandra
Mesos YARN

Standalone
Scheduler

Local FS

Amazon S3

Hive

Hbase

CORE

INPUT/OUTPUT CLUSTER MANAGER

LIBS

Amazon
EC2

Dataframes ML Pipelines

API

 10

Spark Basics: libraries

Currently the following libs exist and they are evolving really-
really fast:

- SQL Lib

- Streaming Lib

- Machine Learning Lib (MLlib)

- Graph Lib (GraphX)

We outline all of them but later we will cover details about
MLlib and GraphX

 11

Spark SQL

Spark SQL is a library for querying structures datasets as well as
distributed datasets.

Spark SQL allows relational queries expressed in SQL, HiveQL, or
Scala to be executed using Spark.

Example:

hc = HiveContext(sc)

rows = hc.sql(“select id, name, salary from emp”)

rows.filter(lambda r: r.salary > 2000).collect()

 12

Spark Streaming

Spark Streaming is a library to ease the development of
complex streaming applications.

Data can be inserted into Spark from different sources
like Kafka, Flume, Twitter, ZeroMQ, Kinesis or TCP
sockets can be processed using complex algorithms
expressed with high-level functions like map, reduce,
join and window.

 13

Spark MLlib
MLlib is Spark's scalable machine learning library

Version 1.1 contains the following algorithms:
 linear SVM and logistic regression

 classification and regression tree
 k-means clustering
 recommendation via alternating least squares
 singular value decomposition (SVD)
 linear regression with L1- and L2-regularization
 multinomial naive Bayes
 basic statistics
 feature transformations

Runtime for logistic regression

 14

Spark GraphX

GraphX provides an API for graph processing and graph-parallel algorithms on-top of
Spark.

The current version supports:
 PageRank
 Connected components
 Label propagation
 SVD++
 Strongly connected components
 Triangle counting
 Core decomposition
 ... Runtime for PageRank

 15

Distributed Execution in Spark

executor

worker node

task task

executor

worker node

task task

executor

worker node

task task

spark context

driver

 16

Distributed Execution in Spark
Outline of the whole process:

1. The user submits a job with spark-submit.

2. spark-submit launches the driver program and invokes the main() method

specified by the user.

3. The driver program contacts the cluster manager to ask for resources to launch

executors.

4. The cluster manager launches executors on behalf of the driver program.

5. The driver process runs through the user application. Based on the RDD actions

and transformations in the program, the driver sends work to executors in the

form of tasks.

6. Tasks are run on executor processes to compute and save results.

7. If the driver’s main() method exits or it calls SparkContext.stop() , it will
terminate the executors and release resources from the cluster manager.

 17

Resilient Distributed Datasets (RDDs)

Data manipulation in Spark is heavily based on RDDs. An RDD is
an interface composed of:
 a set of partitions
 a list of dependencies
 a function to compute a partition given its parents
 a partitioner (optional)
 a set of preferred locations per partition (optional)

Simply stated: an RDD is a distributed collections of items. In particular:
an RDD is a read-only (i.e., immutable) collection of items partitioned
across a set of machines that can be rebuilt if a partition is destroyed.

 18

Resilient Distributed Datasets (RDDs)

The RDD is the most fundamental concept in
Spark since all work in Spark is expressed as:

- creating RDDs

- transforming existing RDDs

- performing actions on RDDs

 19

Creating RDDs

Spark provides two ways to create an RDD:

- loading an already existing set of objects

- parallelizing a data collection in the driver

 20

Creating RDDs

// define the spark context

val sc = new SparkContext(...)

// hdfsRDD is an RDD from an HDFS file

val hdfsRDD = sc.textFile("hdfs://...")

// localRDD is an RDD from a file in the local file system

val localRDD = sc.textFile("localfile.txt")

// define a List of strings

val myList = List("this", "is", "a", "list", "of", "strings")

// define an RDD by parallelizing the List

val listRDD = sc.parallelize(myList)

 21

RDD Operations

There are transformations on RDDs that allow us to create
new RDDs: map, filter, groupBy, reduceByKey,
partitionBy, sortByKey, join, etc

Also, there are actions applied in the RDDs: reduce,
collect, take, count, saveAsTextFile, etc

Note: computation takes place only in actions and not on
transformations! (This is a form of lazy evaluation. More on
this soon.)

 22

RDD Operations: transformations

val inputRDD = sc.textFile("myfile.txt")

// lines containing the word “apple”

val applesRDD = inputRDD.filter(x => x.contains("apple"))

// lines containing the word “orange”

val orangesRDD = inputRDD.filter(x => x.contains("orange"))

// perform the union

val aoRDD = applesRDD.union(orangesRDD)

 23

RDD Operations: transformations

inputRDD

applesRDD

orangesRDD

unionRDD

filter

filter

union

Graphically speaking:

 24

RDD Operations: actions

An action denotes that something must be done

We use the action count() to find the number of lines in
unionRDD containing apples or oranges (or both) and
then we print the 5 first lines using the action take()

val numLines = unionRDD.count()

unionRDD.take(5).foreach(println)

 25

Lazy Evaluation

The benefits of being lazy

1. more optimization alternatives are possible if we see the big picture

2. we can avoid unnecessary computations

Ex:

Assume that from the unionRDD we need only the first 5 lines.

If we are eager, we need to compute the union of the two RDDs, materialize
the result and then select the first 5 lines.

If we are lazy, there is no need to even compute the whole union of the two
RDDs, since when we find the first 5 lines we may stop.

 26

Lazy Evaluation

At any point we can force the execution of
transformation by applying a simple action such
as count(). This may be needed for
debugging and testing.

 27

Basic RDD Transformations

Assume that our RDD contains the list{1,2,3}.

map() rdd.map(x => x + 2) {3,4,5}

flatMap() rdd.flatMap(x => List(x-1,x,x+1)) {0,1,2,1,2,3,2,3,4}

filter() rdd.filter(x => x>1) {2,3}

distinct() rdd.distinct() {1,2,3}

sample() rdd.sample(false,0.2) non-predictable

 28

Two-RDD Transformations

These transformations require two RDDs

union() rdd.union(another)

intersection() rdd.intersection(another)

subtract() rdd.substract(another)

cartesian() rdd.cartesian(another)

 29

Some Actions

collect() rdd.collect() {1,2,3}

count() rdd.count() 3

countByValue() rdd.countByValue() {(1,1),(2,1),(3,1)}

take() rdd.take(2) {1,2}

top() rdd.top(2) {3,2}

reduce() rdd.reduce((x,y) => x+y) 6

foreach() rdd.foreach(func)

 30

RDDs and DAGs

A set of RDDs corresponds is transformed to a

Directed Acyclic Graph (DAG)

Input: RDD and partitions to compute

Output: output from actions on those partitions

Roles:

> Build stages of tasks

> Submit them to lower level scheduler (e.g. YARN, Mesos, Standalone) as ready

> Lower level scheduler will schedule data based on locality

> Resubmit failed stages if outputs are lost

 31

DAG Scheduling

d1

d2

join

d4

d3 join d6d5
filter

 32

DAG Scheduling

A

join C
filter

D

B

RDD objects DAG scheduler

A.join(B).filter(...).filter(...) split graph into stages of tasks
submit each stage

 33

Persistence

In many cases we want to use the same RDD multiple times
without recomputing it.

Ex:

val result = rdd.map(x => x+1)

println(result.count())

println(result.collect().mkString(","))

We can ask Spark to keep (persist) the data.

 34

Persistence

val result = rdd.map(x => x+1)

result.persist(StorageLevel.DISK_ONLY)

println(result.count())

println(result.collect().mkString(","))

Persistence levels:

MEMORY_ONLY

MEMORY_ONLY_SER (objects are serialized)

MEMORY_AND_DISK

MEMORY_AND_DISK_SER (objects are serialized)

DISK_ONLY

If we try to put to many things in RAM Spark starts fushing data disk using a Least Recently Used policy.

 35

Spark Examples

Spark supports
 Java
 Python
 Scala

We are going to use the Scala API in this lecture. We
will play with Spark Core component and also run
examples of MLlib and GraphX libraries that are
very relevant to Graph Data Mining.

 36

Hello Spark

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

object HelloSpark {

 def main(args: Array[String]): Unit = {

 println("Hello, Spark!")

 }

}

things we
must
import

 37

LineCount
object LineCount {

 def main(args: Array[String]) {

 println("Hi, this is the LineCount application for Spark.")

 // Create spark configuration and spark context

 val conf = new SparkConf().setAppName("LineCount App")

 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir") // get the current directory

 val inputFile = "file://" + currentDir + "/leonardo.txt"

 val myData = sc.textFile(inputFile, 2).cache()

 val num1 = myData.filter(line => line.contains("the")).count()

 val num2 = myData.filter(line => line.contains("and")).count()

 val totalLines = myData.map(line => 1).count

 println("Total lines: %s, lines with \"the\": %s, lines with \"and\":
%s".format(totalLines, num1, num2))

 sc.stop()

 }

}

 38

WordCount
import org.apache.spark.SparkContext._

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {

 def main(args: Array[String]): Unit = {

 val sparkConf = new SparkConf().setMaster("local[2]").setAppName("WordCount") // config

 val sc = new SparkContext(sparkConf) // create spark context

 val currentDir = System.getProperty("user.dir") // get the current directory

 val inputFile = "file://" + currentDir + "/leonardo.txt"

 val outputDir = "file://" + currentDir + "/output"

 val txtFile = sc.textFile(inputFile)

 txtFile.flatMap(line => line.split(" ")) // split each line based on spaces

 .map(word => (word,1)) // map each word into a word,1 pair

 .reduceByKey(_+_) // reduce

 .saveAsTextFile(outputDir) // save the output

 sc.stop()

 }

}

 39

WordCount in Hadoop
import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

 public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context
context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "wordcount");
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

 }

}

 40

PageRank
object PageRank {

 def main(args: Array[String]) {

 val iters = 10 // number of iterations for pagerank computation

 val currentDir = System.getProperty("user.dir") // get the current directory

 val inputFile = "file://" + currentDir + "/webgraph.txt"

 val outputDir = "file://" + currentDir + "/output"

 val sparkConf = new SparkConf().setAppName("PageRank")

 val sc = new SparkContext(sparkConf)

 val lines = sc.textFile(inputFile, 1)

 val links = lines.map { s => val parts = s.split("\\s+")(parts(0), parts(1))}.distinct().groupByKey().cache()

 var ranks = links.mapValues(v => 1.0)

 for (i <- 1 to iters) {

 println("Iteration: " + i)

 val contribs = links.join(ranks).values.flatMap{ case (urls, rank) => val size = urls.size urls.map(url =>
(url, rank / size)) }

 ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)

 }

 val output = ranks.collect()

 output.foreach(tup => println(tup._1 + " has rank: " + tup._2 + "."))

 sc.stop()

 }

}

 41

More on MLlib

MLlib provides some additional data types common in
Machine Learning

Vector (a math vector, either sparse or dense)

LabeledPoint (useful in classification and regression)

Rating (useful in recommendation algorithms)

Several Models (used in training algorithms)

 42

SVD with MLlib

import org.apache.spark.mllib.linalg.Matrix

import org.apache.spark.mllib.linalg.distributed.RowMatrix

import
org.apache.spark.mllib.linalg.SingularValueDecomposition

val mat: RowMatrix = ...

// Compute the top 20 singular values and corresponding singular vectors.

val svd: SingularValueDecomposition[RowMatrix, Matrix] =
mat.computeSVD(20, computeU = true)

val U: RowMatrix = svd.U // The U factor is a RowMatrix.

val s: Vector = svd.s // The singular values are stored in a local dense vector.

val V: Matrix = svd.V // The V factor is a local dense matrix.

 43

More on GraphX

The basic concept in GraphX is the property graph

The property graph is a directed multigraph with user
defined objects attached to each vertex and edge.

GraphX optimizes the representation of vertex and edge
types when they are plain old data-types (e.g., int)
reducing in memory footprint by storing them in
specialized arrays.

 44

More on GraphX

“While graph-parallel systems are optimized for iterative diffusion algorithms like
PageRank they are not well suited to more basic tasks like constructing the graph,
modifying its structure, or expressing computation that spans multiple graphs”

Source: http://ampcamp.berkeley.edu

 45

More on GraphX

This means that for some tasks Spark may not show
the best performance in comparison to other
dedicated graph processing systems.

Ex:

PageRank on Live-Journal network (available @snap)

GraphLab is 60 times faster than Hadoop

GraphLab is 16 times faster than Spark

 46

More on GraphX

Source: http://spark.apache.org

 47

More on GraphX

To use GraphX we need to import

import org.apache.spark._

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

 48

More on GraphX

val vertexArray = Array(

 (1L, ("Alice", 28)),

 (2L, ("Bob", 27)),

 (3L, ("Charlie", 65)),

 (4L, ("David", 42)),

 (5L, ("Ed", 55)),

 (6L, ("Fran", 50))

)

val edgeArray = Array(

 Edge(2L, 1L, 7),

 Edge(2L, 4L, 2),

 Edge(3L, 2L, 4),

 Edge(3L, 6L, 3),

 Edge(4L, 1L, 1),

 Edge(5L, 2L, 2),

 Edge(5L, 3L, 8),

 Edge(5L, 6L, 3)

)

Source: http://ampcamp.berkeley.edu

 49

More on GraphX

Parallelizing nodes and edges

val vertexRDD: RDD[(Long, (String, Int))] =
sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] =
sc.parallelize(edgeArray)

Now we have vertexRDD for the nodes and edgeRDD for the
edges.

 50

More on GraphX

Last step: define the graph object

val graph: Graph[(String, Int), Int]
= Graph(vertexRDD, edgeRDD)

 51

PageRank with GraphX
object PageRank {

 def main(args: Array[String]): Unit = {

 val conf = new SparkConf().setAppName("PageRank App")

 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")

 val edgeFile = "file://" + currentDir + "/followers.txt"

 val graph = GraphLoader.edgeListFile(sc, edgeFile)

 // run pagerank

 val ranks = graph.pageRank(0.0001).vertices

 println(ranks.collect().mkString("\n")) // print result

 }

}

 52

Connected Components

4

1

2

3

5

7

6

This graph has two connected components:

 cc1 = {1, 2, 4}

 cc2 = {3, 5, 6, 7} Output:
(1,1) (2,1) (4,1)
(3,3) (5,3) (6,3) (7,3)

 53

Connected Components
object ConnectedComponents {

 def main(args: Array[String]): Unit = {

 val conf = new SparkConf().setAppName("ConnectedComponents App")

 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")

 val edgeFile = "file://" + currentDir + "/graph.txt"

 val graph = GraphLoader.edgeListFile(sc, edgeFile)

 // find the connected components

 val cc = graph.connectedComponents().vertices

 println(cc.collect().mkString("\n")) // print the result

 }

}

 54

Counting Triangles

Triangles are very important in Network Analysis:

- dense subgraph mining (communities, trusses)

- triangular connectivity

- network measurements (e.g. clustering coefficient)

a

b d

ec

Example

 55

Counting Triangles
object TriangleCounting {

 def main(args: Array[String]): Unit = {

 val conf = new SparkConf().setAppName("TriangleCounting App")

 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")

 val edgeFile = "file://" + currentDir + "/enron.txt"

 val graph = GraphLoader

 .edgeListFile(sc, edgeFile,true)

 .partitionBy(PartitionStrategy.RandomVertexCut)

 // Find number of triangles for each vertex

 val triCounts = graph.triangleCount().vertices

 println(triCounts.collect().mkString("\n"))

 }

}

 56

Spark SQL Example

We have a JSON file (planets.json) containing
information about the planets of our solar system

{"name":"Mercury","sundist":"57910","radius":"2440"}
{"name":"Venus","sundist":"108200","radius":"6052"}
{"name":"Earth","sundist":"149600","radius":"6378"}
{"name":"Mars","sundist":"227940","radius":"3397"}
{"name":"Jupiter","sundist":"778330","radius":"71492"}
{"name":"Saturn","sundist":"1429400","radius":"60268"}
{"name":"Uranus","sundist":"2870990","radius":"25559"}
{"name":"Neptune","sundist":"4504300","radius":"24766"}
{"name":"Pluto","sundist":"5913520","radius":"1150"}

 57

Spark SQL Example

The JSON schema looks like this:

root

 |-- name: string (nullable = true)

 |-- radius: string (nullable = true)

 |-- sundist: string (nullable = true)

 58

Spark SQL Example

We need to do the following:

1. extract the schema from planets.json

2. load the data

3. execute a SQL query

 59

Spark SQL Example
object Planets {

 def main(args: Array[String]) {

 // Create spark configuration and spark context

 val conf = new SparkConf().setAppName("Planets App")

 val sc = new SparkContext(conf)

 val sqlContext = new org.apache.spark.sql.SQLContext(sc)

 val currentDir = System.getProperty("user.dir") // get the current directory

 val inputFile = "file://" + currentDir + "/planets.json"

 val planets = sqlContext.jsonFile(inputFile)

 planets.printSchema()

 planets.registerTempTable("planets")

 val smallPlanets = sqlContext.sql("SELECT name,sundist,radius FROM planets WHERE radius < 10000")

 smallPlanets.foreach(println)

 sc.stop()

 }

}

 60

Some Spark Users

 61

Resources

The best way to begin learning Spark is to study the
material in the project's website

 https://spark.apache.org

From this website you have access to Spark
Summits and other events which contain useful
video lectures for all Spark components.

https://spark.apache.org/

 62

Resources

Books to learn Spark

 63

Resources

Where to find more graph data ?

Take a look at
http://snap.stanford.edu

 64

Thank you

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

